Elementi di memoria. Ing. Ivan Blunno 21 aprile 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi di memoria. Ing. Ivan Blunno 21 aprile 2005"

Transcript

1 Elementi di memoria Ing. Ivan Blunno 21 aprile Introduzione In questa dispensa verrà introdotta una particolare categoria di circuiti digitali: i circuiti sequenziali o circuiti con memoria. A differenza dei circuiti combinatori, il valore delle uscite in un certo istante dipende, oltre che dal valore degli ingressi allo stesso istante, anche dai valori assunti dagli ingressi e dalle uscite nei tempi passati. I circuiti sequenziali devono cioè essere in grado di mantenere memoria della storia passata dei propri segnali di ingresso e di uscita. La trattazione completa di questa categoria di circuiti è piuttosto complessa e, non essendo oggetto di questa dispensa, verrà trattata solo relativamente ad un sottoinsieme di circuiti: i flip-flop. 2 Il flip-flop Nei prossimi paragrafi verranno presentati alcuni dei più comuni tipi di flip-flop. Vale comunque la pena di analizzare un aspetto comune a tutti quanti (in realtà lo stesso concetto è comune a tutti i circuiti sequenziali): la retroazione. Per retroazione si intende un insieme di collegamenti che riportano dei segnali di uscita di una rete logica al suo ingresso. È proprio questo aspetto che permette ad un circuito digitale di mantenere memoria della propria storia passata. I flipflop sono particolari circuiti sequenziali che possiedono un insieme di ingressi ed una sola uscita (in realtà è generalmente disponibile anche la sua negata). uesti circuiti possono quindi essere utilizzati per memorizzare un informazione da un bit. Il flip-flop può quindi essere considerato il più elementare elemento di memoria. Si consideri per esempio il circuito di figura 1. In questo circuito la retroazione è particolarmente evidente. Ciscuno dei 2 inverter ha infatti il segnale di uscita che, attraverso l altro inverter, rientra come ingresso. Analogamente al caso di circuiti analogici con retroazione, anche nei circuiti digitali, la retroazione può portare ad instabilità (oscillazioni). È pertanto necessario verificare che gli stati in cui può trovarsi il circuito siano stabili. 1

2 1 A B 2 Figura 1: Circuito di memoria elementare Si supponga che il segnale in A sia ad 1 logico. Il segnale in B sarà a 0 e pertanto l inverter 2 provvederà a mantenere il valore di A ad 1. uesto stato è dunque stabile. Un analisi del tutto analoga può essere fatta nel caso di segnale in A a 0 logico. Oltre a questi due stati stabili ne esiste in realtà anche uno instabile che è quello corrispondente a V A = V B = V /2. uesto stato è detto metastabile in quanto tende ad evolvere verso uno dei due stati stabili, ma non è possibile sapere ne verso quale ne quando. La metastabilità è un fenomeno piuttosto complesso che non verrà trattato in queste dispense. È dunque chiaro che il circuito di figura 1 tende a mantenere il proprio stato anche in assenza di segnali di ingresso. Nasce dunque il problema di come fare ad imporre dall esterno un determinato stato. Supponiamo di avere A = 1 e quindi B = 0. Se volessimo imporre uno 0 logico in A ci troveremmo ad avere un conflitto con l ucita dell inverter 2 che invece tende a mantenere il punto A a valore logico alto. uesto conflitto può causare non pochi problemi. Per questa ragione, al circuito di figura 1 se ne preferisono altri che oltre a risolvere questo problema offrono anche altri vantaggi (permettendo ad esempio di avere più ingressi che implementano funzionalità più complesse). 3 Filp-flop set-reset (SR latch) Consideriamo come prima variante del circuito analizzato al paragrafo 2 il circuito di figura 2. Si ricorda che la porta logica NAN ha uscita a 0 logico quando entrambi gli ingressi sono a 1 logico, uscita a 0 logico in tutti gli altri casi. Supponaimo uno stato iniziale con S = 1, R = 1, = 0, = 1 Un analisi simile a quella condotta nel paragrafo precedente mostra che questo è uno stato stabile. Se l ingresso S viene portato a 0, la porta NAN 1 si troverà con un ingresso a 0 e di conseguenza porterà la propria uscita a 1. A questo punto la porta NAN 2 si troverà con entrambi gli ingressi a 1 logico e porterà quindi la propria uscita a 0. Il nuovo stato stabile sarà allora 2

3 S 1 2 R Figura 2: flip-flop set-reset: schema circuitale S R SR latch Figura 3: flip-flop set-reset: simbolo S = 0, R = 1, = 1, = 0 Se adesso S ritorna a 1 le uscite non cambiano valore e si entra nel nuovo stato stabile S = 1, R = 1, = 1, = 0 È importante notare come gli ingressi abbiano gli stessi valori dello stato iniziale, mentre le uscite hanno i valori scambiati. È dunque evidente che il valore delle uscite non dipende solo dal valore corrente degli ingressi ma anche dal loro valore passato. In questo caso, evidentemente, le uscite ricordano che l ingresso S ha avuto valore 0 anche se ora è ritornato ad 1. Facendo scendere R a 0 le uscite torneranno ad avere il valore iniziale. Un successivo ritorno ad 1 di R non avrà effetto sulle uscite. Un circuito di questo tipo è detto flip-flop set reset. Il suo simbolo circuitale è riportato in figura 3 mentre la sua tavola di verità e mostrata in figura 4. L ingresso S è detto ingresso di set, mentre l ingresso R è detto ingresso di reset. Il significato della tabella di figura 4 è il seguente: uando gli ingressi set e reset sono ad 1 logico l uscita mantiene in memoria l ultimo valore prodotto ( ovviamente manterrà il valore negato). uando l ingresso di set viene portato a 0 l uscita viene settata ad 1 ( = 0). 3

4 S R M M N.P. Figura 4: flip-flop set-reset: tavola di verità uando l ingresso di reset viene portato a 0 l uscita viene resettata a 0 ( = 1). La configurazione con set e reset entrambi a 0 non è permessa in quanto porterebbe e ad avere lo stesso valore 1 (si perderebbe il significato di negazione) ed inoltre il valore delle uscite dipenderebbe dall ordine in cui gli ingressi tornerebbero a zero. Poiché il valore logico a cui gli ingressi sono sensibili è lo 0, spesso il simbolo di questi flip-flop compare con dei pallini sugli ingressi uguali a quelli posti sulle uscite delle porte invertenti (NOT, NAN, NOR, etc...). Analogamente nella tavola di verità i segnali di set e reset possono essere indicati come S e R. Un implementazione alternativa del latch set-reset si può ottenere utilizzando porte logiche NOR al posto delle NAN. L analisi del dispositivo così ottenuto può essere un esercizio utile. 4 ata latch (-latch) Un altra variante al circuito del paragrafo 2 è mostrata in figura 5.a. Per evitare di complicare troppo la figura, è stato utilizzato un simbolo semplificativo per gli interruttori digitali, rappresentato da un rettangolo, il cui funzionamento è esemplificato in figura 5.b. La loro implementazione, nella realtà, avviene attraverso transmission gate. L analisi di questo circuito è piuttosto semplice. È innanzi tutto importante osservare che, per effetto dell inverter presente sull ingresso di controllo dell interruttore 2, i due iterruttori conducono alternativamente: quando uno conduce l altro è aperto. Analizziamo i due casi separatamente: = 1. In questo caso l interruttore 1 conduce e l interruttore 2 è aperto. L uscita risulterà pertanto uguale a mentre l uscita risulterà uguale a, cioè. In queste condizioni il latch è trasparente (uscita uguale all ingresso). 4

5 1 A B 2 S S=0 A B S=1 A B a) b) Figura 5: latch: schema circuitale latch Figura 6: latch: simbolo = 0. In questo caso l interruttore 2 conduce e l interruttore 1 è aperto. Il circuito risulterà pertanto analogo a quello esaminato nel paragrafo 2 e, come già detto manterrà lo stato che aveva nel momento in cui i segnale è passato dal valore logico alto al valore logico basso. In queste condizioni il latch è in condizione di memoria. L ingresso è l ingresso di dato (è il dato che si vuole memorizzare nel latch) mentre l ingresso è l ingresso di clo. Un -latch come quello descritto sopra è detto positive-level-sensitive -latch (-latch sensibile al livello positivo). Ovviamente se l inverter presente sull ingresso di controllo dell interruttore 2 viene spostato sull ingresso dell interruttore 1 il comportamento del circuito rispetto al segnale di clo sarà opposto (memoria col clo a 1 e trasparenza con clo a 0). Nelle figure 6 e 7 sono riportati rispettivamente il simbolo e la tavola di verità per il -latch. 5 ata flip-flop (-flip-flop) Connettendo due -latch in cascata con i due segnali di clo sfasati tra loro come mostrato in figura 8 si ottiene l elemento di memoria più ampiamente 5

6 1 0 M M Figura 7: latch: tavola di verità M M S Figura 8: flip-flop: schema circuitale utilizzato nei circuiti digitali: il data flip-flop o flip-flop master-slave (spesso ci si riferisce a questo flip-flop senza specificare alcun attributo). Analizziamo il funzionamento di queso circuito. I due latch sono identificati dalle letter M ed S che stanno per master (dall inglese padrone ) e slave (dall inglese schiavo ). Consideriamo anche in questo caso i due possibili valori dell ingresso di clo. = 0. Il latch M è trasparente e di conseguenza M =. Il latch S viceversa è in memoria. Ciò significa che sull uscita sarà memorizzato il dato che era all ingresso del latch S al ciclo precedente. = 1. Il latch M è in memoria e quindi M sarà uguale all ultimo valore che aveva nel momento in cui il segnale di clo è salito a 1. uesta volta è il latch S ad essere trasparente permettendo così al segnale M (che non è altro che il dato memorizzato) di raggiungere l uscita. In definitiva, il -flip-flop memorizza il valore del dato sul fronte di salita del clo e lo mantiene in memoria fino al fronte di salita successivo. Un flip-flop di questo tipo è detto positive-edge-triggered -flip-flop (flip-flop sensibile al fronte di salita). Il suo simbolo circuitale e la sua tavola di verità sono riportati rispettivamente in figura 9 e 10. Spesso i -flip-flop vengono raggruppati per formare degli elementi di memoria di capacità superiore detti registri. i norma i registri sono composti di un numero di flip-flop multiplo di 8. Per esempio un registro composto da 8 flip-flop sarà in grado di memorizzare 8 bit per volta (1 byte). 6

7 FF Figura 9: flip-flop: simbolo M M Figura 10: flip-flop: tavola di verità 6 Togle flip-flop (T-flip-flop) Il togle flip-flop si ottiene dal -flip-flop semplicemente riportando l uscita all ingresso come mostrato in figura 11. L ingresso di clo è stato rinominato T (togle), anche se la sua funzione è la stessa. Il funzionamento di questo circuito è molto semplice. Ogni volta che l ingresso di togle ha un fronte di salita, il flip-flop memorizza il valore di, cioè il valore negato rispetto all ultimo valore memorizzato. Ciò significa che ad ogni transizione di T da 0 a 1 l uscita cambia il proprio valore. ispositivi di questo tipo vengono comunemente utilizzati come divisori di frequenza. Infatti, se all ingresso T viene inviato un segnale ad onda quadra, all uscita si otterrà ancora un segnale ad onda quadra, ma di periodo doppio (e frequenza dimezzata) come mostrato in figura 12. T Figura 11: T flip-flop: schema circuitale 7

8 T Figura 12: T flip-flop: diagramma temporale ingresso/uscita 8

Elettronica dei Sistemi Digitali Registri di memoria CMOS e reti sequenziali

Elettronica dei Sistemi Digitali Registri di memoria CMOS e reti sequenziali Elettronica dei Sistemi igitali Registri di memoria CMOS e reti sequenziali Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 263 Crema e-mail: liberali@dti.unimi.it

Dettagli

Elementi di memoria Ciascuno di questi circuiti è caratterizzato dalle seguenti proprietà:

Elementi di memoria Ciascuno di questi circuiti è caratterizzato dalle seguenti proprietà: I circuiti elettronici capaci di memorizzare un singolo bit sono essenzialmente di due tipi: LATCH FLIP-FLOP. Elementi di memoria Ciascuno di questi circuiti è caratterizzato dalle seguenti proprietà:

Dettagli

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita

LOGICA SEQUENZIALE. Un blocco di logica puramente combinatoria è un. blocco con N variabili di ingresso e M variabili di uscita LOGICA SEQUENZIALE Logica combinatoria Un blocco di logica puramente combinatoria è un blocco con N variabili di ingresso e M variabili di uscita che sono funzione (booleana) degli ingressi in un certo

Dettagli

Corso di Calcolatori Elettronici I Elementi di memoria ing. Alessandro Cilardo

Corso di Calcolatori Elettronici I Elementi di memoria ing. Alessandro Cilardo orso di alcolatori Elettronici I Elementi di memoria ing. Alessandro ilardo orso di Laurea in Ingegneria Biomedica Reti logiche con memoria In molte situazioni è necessario progettare reti logiche sequenziali,

Dettagli

AXO Architettura dei Calcolatori e Sistemi Operativi. reti sequenziali

AXO Architettura dei Calcolatori e Sistemi Operativi. reti sequenziali AXO Architettura dei Calcolatori e Sistemi Operativi reti sequenziali Sommario Circuiti sequenziali e elementi di memoria Bistabile SR asincrono Temporizzazione e clock Bistabili D e SR sincroni Flip-flop

Dettagli

Circuiti Combinatori. Circuiti Combinatori. Circuiti Sequenziali. Circuiti Sequenziali

Circuiti Combinatori. Circuiti Combinatori. Circuiti Sequenziali. Circuiti Sequenziali ircuiti ombinatori e equenziali Lezione n.5 n.5 I circuiti logici possono appartenere a due categorie: ircuiti ombinatori e equenziali ircuiti Ben Formati Introduzione ai ircuiti equenziali Elementi di

Dettagli

AB=AB. Porte logiche elementari. Livello fisico. Universalità delle porte NAND. Elementi di memoria: flip-flop e registri AA= A. Porta NAND.

AB=AB. Porte logiche elementari. Livello fisico. Universalità delle porte NAND. Elementi di memoria: flip-flop e registri AA= A. Porta NAND. 1 Elementi di memoria: flip-flop e registri Porte logiche elementari CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Livello fisico

Dettagli

Campionamento e memoria. Sommario. Sommario. M. Favalli

Campionamento e memoria. Sommario. Sommario. M. Favalli Sommario Campionamento e memoria M. Favalli Engineering epartment in Ferrara 2 Latch di tipo 3 Sommario (ENIF) Analisiesintesideicircuitidigitali / 29 (ENIF) Analisiesintesideicircuitidigitali 2 / 29 2

Dettagli

Circuiti Combinatori. Circuiti Combinatori. Circuiti Combinatori. Circuiti Combinatori

Circuiti Combinatori. Circuiti Combinatori. Circuiti Combinatori. Circuiti Combinatori Fondamenti di Informatica B Lezione n.5 n.5 ircuiti ombinatori e equenziali ircuiti Ben Formati Introduzione ai ircuiti equenziali Elementi di Memoria Fondamenti di Informatica B Lezione n.5 In questa

Dettagli

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Elementi di memoria

Reti Logiche 1. Prof. B. Buttarazzi A.A. 2009/2010. Elementi di memoria Reti Logiche 1 Prof. B. Buttarazzi A.A. 2009/2010 Elementi di memoria Sommario Elementi di memoria LATCH FLIP-FLOP 25/06/2010 Corso di Reti Logiche 2009/10 2 Elementi di memoria I circuiti elettronici

Dettagli

I Bistabili. Maurizio Palesi. Maurizio Palesi 1

I Bistabili. Maurizio Palesi. Maurizio Palesi 1 I Bistabili Maurizio Palesi Maurizio Palesi 1 Sistemi digitali Si possono distinguere due classi di sistemi digitali Sistemi combinatori Il valore delle uscite al generico istante t* dipende solo dal valore

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Esercitazione 2 I Flip Flop 1. ual è la differenza tra un latch asincrono e un Flip Flop? a. Il latch è abilitato da un segnale di clock b. Il latch ha gli ingressi asincroni perché questi ultimi controllano

Dettagli

Reti logiche (2) Circuiti sequenziali

Reti logiche (2) Circuiti sequenziali Reti logiche (2) Circuiti sequenziali 1 Un ripasso Algebra booleana: operatori, postulati, identità, operatori funzionalmente completi Circuiti combinatori: tabelle di verità, porte logiche Decodificatore

Dettagli

Reti logiche (2) Circuiti sequenziali

Reti logiche (2) Circuiti sequenziali Reti logiche (2) Circuiti sequenziali 1 Un ripasso Algebra booleana: operatori, postulati, identità, operatori funzionalmente completi Circuiti combinatori: tabelle di verità, porte logiche Decodificatore

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 6. Prof. Rosario Cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 6. Prof. Rosario Cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 6 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it http://digilander.libero.it/rosario.cerbone a.a. 2008-2009 Circuiti Sequenziali In questa

Dettagli

Interruttori Digitali

Interruttori Digitali Interruttori Digitali Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verranno presentati gli interruttori digitali. In particolar modo si parlerà delle possibili realizzazioni mediante

Dettagli

Il Livello Logico-Digitale. I circuiti sequenziali

Il Livello Logico-Digitale. I circuiti sequenziali Il Livello Logico-Digitale I circuiti sequenziali 22 --25 ommario Circuiti sequenziali e elementi di memoria Bistabile asincrono Temporizzazione e clock Bistabili D e sincroni Flip-flop - 2 - Circuiti

Dettagli

Circuiti Sequenziali

Circuiti Sequenziali Circuiti Sequenziali 1 Ingresso Circuito combinatorio Uscita Memoria L uscita al tempo t di un circuito sequenziale dipende dagli ingressi al tempo (t) e dall uscita al tempo (t- t ) Circuiti sequenziali

Dettagli

Tecniche di Progettazione Digitale Elementi di memoria CMOS e reti sequenziali p. 2

Tecniche di Progettazione Digitale Elementi di memoria CMOS e reti sequenziali p. 2 Tecniche di Progettazione igitale Elementi di memoria CMOS e reti sequenziali Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 263 Crema e-mail: liberali@dti.unimi.it

Dettagli

Esercitazione del 26/03/ Soluzioni

Esercitazione del 26/03/ Soluzioni Esercitazione del 26/03/2009 - oluzioni 1. Bistabile asincrono C (detto anche R) C C ~ Tabella delle transizioni o stato prossimo: C * 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 X 1 1 1 X Configurazioni

Dettagli

Circuiti sincroni circuiti sequenziali:bistabili e latch

Circuiti sincroni circuiti sequenziali:bistabili e latch Architettura degli Elaboratori e delle Reti Lezione 8 Circuiti sincroni circuiti sequenziali:bistabili e latch Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli

Dettagli

I bistabili ed il register file

I bistabili ed il register file I bistabili ed il register file Prof. Alberto Borghese ipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano 1/32 Sommario I problemi dei latch trasparenti sincroni

Dettagli

I circuiti sequenziali

I circuiti sequenziali Elementi di logica digitale I circuiti sequenziali I circuiti combinatori non hanno memoria. Gli output dipendono unicamente dagli input. ono necessari circuiti con memoria, che si comportano in modo diverso

Dettagli

LSS Reti Logiche: circuiti sequenziali

LSS Reti Logiche: circuiti sequenziali LSS 2016-17 Reti Logiche: circuiti sequenziali Piero Vicini A.A. 2017-2018 Circuiti combinatori vs sequenziali L output di un circuito combinatorio e solo funzione del valore combinatorio degli ingressi

Dettagli

Macchine sequenziali

Macchine sequenziali Macchine sequenziali Dal circuito combinatorio al sequenziale (effetto di una retroazione) x z x j Y i, Rete Comb. Y i-, z h Y i,k M Y i-,k abilitazione a memorizzare M memorizza lo stato La nozione di

Dettagli

Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone

Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone Calcolatori Elettronici Lezione 4 Reti Sequenziali Asincrone Ing. Gestionale e delle Telecomunicazioni A.A. 2007/08 Gabriele Cecchetti Reti Sequenziali Asincrone Sommario: Definizione Condizioni di pilotaggio

Dettagli

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005 Tecnologia CMOS Ing. Ivan lunno 2 aprile 25 Introduzione In questa dispensa verranno presentati i circuiti CMOS (Complementary MOS). Nella prima parte verrà analizzato in dettaglio il funzionamento di

Dettagli

Circuiti sincroni Circuiti sequenziali: i bistabili

Circuiti sincroni Circuiti sequenziali: i bistabili Architettura degli Elaboratori e delle Reti Lezione 8 Circuiti sincroni Circuiti sequenziali: i bistabili Proff. A. Borghese, F. Pedersini ipartimento di Scienze dell Informazione Università degli Studi

Dettagli

LATCH E FLIP-FLOP PREMESSA

LATCH E FLIP-FLOP PREMESSA LATCH E FLIP-FLOP PREMESSA I latch e i flip flop sono circuiti digitali sequenziali che hanno il compito di memorizzare un bit. Un circuito digitale si dice sequenziale se l'uscita dipende dagli ingressi

Dettagli

I flip-flop ed il register file. Sommario

I flip-flop ed il register file. Sommario I flip-flop ed il register file Prof. Alberto Borghese ipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento sul Patterson: Sezioni C.9 e C.11 1/35

Dettagli

Circuiti sequenziali e latch

Circuiti sequenziali e latch Circuiti sequenziali e latch Prof. Alberto Borghese ipartimento di Scienze dell Informazione borghese@di.unimi.it Università degli Studi di Milano Riferimento Patterson: sezioni C.7 & C.8. 1/32 Sommario

Dettagli

Circuiti sequenziali

Circuiti sequenziali Circuiti sequenziali - I circuiti sequenziali sono caratterizzati dal fatto che, in un dato istante tn+1 le uscite dipendono dai livelli logici di ingresso nell'istante tn+1 ma anche dagli stati assunti

Dettagli

(competenze digitali) CIRCUITI SEQUENZIALI

(competenze digitali) CIRCUITI SEQUENZIALI LICEO Scientifico LICEO Scientifico Tecnologico LICEO delle Scienze Umane ITIS (Meccanica, Meccatronica e Energia- Elettronica ed Elettrotecnica Informatica e Telecomunicazioni) ITIS Serale (Meccanica,

Dettagli

Gli elementi di memoria: i bistabili I registri. Mariagiovanna Sami Corso di reti Logiche 8 Anno

Gli elementi di memoria: i bistabili I registri. Mariagiovanna Sami Corso di reti Logiche 8 Anno Gli elementi di memoria: i bistabili I registri Mariagiovanna Sami Corso di reti Logiche 8 Anno 2007-08 08 Circuiti sequenziali Nei circuiti sequenziali il valore delle uscite in un dato istante dipende

Dettagli

LATCH E FLIP-FLOP PREMESSA

LATCH E FLIP-FLOP PREMESSA LATCH E FLIP-FLOP PREMESSA I latch e i flip flop sono circuiti digitali sequenziali che hanno il compito di memorizzare un bit. Un circuito digitale si dice sequenziale se l'uscita dipende dagli ingressi

Dettagli

Cenni alle reti logiche. Luigi Palopoli

Cenni alle reti logiche. Luigi Palopoli Cenni alle reti logiche Luigi Palopoli Reti con reazione e memoria Le funzioni logiche e le relative reti di implementazione visto fino ad ora sono note come reti combinatorie Le reti combinatorie non

Dettagli

Livello logico digitale

Livello logico digitale Livello logico digitale circuiti combinatori di base e circuiti sequenziali Half Adder - Semisommatore Ingresso 2 bit, uscita 2 bit A+ B= ------ C S C=AB S=AB + AB=A B A B In Out HA A B C S S HA A C S

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali Nome: Samuele Sandrini 4AT 7/3/5 Gli oscillatori sinusoidali sono circuiti che producono un segnale sinusoidale di ampiezza e

Dettagli

Esercizi Logica Digitale,Circuiti e Bus

Esercizi Logica Digitale,Circuiti e Bus Esercizi Logica Digitale,Circuiti e Bus Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 214/214 1 2 Esercizio 1 Si consideri la funzione booleana di 3 variabili G(a,b, c) espressa dall equazione seguente:

Dettagli

Calcolatori Elettronici A a.a. 2008/2009

Calcolatori Elettronici A a.a. 2008/2009 Calcolatori Elettronici A a.a. 2008/2009 RETI LOGICHE: RETI SEUENZIALI Massimiliano Giacomin 1 LIMITI DELLE RETI COMBINATORIE e RETI SEUENZIALI Le reti combinatorie sono senza retroazione: il segnale di

Dettagli

Calcolatori Elettronici Reti Sequenziali Asincrone

Calcolatori Elettronici Reti Sequenziali Asincrone Calcolatori Elettronici eti equenziali Asincrone Ing. dell Automazione A.A. 2/2 Gabriele Cecchetti eti equenziali Asincrone ommario: Circuito sequenziale e bistabile Definizione di rete sequenziale asincrona

Dettagli

Flip-flop e loro applicazioni

Flip-flop e loro applicazioni Flip-flop e loro applicazioni Reti sequenziali elementari (6) L'elemento bistabile Latch o flip-flop trasparenti Temporizzazione dei flip-flop trasparenti Architettura master-slave Flip-flop non trasparenti

Dettagli

Elettronica Sistemi Digitali 09. Flip-Flop

Elettronica Sistemi Digitali 09. Flip-Flop Elettronica Sistemi igitali 09. Flip-Flop Roberto Roncella Flip-flop e loro applicazioni Reti sequenziali elementari (6) L'elemento bistabile Latch o flip-flop trasparenti Temporizzazione dei flip-flop

Dettagli

» Derivazione della porta-base sequenziale (memoria di 1 bit, FlipFlop SR ) a partire dai blocchi base combinatori

» Derivazione della porta-base sequenziale (memoria di 1 bit, FlipFlop SR ) a partire dai blocchi base combinatori E2x - Presentazione della lezione E2 1/1- Obiettivi» erivazione della porta-base sequenziale (memoria di 1 bit, FlipFlop ) a partire dai blocchi base combinatori» Analisi dei ritardi del FlipFlop e temporizzazione»

Dettagli

Flip-Flop. Tipo Set/Reset. É il tipo più semplice di circuito sequenziale. Una realizzazione in logica NOR é rappresentata in figura:

Flip-Flop. Tipo Set/Reset. É il tipo più semplice di circuito sequenziale. Una realizzazione in logica NOR é rappresentata in figura: Flip-Flop Sono gli elementi base per la costruzione di circuiti sequenziali complessi. Una caratteristica comune di tutti i circuiti sequenziali é quella di basarsi sull'uso di un circuito combinatorio

Dettagli

I CONTATORI. Definizioni

I CONTATORI. Definizioni I CONTATORI Definizioni. I contatori sono dispositivi costituiti da uno o più flip-flop collegati fra loro in modo da effettuare il conteggio di impulsi applicati in ingresso. In pratica, i flip-flop,

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale Corso di Calcolatori Elettronici Elementi di memoria e Registri

Università degli Studi di Cassino e del Lazio Meridionale Corso di Calcolatori Elettronici Elementi di memoria e Registri di assino e del Lazio Meridionale orso di alcolatori Elettronici Elementi di memoria e Registri Anno Accademico Francesco Tortorella Elementi di memoria Nella realizzazione di un sistema digitale è necessario

Dettagli

Circuiti sequenziali

Circuiti sequenziali Circuiti sequenziali Docente teoria: prof. Federico Pedersini (https://homes.di.unimi.it/pedersini/ae-inf.html) Docente laboratorio: Matteo Re (https://homes.di.unimi.it/re/arch1-lab-2015-201.html) Sito

Dettagli

CORSO BASE DI ELETTRONICA (competenze digitali)

CORSO BASE DI ELETTRONICA (competenze digitali) LICEO Scientifico LICEO Scientifico Tecnologico LICEO delle Scienze Umane ITIS (Meccanica, Meccatronica e Energia- Elettronica ed Elettrotecnica Informatica e Telecomunicazioni) ITIS Serale (Meccanica,

Dettagli

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica

Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata. Corso di Laurea in Ingegneria Elettronica Tutorato di Calcolatori Elettronici Battista Biggio - Sebastiano Pomata Corso di Laurea in Ingegneria Elettronica Mappe di Karnaugh Reti Logiche Latch e Flip-Flop Reti Sequenziali Tutorato di Calcolatori

Dettagli

Circuiti sequenziali e latch

Circuiti sequenziali e latch Circuiti sequenziali e latch Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano A.A. 23-24 /27 Sommario Circuiti sequenziali Latch asincroni

Dettagli

Multiplexer. Multiplexer 2 a 1 (a 1 bit) e sua implementazione. Multiplexer 2 a 1 (a 32 bit) e sua implementazione

Multiplexer. Multiplexer 2 a 1 (a 1 bit) e sua implementazione. Multiplexer 2 a 1 (a 32 bit) e sua implementazione Decoder Circuito combinatorio con n input e 2 n output Traduce gli n bit di input nell equivalente valore binario, e abilita a 1 l uscita corrispondente, mentre le altre uscite sono disabilitate a 0 Esiste

Dettagli

La figura 1.1 mostra la risposta di un Mosfet al segnale di controllo V CI.

La figura 1.1 mostra la risposta di un Mosfet al segnale di controllo V CI. 1.1 - Rete di ritardo La figura 1.1 mostra la risposta di un Mosfet al segnale di controllo V CI. V ce I c 90% 90% V CI 10% 10% t on = t d(on) + t r t off = t d(off) + t r Fig. 1.1 Risposta di un Mosfet

Dettagli

Modelli per le macchine digitali

Modelli per le macchine digitali Reti sequenziali Modelli per le macchine digitali Ingressi Uscite i(t 0 ) i(t n ) MACCHINA DIGITALE u(t 0 ) u(t n ) TEMPO In generale l uscita di una macchina in un certo istante temporale dipenderà dalla

Dettagli

Prima prova intercorso. Lezione 10 Logica Digitale (4) Dove siamo nel corso. Un quadro della situazione

Prima prova intercorso. Lezione 10 Logica Digitale (4) Dove siamo nel corso. Un quadro della situazione Prima prova intercorso Lezione Logica Digitale (4) Vittorio carano Architettura Corso di Laurea in Informatica Università degli tudi di alerno Architettura (2324). Vi.ttorio carano Mercoledì 9 Novembre,

Dettagli

Michele Angelaccio / Berta Buttarazzi. Reti logiche. PARTE SECONDA Reti sequenziali

Michele Angelaccio / Berta Buttarazzi. Reti logiche. PARTE SECONDA Reti sequenziali A09 37 Michele Angelaccio / Berta Buttarazzi Reti logiche PARTE SECONDA Reti sequenziali Copyright MMIV ARACNE EDITRICE S.r.l. www.aracneeditrice.it info@aracneeditrice.it 00173 Roma via Raffaele Garofalo,

Dettagli

Corso di Calcolatori Elettronici I Flip-flop

Corso di Calcolatori Elettronici I Flip-flop Corso di Calcolatori Elettronici I Flip-flop Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso di Laurea in Ingegneria Informatica

Dettagli

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna

Logica binaria. Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna Logica binaria Moreno Marzolla Dipartimento di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ Logica binaria 2 Rappresentazione dell'informazione I calcolatori

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici RETI LOGICHE: RETI SEQUENZIALI Massimiliano Giacomin 1 LIMITI DELLE RETI COMBINATORIE Nelle reti combinatorie le uscite dipendono solo dall ingresso Þ impossibile far dipendere

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino di assino orso di alcolatori Elettronici I Elementi di memoria e registri Anno Accademico 27/28 Francesco Tortorella Elementi di memoria Nella realizzazione di un sistema digitale è necessario utilizzare

Dettagli

Esercitazione del 03/04/ Soluzioni

Esercitazione del 03/04/ Soluzioni Esercitazione del 03/04/2008 - oluzioni 1. Bistabile asincrono (detto anche R) ~ * 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 X 1 1 1 X onfigurazioni vietate:il circuito per queste configurazioni

Dettagli

Un quadro della situazione. Lezione 9 Logica Digitale (3) Dove siamo nel corso. Organizzazione della lezione. Dove siamo. Dove stiamo andando..

Un quadro della situazione. Lezione 9 Logica Digitale (3) Dove siamo nel corso. Organizzazione della lezione. Dove siamo. Dove stiamo andando.. Un quadro della situazione Lezione 9 Logica Digitale (3) Vittorio carano Architettura Corso di Laurea in Informatica Università degli tudi di alerno Architettura (2324). Vi.ttorio carano Input/Output Memoria

Dettagli

Logica CMOS dinamica

Logica CMOS dinamica Logica CMOS dinamica Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In quessta dispensa verrà presentata la logica CMOS dinamica evidenziandone i principi di funzionamento, la tecnica di progetto i vantaggi

Dettagli

PSPICE Circuiti sequenziali principali

PSPICE Circuiti sequenziali principali PSPICE Circuiti sequenziali principali Davide Piccolo Riccardo de Asmundis Elaboratori 1 Circuiti Sequenziali Tutti i circuiti visti fino ad ora erano circuiti combinatori, ossia circuiti in cui lo stato

Dettagli

Calcolatori Elettronici T. Complementi ed Esercizi di Reti Logiche

Calcolatori Elettronici T. Complementi ed Esercizi di Reti Logiche Calcolatori Elettronici T Complementi ed Esercizi di Reti Logiche Introduzione Reti Logiche: sintesi mediante approccio formale Specifiche del Problema Grafo degli Stati Tabella di Flusso Tabella delle

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITENIO I MILNO www.polimi.it ELETTRONI per ingegneria IOMEI prof. lberto TOSI Sommario Reti digitali Numerazione IGIT, Porte logiche NOT, N, OR Sintesi reti combinatorie SoP, PoS, KRNUGH Registri sequenziali

Dettagli

Capitolo 6. Reti asincrone. Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie

Capitolo 6. Reti asincrone. Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie apitolo 6 Reti asincrone Elaborazione asincrona Procedimenti di sintesi e analisi Memorie binarie Reti sequenziali asincrone (comportamento) Elaborazione asincrona - Ogni nuovo ingresso determina: una

Dettagli

Clock. Corso di Architettura degli Elaboratori. Architetture degli Elaboratori. Circuiti combinatori e sequenziali.

Clock. Corso di Architettura degli Elaboratori. Architetture degli Elaboratori. Circuiti combinatori e sequenziali. Corso di Architettura degli Elaboratori Il livello logico digitale: Memoria Clock: un circuito che emette una serie di impulsi con una specifica larghezza e intermittenza Tempo di ciclo di clock: intervallo

Dettagli

Es. 07 Bistabile asincrono SC, Latch. Flip Flop sincrono D. Hold Time e Set Time, Flip flop sincrono J K, Flip flop

Es. 07 Bistabile asincrono SC, Latch. Flip Flop sincrono D. Hold Time e Set Time, Flip flop sincrono J K, Flip flop Es. 07 Bistabile asincrono SC, Latch sincrono SC, Latch sincrono tipo D, Flip Flop sincrono D. Hold Time e Set Time, Flip flop sincrono J K, Flip flop sincrono T, Flip Flop Flop sincrono D Master Slave,

Dettagli

Logica sequenziale. Logica Sequenziale. Macchine a stati e registri. Macchine a stati

Logica sequenziale. Logica Sequenziale. Macchine a stati e registri. Macchine a stati Logica sequenziale Logica equenziale Lucidi del Corso di Elettronica igitale Modulo Università di Cagliari ipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Un blocco

Dettagli

Misure e Sistemi Microelettronici (MSM) Sistemi

Misure e Sistemi Microelettronici (MSM) Sistemi Misure e Sistemi Microelettronici (MSM) Sistemi Prof. Stefano Bertazzoni I semestre II emisemestre dal 24-11-08 al 29-01-09 Lunedì ore 13.30 15.45 Giovedì ore 14.00 16.15 Aula 4 NE Aula 2 NE Ricevimento

Dettagli

Funzioni, espressioni e schemi logici

Funzioni, espressioni e schemi logici Funzioni, espressioni e schemi logici Il modello strutturale delle reti logiche Configurazioni di n bit che codificano i simboli di un insieme I i i n F: I S U u u m Configurazioni di m bit che codificano

Dettagli

Reti logiche sequenziali

Reti logiche sequenziali eti logiche sequenziali eti logiche sequenziali ono quelle reti logiche nelle quali il valore delle uscite in un determinato istante t i dipende: sia dalla condizione di partenza della rete sia dal valore

Dettagli

Reti logiche sequenziali

Reti logiche sequenziali eti logiche sequenziali eti logiche sequenziali ono quelle reti logiche nelle quali il valore delle uscite in un determinato istante t i dipende: sia dalla condizione di partenza della rete sia dal valore

Dettagli

a) Si scriva la tabella ingressi-uscite e per ogni mintermine individuato si scriva la forma algebrica corrispondente:

a) Si scriva la tabella ingressi-uscite e per ogni mintermine individuato si scriva la forma algebrica corrispondente: ARCHITETTURA DEI CALCOLATORI E SISTEMI OPERATIVI - ESERCIZI DI LOGICA. 30 OTTOBRE 2015 ESERCIZIO N. 1 LOGICA COMBINATORIA Si progetti in prima forma canonica (SoP) una rete combinatoria avente 4 ingressi

Dettagli

Calcolatori Elettronici T. Complementi ed Esercizi di Reti Logiche

Calcolatori Elettronici T. Complementi ed Esercizi di Reti Logiche Calcolatori Elettronici T Complementi ed Esercizi di Reti Logiche Stefano Mattoccia Ricevimento : su appuntamento via email Telefono : 051 2093860 Email : stefano.mattoccia@unibo.it Web : www.vision.deis.unibo.it/smatt

Dettagli

05EKL-Progetto di Circuiti Digitali

05EKL-Progetto di Circuiti Digitali 5EKL-Progetto di Circuiti Digitali Tutore: Federico Quaglio federico.quaglio@polito.it -564 44 (44( 44) Introduzione alle Reti Logiche Sommario Richiami di algebra booleana Mappe di Karnaugh Coperture

Dettagli

Clock. Corso di Architettura degli Elaboratori. Latch di tipo SR. Circuiti combinatori e sequenziali. Il livello logico digitale: Memoria

Clock. Corso di Architettura degli Elaboratori. Latch di tipo SR. Circuiti combinatori e sequenziali. Il livello logico digitale: Memoria Corso di Architettura degli Elaboratori Il livello logico digitale: Memoria Matteo Baldoni Dipartimento di Informatica Università degli Studi di Torino C.so Svizzera, 85 I-49 Torino baldoni@di.unito.it

Dettagli

Circuiti sequenziali. Circuiti sequenziali e applicazioni

Circuiti sequenziali. Circuiti sequenziali e applicazioni Circuiti sequenziali Circuiti sequenziali e applicazioni Circuiti sequenziali Prima di poter parlare delle memorie è utile dare un accenno ai circuiti sequenziali. Per circuiti sequenziali intendiamo tutti

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Elettronica digitale: cenni

Elettronica digitale: cenni Elettronica digitale: cenni VERSIONE 30.5.01 Non solo analogico La gestione di informazione prevede tipicamente fasi di elaborazione, in cui occorre calcolare funzioni ( qual è la somma di questi due valori?

Dettagli

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1.

PORTE LOGICHE. Si effettua su due o più variabili, l uscita assume lo stato logico 1 se almeno una variabile di ingresso è allo stato logico 1. PORTE LOGICHE Premessa Le principali parti elettroniche dei computer sono costituite da circuiti digitali che, come è noto, elaborano segnali logici basati sullo 0 e sull 1. I mattoni fondamentali dei

Dettagli

05EKL-Progetto di Circuiti Digitali. Richiami di Reti Logiche

05EKL-Progetto di Circuiti Digitali. Richiami di Reti Logiche 5EKL-Progetto di Circuiti Digitali Tutore: Federico Quaglio federico.quaglio@polito.it -564 44 (44) Richiami di Reti Logiche Tutoraggio # Sommario Richiami di algebra booleana Mappe di Karnaugh Coperture

Dettagli

Calcolatori Elettronici B a.a. 2004/2005

Calcolatori Elettronici B a.a. 2004/2005 Calcolatori Elettronici B a.a. 2004/2005 RETI LOGICHE: RICHIAMI Massimiliano Giacomin 1 Unità funzionali Unità funzionali: Elementi di tipo combinatorio: - valori di uscita dipendono solo da valori in

Dettagli

Reti Logiche LA. Complementi ed esercizi di Reti Sequenziali Sincrone

Reti Logiche LA. Complementi ed esercizi di Reti Sequenziali Sincrone Reti Logiche LA Complementi ed esercizi di Reti Sequenziali Sincrone Introduzione Reti Logiche: sintesi mediante approccio formale Specifiche del Problema Grafo degli Stati Tabella di Flusso Tabella delle

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso 16. Linguaggio a contatti (Ladder Diagram) piroddi@elet.polimi.it Introduzione Il linguaggio a contatti (o diagramma a scala, dall inglese ladder diagram, LD)

Dettagli

Esercizi sulle Reti Sequenziali Sincronizzate

Esercizi sulle Reti Sequenziali Sincronizzate Esercizi sulle Reti Sequenziali Sincronizzate Corso di Laurea di Ing. Gestionale e di Ing. delle Telecomunicazioni A.A. 27-28 1. Disegnare il grafo di stato di una RSS di Moore avente tre ingressi A, B,

Dettagli

SisElnF1 17/12/2002. E CIRCUITI COMBINATORI E SEQUENZIALI E1 Circuiti combinatori

SisElnF1 17/12/2002. E CIRCUITI COMBINATORI E SEQUENZIALI E1 Circuiti combinatori Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI E CIRCUITI COMBINATORI E SEQUENZIALI E1 Circuiti combinatori» Porte logiche combinatorie elementari» Modello interruttore-resistenza» Circuiti sequenziali

Dettagli

Reti sequenziali. Esempio di rete sequenziale: distributore automatico.

Reti sequenziali. Esempio di rete sequenziale: distributore automatico. Reti sequenziali 1 Reti sequenziali Nelle RETI COMBINATORIE il valore logico delle variabili di uscita, in un dato istante, è funzione solo dei valori delle variabili di ingresso in quello stesso istante.

Dettagli

SisElnF1 12/21/01. F CIRCUITI COMBINATORI E SEQUENZIALI F1 Circuiti combinatori

SisElnF1 12/21/01. F CIRCUITI COMBINATORI E SEQUENZIALI F1 Circuiti combinatori Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI F CIRCUITI COMBINATORI E SEQUENZIALI F1 Circuiti combinatori» Porte logiche combinatorie elementari» Modello interruttore-resistenza» Circuiti sequenziali

Dettagli

Logica Sequenziale. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Logica Sequenziale. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Logica Sequenziale Lucidi del Corso di Elettronica Digitale Modulo 9 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Logica sequenziale Un

Dettagli

Un contatore è un registro che evolve secondo una sequenza predefinita di stati ordinati all applicazione di un impulso di ingresso

Un contatore è un registro che evolve secondo una sequenza predefinita di stati ordinati all applicazione di un impulso di ingresso ontatori binari Un contatore è un registro che evolve secondo una sequenza predefinita di stati ordinati all applicazione di un impulso di ingresso L impulso di ingresso o impulso di conteggio può coincidere

Dettagli

Memorie. Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A Università degli Studi di Milano

Memorie. Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A Università degli Studi di Milano Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2018-2019 Università degli Studi di Milano Memorie Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Cenni sulle memorie Francesco Lo Presti Rielaborate da Salvatore Tucci Clocking q Il segnale di Clock definisce quando i segnali possono essere letti e quando possono essere scritti

Dettagli

Sistemi digitali. Sistema digitale

Sistemi digitali. Sistema digitale Sistemi digitali 2/ 7 Sistema digitale In un sistema digitale le informazioni vengono rappresentate, elaborate e trasmesse mediante grandezze fisiche (segnali) che si considerano assumere solo valori discreti

Dettagli

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione).

CIRCUITI DIGITALI. La grandezza fisica utilizzata nella maggior parte dei circuiti digitali è la differenza di potenziale (tensione). CIRCUITI DIGITALI Un circuito elettronico viene classificato come circuito digitale quando è possibile definire il suo comportamento per mezzo di due soli stati fisici di una sua grandezza caratteristica.

Dettagli

La logica Cuniberti cucchi-vol.1 Segnali elettrici. Segnale analogico

La logica Cuniberti cucchi-vol.1 Segnali elettrici. Segnale analogico La logica Cuniberti cucchi-vol.1 Segnali elettrici I segnali elettrici, di tensione o di corrente, sono grandezze che variano in funzione del tempo; in base al loro andamento, o forma d onda, possono essere

Dettagli