Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Transistori MOS. Ing. Ivan Blunno 21 aprile 2005"

Transcript

1 Transistori MOS Ing. Ivan Blunno 1 aprile Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento elettrico, senza analizzare i fenomeni di trasporto di carica che ne determinano il comportamento. In particolar modo verranno discusse le equazioni e le curve caratteristiche dei componenti MOS. Il transistor NMOS Il transistor NMOS ha il simbolo circuitale mostrato in figura 1. I tre morsetti sono chiamati gate (G), source (S) e drain (D). Il funzionamento di base del transistor NMOS puo essere riassunto dicendo che La corrente che entra nel morsetto G è nulla (impedenza infinita). La corrente che scorre tra i morsetti D e S (I DS ) dipende in modo NON lineare dalle tensioni e. I parametri fondamentali che definiscono un transistor NMOS sono: La tensione di soglia T n > 0. D G I DS S Figura 1: Transistor NMOS: simbolo circuitale 1

2 Il guadagno β n = µ nc ox W L. In questa formula µ n rappresenta la mobilità degli elettroni, C ox la capacità dello strato di ossido tra gate e substrato e W e L rispettivamente la larghezza e la lunghezza del canale. A seconda dei valori delle tensioni e possono essere individuate 4 zone di funzionamento del transistor. Zona di interdizione: < T n, I DS = 0 Zona lineare: > T n, T n I DS = β n ( T n ) Zona triodo: > T n, < T n [ I DS = β n ( T n ) ] Zona di saturazione: > T n, > T n I DS = β n ( T n ) Il comportamento globale del transistor NMOS può essere osservato nel grafico di figura. Il grafico è parametrico secondo il valore di T n. Dalle equazioni mostrate in precedenza si può notare che il passaggio dalla zona triodo a quella di saturazione si ha quando = T n. Sostituendo questa uguaglianza nell equazione della zona triodo (o di quella della zona di saturazione) si ottiene che I DS = β n DS. Questa relazione è un funzione parabolica che rappresenta il luogo dei punti di passaggio dalla zona III alla zona I. La zona I rappresenta la zona di interdizione in cui la corrente I DS vale 0 (tutto l asse ). La zona II è la zona lineare. In questa zona il transistor si comporta come una resistenza variabile di valore R = 1 β n( T n ). Infine in zona di saturazione (zona I) il transistor si comporta come un generatore di corrente di valore I = β n ( T n ). 3 Il transistor PMOS Il comportamento del transistor PMOS (il cui simbolo circuitale è rappresentato in figura 3) può essere derivato da quello del transistor NMOS fatte salve alcune differenze che verranno di seguito evidenziate:

3 I DS III I 4 II 3 1 I Figura : Transistor NMOS: curve caratteristiche. S G I DS D Figura 3: Transistor PMOS: simbolo circuitale 3

4 DD I DS R v o v i Figura 4: Inverter NMOS La tensione di soglia T p < 0. La condizione di conduzione sarà pertanto < T p la cui analogia con l equivalente relazione del NMOS può essere meglio rilevata considerando i valori in modulo: > T p Le tensioni, e la corrente I DS sono tutte negative. Anche in questo caso le equazioni che le contengono rimangono invariate rispetto al caso del NMOS se invece del valore reale si considera il loro valore in modulo. Il guadagno sarà β p mobilità delle lacune. = µpcoxw L dove in questo caso µ p rappresenta la A puro titolo di esempio viene di seguito riportata l equazione della corrente I DS che scorre in un PMOS in zona lineare ( > T n ): La corrente scorrerà da S verso D. 4 Inverter NMOS I DS = β p ( T p ) Allo scopo di meglio comprendere il funzionamento del transistor MOS e di presentarne un primo possibile utilizzo analizziamo il funzionamento dell inverter NMOS rappresentato in figura 4. Il funzionamento di principio è il seguente: per una tensione di ingresso v i = 0 il transistor sarà interdetto e la corrente I DS = 0. Non essendoci caduta sulla resistenza R la tensione di uscita v o risulterà pari a DD. Per una tensione di ingresso v i = DD il transistor sarà in conduzione e la corente I DS comporterà un abbassamento della tensione v o. 4

5 Il comportamento di questo circuito è proprio quello di un inverter in cui una tensione bassa in ingresso comporta una tensione alta in uscita e viceversa. Come esercizio proviamo a determinare quale deve essere il valore di R tale da avere v o = DD per v i = DD nel caso che: W = L, T n = 0.7, µ n C ox = 100µA/, DD = 5 In queste condizioni β n = µ nc ox W L = 00µA/ Poiché deve essere v o = v i = DD e poiché v o = e v i = avremo anche che =. Questa condizione identifica la zona di funzionamento del NMOS che è quella di saturazione. La corrente che scorre in R sarà pertanto I DS = β ( ) n DD T n = 34µA/ v o = DD I DS R DD = DD I DS R R = DD I DS = 7.7kΩ Completiamo questo semplice esercizio determinando qual è il valore minimo di v o che si può ottenere. Tale valore si otterrà per il massimo valore di I DS. Allora applichiamo il massimo valore di tensione all ingresso: v i = DD. In questo caso non possiamo sapere il quale zona starà lavorando il transistor. In ogni caso, poiché T n = = 4.3 e poiché ci aspettiamo che abbia un valore basso, sicuramente non saremo in zona di saturazione. In ogni caso possiamo verificare numericamente che l assunzione di essere in zona di saturazione sarebbe sbagliata: I DS = β n ( DD T n ) = 1.85mA v o = DD I DS R = = 9.7 Ovviamente non può essere v o < 0 e quindi è evidente che l assunzione di trovarci in zona di saturazione è sbagliata. Analogamente si verifica (con qualche calcolo in più) che il transistor non può essere neanche in zona triodo. Allora il transistor si trova in linearità. È così possibile calcolare la corrente I DS. 5

6 v o v i Figura 5: Inverter NMOS: realizzazione circuitale I DS = β n ( T n ) = β n ( DD T n )( DD I DS R) I DS = β n( DD T n ) DD = = 56µA β n ( DD tn )R v o = DD I DS R = = 0.7 In realtà gli inverter NMOS vengono realizzati sostituendo alla resistenza di pull-up un transistor PMOS come mostrato in figura 5. 6

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005 Tecnologia CMOS Ing. Ivan lunno 2 aprile 25 Introduzione In questa dispensa verranno presentati i circuiti CMOS (Complementary MOS). Nella prima parte verrà analizzato in dettaglio il funzionamento di

Dettagli

Interruttori Digitali

Interruttori Digitali Interruttori Digitali Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verranno presentati gli interruttori digitali. In particolar modo si parlerà delle possibili realizzazioni mediante

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

4 STRUTTURE CMOS. 4.1 I componenti CMOS

4 STRUTTURE CMOS. 4.1 I componenti CMOS 4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.

Dettagli

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Il transistor MOSFET MOSFET enhancement mode Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Semiconductor Field Effect Transistor. La struttura di principio del dispositivo

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali Elettronica

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Dispositivi elettronici. Effect

Dispositivi elettronici. Effect ispositivi elettronici Metal-Oxide-emiconductoremiconductor Field Effect Transistor (MOFET) ommario Come è fatto un MOFET a canale n Principi di funzionamento Canale di inversione Calcolo di I vs V Curve

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Dispositivi elettronici. Transistor (MOSFET)

Dispositivi elettronici. Transistor (MOSFET) ispositivi elettronici Metal-Oxide- emiconductor Field Effect Transistor (MOFET) ommario Come è fatto un MOFET a canale n Principi di funzionamento Canale di inversione Calcolo di I vs V Curve I vs V e

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

3.1 Verifica qualitativa del funzionamento di un FET

3.1 Verifica qualitativa del funzionamento di un FET Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la

Dettagli

Circuiti con diodi e resistenze: Analisi e Progetto

Circuiti con diodi e resistenze: Analisi e Progetto Circuiti con diodi e resistenze: Analisi e Progetto Esercizio 1: Calcolare e descrivere graficamente la caratteristica di trasferimento del seguente circuito: 1 D 3 110 KΩ 5 KΩ 35 KΩ V z3 5 V Svolgimento

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

Componenti a Semiconduttore

Componenti a Semiconduttore Componenti a Semiconduttore I principali componenti elettronici si basano su semiconduttori (silicio o germani) che hanno subito il trattamento del drogaggio. In tal caso si parla di semiconduttori di

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

slides per cortesia di Prof. B. Bertucci

slides per cortesia di Prof. B. Bertucci slides per cortesia di Prof. B. Bertucci Giunzione p-n in equilibrio: Densità di portatori maggiori maggioritari/ minoritari dai due lati della giunzione (lontano dalla zona di contatto): Nella zona di

Dettagli

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1 Invertitore logico (NOT) La caratteristica di trasferimento in tensione (VTC) Per un ingresso logico 0, cioè v I V IL l'uscita logica è 1, cioè v O V OH ; per ingresso 1 cioè v I V IH uscita 0, cioè v

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

1 = 2 1 = 2 W L W L MOSFET ENHANCEMENT A CANALE P D I D > 0 B V SD > 0 D I D < 0 B V DS < 0 V SG > 0 S V GS < 0. Regione di interdizione

1 = 2 1 = 2 W L W L MOSFET ENHANCEMENT A CANALE P D I D > 0 B V SD > 0 D I D < 0 B V DS < 0 V SG > 0 S V GS < 0. Regione di interdizione MOFE ENHANCEMEN A CANALE P MOFE a canale p hanno una struttura analoga a quelli a canale n, con la differenza che i tipi di semiconduttore sono scambiati: ora source e drain sono realizzati con semiconduttori

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

J e:gi UNZI ONEBASEEMETTI TORE J c:gi UNZI ONEBASECOLLETTORE IL TRANSISTOR AD EFFETTO DI CAMPO A GIUNZIONE, j FET (Shockley, 1951) E un componente che ha una sola giunzione p n. Geometria didattica

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS Esercizio Grandezze tipiche delle caratteristiche dei MOS Supponiamo di avere una tecnologia MOS con: ensione di alimentazione, dd 5 ensione di soglia, t Dimensione minima minlminfµm. I file di tecnologia

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET

Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =

Dettagli

IL MOSFET.

IL MOSFET. IL MOSFET Il MOSFET è certamente il più comune transistor a effetto di campo sia nei circuiti digitali che in quelli analogici. Il MOSFET è composto da un substrato di materiale semiconduttore di tipo

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini

I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini I.P.S.I.A. Di BOHIGLIERO a.s. 2010/2011 classe III Materia: Elettronica Multivibratori astabili alunni atalano, Iacoi e Serafini prof. Ing. Zumpano Luigi Generalità Si definiscono multivibratori quei dispositivi

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 ESERCIZIO 1 Un transistore n + pn + (N Abase = 10 16 cm 3, W = 4 µm, S = 1 mm 2,µ n = 0.11 m 2 /Vs, τ n = 10 6 s) è polarizzato come in gura

Dettagli

Capitolo IV. Transistori ad effetto di campo

Capitolo IV. Transistori ad effetto di campo Capitolo IV Transistori ad effetto di campo In questo capitolo si tratteranno i transistori ad effetto di campo (FET). Come nel caso dei BJT la tensione tra due terminali del FET controlla la corrente

Dettagli

ELETTRONICA II. Caratteristiche I C,V CE. Transistori in commutazione - 2 I C. Prof. Dante Del Corso - Politecnico di Torino

ELETTRONICA II. Caratteristiche I C,V CE. Transistori in commutazione - 2 I C. Prof. Dante Del Corso - Politecnico di Torino ELETTRONICA II Caratteristiche I C,V CE Prof. Dante Del Corso - Politecnico di Torino I C zona attiva Parte A: Transistori in commutazione Lezione n. 2 - A - 2: Transistori BJT in commutazione zona di

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLE CURVE CARATTERISTICHE DI USCITA DI UN TRANSISTOR JFET A CANALE N SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLE CURVE CARATTERISTICHE DI USCITA DI UN TRANSISTOR JFET A CANALE N SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 6 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLE CURVE CARATTERISTICHE DI USCITA DI UN TRANSISTOR JFET A CANALE N SCHEMA 1 STRUMENTI

Dettagli

Elettronica I Potenza dissipata dalle porte logiche CMOS

Elettronica I Potenza dissipata dalle porte logiche CMOS Elettronica I Potenza dissipata dalle porte logiche MOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 rema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

I transistor mosfet e jfet

I transistor mosfet e jfet Capitolo 7 I transistor mosfet e jfet 7.1 Struttura del transistor mosfet La sigla mosfet è un acronimo per Metal-Oxide-Semiconductor Field-Effect-Transistor (transistor ad effetto di campo di tipo metallo-ossido-semiconduttore).

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI

CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI 139 CAPTOLO 7 DSPOSTV NTEGRAT ANALOGC Negli amplificatori la necessità di ottenere elevate impedenze ed elevati guadagni impone spesso l utilizzo di resistenze di valore molto alto; inoltre l accoppiamento

Dettagli

INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL)

INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) INERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) FIG. 1. Resistor-Transistor Logic (RTL) inverter. ediamo un esempio di realizzazione di un invertitore (Figura 1). Assumiamo inizialmente che il fan-out dell

Dettagli

I transistor mosfet e jfet

I transistor mosfet e jfet Capitolo 7 I transistor mosfet e jfet 7.1 Struttura del transistor mosfet La sigla mosfet è un acronimo per Metal-Oxide-Semiconductor Field-Effect-Transistor (transistor ad effetto di campo di tipo metallo-ossido-semiconduttore).

Dettagli

Esercizi di Elettronica Digitale Monostabile #1

Esercizi di Elettronica Digitale Monostabile #1 Esercizi di Elettronica Digitale Monostabile # M.Borgarino Università di Modena e Reggio Emilia Facoltà di ngegneria (0/09/006 Descrizione del circuito Lo schematico riportato nella seguente Figura rappresenta

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

Ricavo della formula

Ricavo della formula Dispositivi e Circuiti Elettronici Ricavo della formula E F i E F = k B T ln N A n i Si consideri la relazione di Shockey: ( ) EFi E F p = n i exp k B T Si osservi anche che per x = il semiconduttore è

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/2010 Filtri Filtri del secondo ordine In generale la funzione di trasferimento è: H(s) = a 2 s 2 + a 1 s + a 0

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Studio di circuiti contenenti diodi Uso di modelli semplificati

Studio di circuiti contenenti diodi Uso di modelli semplificati STUDIO DI CIRCUITI CONTENENTI DIODI USO DI MODELLI SEMPLIFICATI 1 Primo modello 2 Secondo modello 4 Terzo modello 6 La caratteristica e la retta di carico 8 Studio di circuiti contenenti diodi Uso di modelli

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale APPUNTI DI ELETTONICA AMPLIFICATOE OPEAZIONALE L amplificatore operazionale ideale Lo schema seguente è lo schema circuitale dell amplificatore operazionale (A.O.): vd v v A ( v v ) dove: è la tensione

Dettagli

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO 1 CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene indicato

Dettagli

Esame di Elettronica I 2º compitino 4 Febbraio

Esame di Elettronica I 2º compitino 4 Febbraio Esame di Elettronica I 2º compitino 4 Febbraio 2003 0870061666 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 12 febbraio 2003 Figura 1: Schema circuitale di una porta OR tracciato

Dettagli

Elettronica Funzionamento del transistore MOS

Elettronica Funzionamento del transistore MOS Elettroica Fuzioameto del trasistore MOS Valetio Liberali Dipartimeto di Fisica Uiversità degli Studi di Milao valetio.liberali@uimi.it Elettroica Fuzioameto del trasistore MOS 13 maggio 2015 Valetio Liberali

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

9.Generatori di tensione

9.Generatori di tensione 9.Generatori di tensione In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di riferimento precise. Mostriamo alcuni metodi per ottenere

Dettagli

Effetti della reazione sui parametri

Effetti della reazione sui parametri Effetti della reazione sui parametri Analizziamo come la reazione interviene sui parametri dello amplificatore complessivo, se questo è realizzato con un Amplificatore Operazionale reazionato. A d R 1

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

FAMIGLIA NMOS E CMOS FUNZIONAMENTO DELLA FAM. NMOS

FAMIGLIA NMOS E CMOS FUNZIONAMENTO DELLA FAM. NMOS FAMIGLIA NMOS E CMOS FUNZIONAMENTO DELLA FAM. NMOS Una delle famiglie più utilizzate insieme alla TTL è la MOS che si suddivide in due tecnologie fondamentali la NMOS e la CMOS, quest'ultima in diretta

Dettagli

TRANSISTOR AD EFFETTO DI CAMPO O UNIPOLARI. FUNZIONAMENTO del JFET (Junction Field Electric Transistor):

TRANSISTOR AD EFFETTO DI CAMPO O UNIPOLARI. FUNZIONAMENTO del JFET (Junction Field Electric Transistor): TRANSISTOR AD EFFETTO DI CAMPO O UNIPOLARI Sono detti Unipolari perché la conduzione è portata avanti esclusivamente dalle sole cariche maggioritarie. Sono detti ad effetto di campo perché il passaggio

Dettagli

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007 ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

12BHD - Informatica - soluzioni Appendice D del quaderno di testo - v. 2.00

12BHD - Informatica - soluzioni Appendice D del quaderno di testo - v. 2.00 Esercizio 1 Semplificare la seguente espressione ooleana: a (b + c) + b (a + c) pplicando le proprietà dell algebra ooleana: [ a + b c ] a b + a c + a b + b c = a (b + b) + a c + b c = a 1 + a c + b c

Dettagli

I dispositivi elettronici. Dispense del corso ELETTRONICA L

I dispositivi elettronici. Dispense del corso ELETTRONICA L I dispositivi elettronici Dispense del corso ELETTRONICA L Sommario I semiconduttori La giunzione pn Il transistor MOS Cenni sul principio di funzionamento Modellizzazione Fenomeni reattivi parassiti Top-down

Dettagli

CAPITOLO 3 IL TRANSISTOR AD EFFETTO CAMPO (FET)

CAPITOLO 3 IL TRANSISTOR AD EFFETTO CAMPO (FET) 43 CAPITOLO 3 IL TRANSISTOR AD EFFETTO CAMPO (FET) In questo capitolo affrontiamo il primo dispositivo attivo a semiconduttore, il transistor ad effetto di campo, o FET (in inglese, field-effect transistor).

Dettagli

L'INDUZIONE ELETTROSTATICA E IL COMANDO DI TENSIONE DEL GATE DEL MOSFET

L'INDUZIONE ELETTROSTATICA E IL COMANDO DI TENSIONE DEL GATE DEL MOSFET STRUTTURA COSTRUTTIVA DEL MOSFET (Adattamento da http://users.unimi.it/metis/metis-3mkb/courseware/fet/indice%20mosfet.htm ) Il transistor MOS si presenta costruito fisicamente come nella figura accanto.

Dettagli

SisElnM1 08/03/ DDC 1 SISTEMI ELETTRONICI. Obiettivi del gruppo di lezioni D. Ingegneria dell Informazione

SisElnM1 08/03/ DDC 1 SISTEMI ELETTRONICI. Obiettivi del gruppo di lezioni D. Ingegneria dell Informazione iselnm1 8/3/27 ngegneria dell nformazione Obiettivi del gruppo di lezioni Modulo TEM ELETTRONC - CRCT TAL M1 Transistore MO come interruttore - caratteristiche dei transistori MO - modelli di MO in commutazione

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn Dispositivi e Tecnologie Elettroniche Esercitazione Giunzione pn Esercizio 1: testo Si consideri una giunzione brusca e simmetrica con drogaggio N A N D 10 17 cm 3 sezione trasversale A 0.5 mm 2 e lati

Dettagli

Esame di Elettronica I 1º compitino 23 Gennaio

Esame di Elettronica I 1º compitino 23 Gennaio Esame di Elettronica I 1º compitino 23 Gennaio 2003 0956267308 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 28 gennaio 2003 Lo schema circuitale in figura rappresenta un Inverter,

Dettagli

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET

Dispositivi e Tecnologie Elettroniche. Stadi Amplificatori MOSFET Dispositivi e Tecnologie Elettroniche Stadi Amplificatori MOSFET Esercizio 1: si consideri il seguente circuito per la polarizzazione del MOSFET: VDD=15 V R2=560K RD=2.2 K G R1=180K D B VTn=1.5V Βn=20mA/V^2

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor RLAZION DI TLCOMUNICAZIONI ITIS Vobarno Titolo: I Transistor Nome: Samuele Sandrini 4AT 05/10/14 Un transistor a giunzione bipolare (BJT Bipolar Junction Transistor) è formato da tre zone di semiconduttore

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

Elettronica per le telecomunicazioni

Elettronica per le telecomunicazioni POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/200 Filtri Filtri del primo ordine Passa basso R 2 C 2 R H(s) = R 2 H(0) = R 2 R sr 2 C 2 R f p = φ = 0 90 2πR

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

COMPONENTI ELETTRONICI DI POTENZA

COMPONENTI ELETTRONICI DI POTENZA COMPONENTI ELETTRONICI DI POTENZA 1. Classificazione 2. Diodo 3. Tiristore 4. GTO 5. BJT 6. MOSFET 7. IGBT 8. MCT Angelo Tani Azionamenti Elettrici 1 Componenti elettronici di potenza: classificazione

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014 Esercizio : Con riferimento al circuito illustrato in Fig. e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema V DD=V; n=00 A/V ; p=00 A/V ; V TN=0.5V; V TP=-0.5V;

Dettagli

La sonda compensata. La sonda compensata

La sonda compensata. La sonda compensata 1/6 1 Introduzione La seguente esercitazione di laboratorio affronta il problema di realizzare una sonda compensata per un cavo di 50 m con capacità distribuita di circa 100 pf/m. 2 Tempo di salita di

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017 Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Corso di Circuiti Integrati Anno Accademico 2016/2017 1 Introduzione In questo breve tutorial utilizzeremo il software

Dettagli

DIODO. La freccia del simbolo indica il verso della corrente.

DIODO. La freccia del simbolo indica il verso della corrente. DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il

Dettagli

Curva caratteristica del transistor

Curva caratteristica del transistor Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che

Dettagli

Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 02/ 03

Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 02/ 03 Elaborato di Elettronica Digitale C.d.L. in Ingegneria Elettronica Anno accademico 0/ 03 Alfredo Caferra 58/463 OGGETTO DELL ELABORATO Per una SRAM con celle di memoria NMOS a 4 transistori con bit lines

Dettagli

Logica CMOS dinamica

Logica CMOS dinamica Logica CMOS dinamica Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In quessta dispensa verrà presentata la logica CMOS dinamica evidenziandone i principi di funzionamento, la tecnica di progetto i vantaggi

Dettagli

Transistori a effetto di campo.

Transistori a effetto di campo. Transistori a effetto di campo. Sommario Introduzione... 2 Transistor Metal Oxide Semiconductor (MOS)... 2 Capacità dell ossido per unità di superficie C OX... 3 Introduzione del concetto di tensione di

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli