Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016"

Transcript

1 Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 206 () Un fascio di protoni entra in una regione di spessore d = m in cui è presente un campo magnetico d intensità B = 0.20 T. La direzione del campo è perpendicolare alla velocità iniziale del protone. Calcola la velocità minima che devono avere i protoni per superare la regione ed emergere dall altro lato. La massa del protone è m = kg. (2) Due altoparlanti sono azionati dallo stesso oscillatore a 800 Hz e distano.25 m l uno dall altro. Sapendo che la velocità del suono in aria, nelle condizioni dell esperimento, è di 343 m/s, trovare i punti lungo la congiungente gli altoparlanti in cui l intensità sonora è minima. (3) All estremità di una molla di lunghezza a riposo l 0 = 0 cm disposta verticalmente si appoggia una pallina di massa m = 20 g, inizialmente tenuta ferma. Nel momento in cui si rilascia la pallina, la molla inizia a oscillare, ma dopo un po si ferma rimanendo contratta a una lunghezza pari a 3/4 di quella iniziale. Quanta energia è dissipata durante il processo che ha inizio col rilascio della pallina?

2 () Per cercare di trovare una soluzione analizziamo quel che accade in questi casi. Procedendo nell analisi comparirà, da qualche parte, una grandezza utile a risolvere il problema. Quando particelle cariche si muovono in regioni nelle quali è presente un campo magnetico B subiscono la Forza di Lorentz F la cui espressione è F = qv B, dove v è il vettore velocità della particella e q la sua carica. Il simbolo rappresenta il prodotto vettoriale che restituisce un vettore di modulo pari F = qvb sin θ in cui θ è l angolo formato dai vettori v e B. Il vettore risultante è perpendicolare a questi due e il verso si trova con la regola della mano destra: si dispone il pollice destro in modo che sia diretto come v e le altre dita della mano in direzione di B. Il vettore F è cosí uscente dal palmo della mano. Nel caso in esame quel che accade dunque è che, immaginando che i protoni si muovano verso destra e che il campo sia entrante nel piano del foglio, la forza di Lorentz è rivolta verso l alto. La presenza di questa forza cambia la velocità del protone, ma solo in direzione e verso. Essendo infatti la forza perpendicolare alla velocità risulta essere centripeta e dà origine a una traiettoria circolare, il cui raggio si può stimare come segue. Mettendoci nel sistema di riferimento del protone, vedremmo due forze: quella di Lorentz e quella centrifuga, pari in modulo a F c = m v2 R essendo R il raggio di curvatura della traiettoria e m la massa del protone. In questo sistema di riferimento il protone è fermo quindi le due forze devono essere uguali e contrarie. Poiché la velocità del protone, pur cambiando direzione, si mantiene perpendicolare a B il modulo della forza di Lorentz è costante e vale F = qvb. Abbiamo allora che da cui si ricava che qvb = m v2 R R = mv qb. Affinché il protone riesca a superare la prima regione è evidente che il raggio di curvatura dev essere superiore allo spessore della regione, perciò dobbiamo avere che ossia mv qb > d v > qbd m = ms.

3 (2) In questo caso abbiamo due onde che si propagano in versi opposti dai due altoparlanti. In questi casi quel che accade è che le onde interferiscono e si possono produrre massimi e minimi d interferenza in punti diversi, secondo la fase relativa tra le onde. Si potrebbero quindi scrivere le espressioni delle due onde, sommarle e cercare i punti in cui tale somma è minima (in valore assoluto). Ciascuna onda si scrive come ( y = A cos 2π x ) dove x rappresenta la distanza da uno degli altoparlanti. L espressione tra parentesi si ricava osservando che deve rappresentare un angolo, che è una frazione dell angolo giro 2π. Tale frazione dev essere espressa da un numero adimensionale proporzionale a x per ottenere il quale basta dividerlo per un altra lunghezza in modo tale che l angolo 2π corrisponda a una lunghezza d onda. Se prendiamo come origine del sistema di riferimento l altoparlante a sinistra, l onda risultante si scrive come ( y = A cos 2π x ) ( + A cos 2π L x ) dove L rappresenta la distanza tra gli altoparlanti. Nei casi in cui si ha interferenza tra onde uguali si ha sempre la somma di due seni o di due coseni che si riscrive usando le formule di prostaferesi. Per trovare massimi e minimi però non è necessario ricordare sempre esattamente la formula giusta. Basta ricordare che nell argomento delle funzioni trigonometriche compare sempre la semisomma e la semidifferenza degli angoli: S = ( 2π x 2 + 2π L x ) = π L e D = ( 2π x 2 2π L x ) = π (2x L). S non dipende da x perciò non può essere questa a determinare l ampiezza dell onda risultante. L ampiezza è minima quando la funzione trigonometrica che ha come argomento D assume il valore assoluto minimo che è 0. Se la funzione è un seno questo si verifica per D = kπ. Se è un coseno per D = (2n + ) π 2 con n intero. Poiché le due onde sono in fase, quando s incontrano al centro si devono sommare perciò per x = L/2, in cui D = π (2 L2 ) L = 0 l onda risultante deve assumere il valore massimo possibile. Quando l argomento della funzione è zero, questa è massima se è un coseno, perciò l onda risultante è modulata secondo il coseno di D. Si annulla, quindi, quando cioè quando D = π (2x L) = (2n + )π 2

4 x = (2n + ) 4 + L 2. La lunghezza d onda si ricava dalla relazione esistente tra la velocità di propagazione v e la frequenza f = /T dove T è il periodo dell onda che si misura in secondi. Poiché la velocità si misura in metri al secondo è facile ricordare che da cui ricaviamo v = T = f, = v f. Per n = 0 allora abbiamo Per n = x = v 4f + L 2 = = m. 2 x = 3 v 4f + L 2 = m, Con n = 2 si trova x =.6 m mentre per n 3 si avrebbe x > L. Osservate anche che avremmo potuto trovare la soluzione facilmente se avessimo ricordato che due onde uguali che viaggiano nella stessa direzione in versi opposti danno luogo a onde stazionarie. Ma invece di ricordare le espressioni per situazioni speciali conviene spesso ricavare quello di cui abbiamo bisogno al momento, anche perché non possiamo essere certi che sapremmo ricordare correttamente le relazioni che intercorrono tra le grandezze che caratterizzano un onda stazionaria (come il fatto che la distanza tra due massimi successivi è sempre pari a /2). Dato che la lunghezza d onda in questione è di quasi 43 cm è difficile percepire questo fenomeno con le nostre orecchie che sono troppo grandi e distanti. Con uno smartphone e un programma per misurare l intensità dei suoni però si riesce a fare l esperimento abbastanza bene. (3) Cambiamo subito le unità di misura per cui l 0 = 0. m e m = kg. Nello stato iniziale la molla non è compressa e l energia potenziale della molla vale zero. La pallina invece si trova alla quota l 0 e quindi ha un energia potenziale mgl 0. Nello stato finale invece l energia potenziale della molla vale 2 k l2 e quella della pallina è mgh. In queste espressioni l = l 0 h, con h = 3 4 l 0. Abbiamo perciò che la differenza tra l energia finale e quella iniziale vale E = (l 2 k 0 3 ) 2 4 l mgl 0 mgl 0. Raccogliendo l 0 ed eseguendo le somme otteniamo E = ( ) 4 l 0 8 kl 0 mg. D altra parte nella situazione di equilibrio finale dev essere

5 ( mg = k l 0 3 ) 4 l 0 = 4 kl 0 e pertanto E = ( ) 4 l 0 mg mg = 2 8 mgl 0 (la variazione è negativa perché l energia è persa). Sostituendo i valori dati si ottiene E = = = J.

Lezione 9 Forze e campi magnetici

Lezione 9 Forze e campi magnetici Lezione 9 Forze e campi magnetici 9.1 Forza di Lorentz Serway, Cap 22 Forza di Lorenz (particella carica) F = q v B Forza di Lorenz (filo rettilineo di lunghezza l percorso da corrente I) F = I l B Legge

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 30/06/204 Quesiti. Due corpi di massa m = kg e m 2 = 2 kg sono appesi, fermi, ad una molla. Ad un certo istante il corpo di massa

Dettagli

Per casa. [ 2, N, uscente]

Per casa. [ 2, N, uscente] p.273 libro Per casa Una carica di 0,5 μc viaggia in un campo magnetico di 0,15 T con velocità di 3 m/s in una direzione perpendicolare con il campo. Trovare intensità direzione e verso della forza che

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Esame di Stato 2018/19 Soluzione Quesiti seconda prova

Esame di Stato 2018/19 Soluzione Quesiti seconda prova 1 Esame di tato 2018/19 oluzione Quesiti seconda prova Alessandro Gambini 1, Elisa Garagnani 2, and Giovanni Organtini 3 1 Università di Bologna 2 Istituto di Istruzione uperiore Archimede 3 apienza Università

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Le onde. Definizione e classificazione

Le onde. Definizione e classificazione Le onde Definizione e classificazione Onda: perturbazione che si propaga nello spazio, trasportando energia e quantità di moto, ma senza trasporto di materia Onde trasversali La vibrazione avviene perpendicolarmente

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 016 1) Un corpo di massa M= kg si muove lungo una guida AB, liscia ed irregolare, partendo dal punto A a quota H = 9m, fino al

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis 1) 2) 3) 4) Due correnti rispettivamente di intensità pari a 5 A e 4 A percorrono due fili conduttori

Dettagli

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 6 dicembre 008 Fila A Cognome ome Matricola Completare le seguenti equivalenze: (a) 0, g = mg (b) 4,5 0 7 nm = mm

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II NGEGNERA GESTONALE corso di Fisica Generale Prof. E. Puddu nterazioni di tipo magnetico 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica chiamata

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 2/0/203 Quesiti. Una corpo di massa m = 250 g è appoggiato su un piano scabro (µ d = 0.2 e µ s = 0.6) e collegato ad una molla di

Dettagli

FISICA. I Vettori. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. I Vettori. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica ISICA I Vettori Autore: prof. Pappalardo Vincenzo docente di Matematica e isica GRANDEZE ISICHE SCALARI E VETTORIALI Le grandezze fisiche possono essere suddivise in due grandi categorie: definizione GRANDEZZE

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

Le onde. F. Soramel Fisica per Medicina 1

Le onde. F. Soramel Fisica per Medicina 1 Le onde a) onda sonora: le molecole si addensano e si rarefanno b) onda all interfaccia liquido-aria: le particelle oscillano in alto e in basso c) onda in una corda d) onda in una molla e) onda sismica

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Esercizi di dinamica

Esercizi di dinamica Esercizi di dinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2003-2004 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio appoggiato su una molla

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Esonero 14 Novembre 2016

Esonero 14 Novembre 2016 Esonero 14 Novembre 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esercizio 1 Un corpo di massa m è inizialmente fermo

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 3/09/202 Quesiti. Siete su una navetta spaziale in orbita intorno a Marte. La sonda che avete mandato sul terreno marziano vi informa

Dettagli

PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO

PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO PROGETTO DI FISICA 2004/2005 CAMPO ELETTRICO E CAMPO MAGNETICO Autore Aleo Giacomo Luca 5H A.s. 2004/2005 1 ANALOGIE E DIFFERENZE 1) CAMPO ELETTRICO + + - - + + + + - + + + - + + + - + + + - - + + Corpo

Dettagli

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3 I.S.I.S.S. A. Giordano Venafro (IS) 1 Fenomeni Magnetici prof. Valerio D Andrea VB ST - A.S. 2017/2018 Appunti di Fisica n. 3 In natura esiste un minerale che è in grado di attirare oggetti di ferro: la

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW ,

Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW , Elettromagnetismo (4/6) Magnetismo Lezione 22, 18/12/2018, JW 26.1-26.4, 26.6-26.7 1 1. Magneti permanenti Le estremità di una barretta magnetica corrispondono a poli opposti (detti polo nord e polo sud).

Dettagli

, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da

, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da 22 Tonzig Fondamenti di Meccanica classica ta) Un esempio di terna destra è la terna cartesiana x, y, z [34] Per il prodotto vettoriale vale la proprietà distributiva: a ( b c) = a b a c, ma non vale la

Dettagli

Prova scritta del corso di Fisica con soluzioni

Prova scritta del corso di Fisica con soluzioni Prova scritta del corso di Fisica con soluzioni Prof. F. Ricci-Tersenghi 17/04/013 Quesiti 1. Una massa si trova al centro di un triangolo equilatero di lato L = 0 cm ed è attaccata con tre molle di costante

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Cognome Nome Matricola DOCENTE Energetica Biomedica DM 270 Elettronica Informazione Informatica DM509 Problema 1 Nel circuito di figura (a) i resistori hanno valori tali che R 1 / = 2 e i condensatori

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI Algebra dei vettori Il vettore è un oggetto matematico che è caratterizzato da modulo, direzione e verso. Si indica graficamente con una freccia. Un vettore è individuato da una lettera minuscola con sopra

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero LICEO CLASSICO L. GALVANI Sommario Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N-... 1 Per studenti che hanno frequentato all estero... 1 Prova di Riferimento di Fisica per gli studenti

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 16 luglio 2001 Teoria 1. La posizione del centro di massa di un sistema di N particelle puntiformi è data da Ni r i m i

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

Facoltà di Farmacia - Anno Accademico Giugno 2016 A

Facoltà di Farmacia - Anno Accademico Giugno 2016 A Facoltà di Farmacia - Anno Accademico 2015-2016 20 Giugno 2016 A Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio i risultati trovati per ciascun

Dettagli

Lezione 11 Funzioni sinusoidali e onde

Lezione 11 Funzioni sinusoidali e onde Lezione 11 Funzioni sinusoidali e onde 1/18 Proprietà delle funzioni seno e coseno sono funzioni periodiche di periodo 2π sin(α + 2π) = sin α cos α + 2π = cos α a Sin a Cos a a a 2/18 Funzione seno con

Dettagli

Campo magnetico. in direzione uscente dalla pagina. in direzione entrante nella pagina

Campo magnetico. in direzione uscente dalla pagina. in direzione entrante nella pagina Campo magnetico 1. Due fili rettilinei indefiniti, disposti perpendicolarmente come in figura, sono percorsi da correnti uguali nel verso indicato. I fili sono disposti praticamente sullo stesso piano

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

Corso di Laure in Fisica e in Matematica FISICA I Prova in itinere Nr. 1 ANNO ACCADEMICO =15 m/s.

Corso di Laure in Fisica e in Matematica FISICA I Prova in itinere Nr. 1 ANNO ACCADEMICO =15 m/s. Corso di Laure in Fisica e in Matematica MILANO BICOCCA FISICA I Prova in itinere Nr. 1 ANNO ACCADEMICO 016 017 Problema 1: Un carrello (approssimabile a un punto materiale) parte da fermo e procede con

Dettagli

Lucegrafo. IV a Esperienza del Laboratorio di Fisica Generale II. Teoria. Principio di Huygens

Lucegrafo. IV a Esperienza del Laboratorio di Fisica Generale II. Teoria. Principio di Huygens IV a Esperienza del Laboratorio di Fisica Generale II Lucegrafo Teoria Principio di Huygens La propagazione della luce è descritta con un semplificato modello ondulatorio, una costruzione geometrica per

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Terzo compito di Fisica Generale + Esercitazioni, a.a. 07-08 4 Settembre 08 ===================================================================== Premesse

Dettagli

Prof. Luigi De Biasi VETTORI

Prof. Luigi De Biasi VETTORI VETTORI 1 Grandezze Scalari e vettoriali.1 Le grandezze fisiche (ciò che misurabile e per cui è definita una unità di misura) si dividono due categorie, grandezze scalari e grandezza vettoriali. Si definisce

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 208/209 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (6 ore): Matteo Avolio Lezione del 04/04/209 2 h (3:30-5:30, Aula G0, Golgi) - SOLUZIONI ESERCITAZIONI LAVORO

Dettagli

Lez. 20 Magnetismo. Prof. Giovanni Mettivier

Lez. 20 Magnetismo. Prof. Giovanni Mettivier Lez. 20 Magnetismo Prof. Giovanni Mettivier 1 Dott. Giovanni Mettivier, PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

LE FORZE E IL MOTO. Il moto lungo un piano inclinato

LE FORZE E IL MOTO. Il moto lungo un piano inclinato LE FORZE E IL MOTO Il moto lungo un piano inclinato Il moto di caduta lungo un piano inclinato un moto uniformemente accelerato in cui l accelerazione è diretta parallelamente al piano (verso il basso)

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze):

Forze Conservative. In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): Forze Conservative In generale il lavoro fatto da una forza (più precisamente, da un campo di forze): L = f i F d r, può dipendere dal percorso seguito dalla particella. Se il lavoro fatto da una forza

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Problemi di Fisica I Vettori

Problemi di Fisica I Vettori Problemi di isica I Vettori PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: (; 6) (-; ) 3 (-6; -3) (0; -) Metodo grafico Rappresentiamo graficamente

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

Nicola GigliettoA.A. 2017/18

Nicola GigliettoA.A. 2017/18 3 ESERCIZIO 1 Esercizio 8.7 8.7 Una massa M=2Kg scivola su una superficie orizzontale liscia con v 1 =4 m/s. Essa va a finire contro una molla comprimendola fino a fermarsi completamente. Dal punto in

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q.

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q. QUESITI 1 Quesito Lo schema A è impossibile perché per ogni punto dello spazio passa una sola linea di forza. Lo schema C è impossibile perché una linea di forza dev essere orientata come il campo elettrico

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Lezione 8. Campo e potenziale elettrici

Lezione 8. Campo e potenziale elettrici Lezione 8. Campo e potenziale elettrici Legge di Coulomb: Unitá di misura: F = 1 q 1 q 2 4πɛ 0 r 2 1 4πɛ 0 = 8.99 10 9 Nm 2 /C 2 Campi elettrici E = F/q 1 F = qe Unitá di misura del campo elettrico: [E]

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

Calcolare la tensione T della corda e la reazione vincolare N in C.

Calcolare la tensione T della corda e la reazione vincolare N in C. 1 Esercizio Un cilindro di raggio R = 20 cm e massa m = 150 Kg è appoggiato su un piano inclinato di un angolo θ = 30 o ed è tenuto fermo da una corda tesa orizzontalmente; l attrito statico tra il cilindro

Dettagli

Esercizi con campi magnetici statici

Esercizi con campi magnetici statici Esercizi con campi magnetici statici Il problema più generale è il calcolo del campo magnetico generato da uno o più fili percorsi da corrente. In linea di principio, questo tipo di problema dovrebbe essere

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

Onde. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Onde. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Onde Si è visto come alcuni fenomeni fisici siano periodici, e si ripetano dopo un certo tempo Alcune grandezze fisiche sono in grado di propagarsi nello spazio oppure, se si fissa un punto dello spazio,

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete:

Il campo magnetico. Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: Il campo magnetico Non esiste la carica magnetica (monopoli magnetici) Due modi per creare campi magnetici: elettromagnete: correnti elettrici creano campo magnetici magneti permanenti (calamiti) ogni

Dettagli

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria?

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria? Esercizi 1) Il modulo della differenza dei due vettori indicati nella figura vale a) 10 b) 3 d) 2 1 1 2) Siano dati due vettori di modulo pari a 3 e 6. Se l angolo tra di essi è di π/3 rad, il loro prodotto

Dettagli

1 Fisica 1 ( )

1 Fisica 1 ( ) 1 Fisica 1 (08 01-2002) Lo studente risponda alle seguenti domande (2 punti per ogni domanda) 1) Scrivere il legame tra la velocità lineare e quella angolare nel moto circolare uniforme 2) Un punto materiale

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi Esercitazioni di Fisica venerdì 10:00-11:00 aula T4 Valeria Malvezzi E-mail: valeria.malvezzi@roma2.infn.it Richiami di trigonometria Definizioni goniometriche )α Relazione goniometrica fondamentale I

Dettagli

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014

Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 2014 Prova Scritta di Fisica Corso di Studi in Ingegneria Civile, Università della Calabria, 1 Luglio 014 Esercizio 1: Una molla ideale è utilizzata per frenare un blocco di massa 50 kg che striscia su un piano

Dettagli

T = k x = N, 1 k x 2 = J.

T = k x = N, 1 k x 2 = J. Esercizio a) La tensione del ilo è pari in modulo alla orza esercitata dalla molla: T = k x = 8 0 - N, dove x è la compressione della molla. b) L Energia meccanica E m del sistema è data dalla somma dell

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

ONDE STAZIONARIE : DESCRIZIONE MATEMATICA

ONDE STAZIONARIE : DESCRIZIONE MATEMATICA ONDE STAZIONARIE : DESCRIZIONE MATEMATICA In questi appunti tratterò della descrizione matematica di un onda stazionaria, cioè di come rappresentare un onda stazionaria attraverso un equazione matematica.

Dettagli

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE Nel paragrafo 4 del capitolo «e onde elastiche» sono presentate le equazioni e y = acos T t +0l (1) y = acos x+0l. () a prima descrive l oscillazione di

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Angoli e misura degli angoli

Angoli e misura degli angoli Angoli e misura degli angoli Prima definizione di angolo Si definisce angolo ciascuna delle due parti in cui un piano è diviso da due semirette distinte con l origine in comune, semirette comprese. Le

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 018/019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 5/03/019 h (10:30-1:30, Aula G10, Golgi) ESERCITAZIONI DINAMICA (SOLUZIONI)

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Fisica I, a.a Secondo compitino

Fisica I, a.a Secondo compitino Fisica I, a.a. 014 015 Secondo compitino 7 Maggio 015, Ore 11:30 Aula delle lezioni Anna M. Nobili 1 Oscillatore armonico con due masse nel piano Considerate un sistema isolato composto da due corpi di

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

Sessione ordinaria 08/_2 1 M. Vincoli

Sessione ordinaria 08/_2 1 M. Vincoli Sessione ordinaria 08/_2 1 M. Vincoli Riportiamo nella fig. 1 una rappresentazione in pianta della distribuzione di corrente; indichiamo quindi con y il piano perpendicolare ai due fili e passante per

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli