Esame di Elettronica I 2º compitino 4 Febbraio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Elettronica I 2º compitino 4 Febbraio"

Transcript

1 Esame di Elettronica I 2º compitino 4 Febbraio Simulazione al calcolatore con PSpice Melzani Yari Matricola: Crema 12 febbraio 2003 Figura 1: Schema circuitale di una porta OR tracciato in PSPICE 9.1 Lo schema circuitale in figura rappresenta una porta OR, realizzata in tecnologia CMOS. La funzione logica ottenuta è la seguente: Dati 2 valori di ingresso logici, si ottiene un valore d uscita che è a sua volta logico. A B Y Per realizzare il circuito in PSPICE sono stati inseriti 6 transistori ad arricchimento, rispettivamente 3 a canale P e 3 a canale N. Sono presenti 2 generatori d onda quadra (A e B), di tipo VPULSE, i quali originano gli ingressi.

2 Nel circuito sono presenti anche: un generatore di tensione V DD e un condensatore C L (capacità di carico). CARATTERISTICHE E PARAMETRI DEI COMPONENTI UTILIZZATI Le dimensioni dei 2 transistori MOS non sono identiche: L p = 0.25 µm W p = 10 µm L n = 0.25 µm W n = 5 µm Le superfici dei transistori determinano la quantità di potenza dissipata, è per questo motivo che si tende a costruire circuiti, con componenti sempre più piccoli. M1, M2, M5 Sono transistori MOS ad arricchimento a canale N La tensione di soglia V th è 0.5V µ A Il parametro k = 80 V 2 M3, M4, M6 Sono transistori MOS ad arricchimento a canale P La tensione di soglia V th è -0.5V µ A Il parametro k = 40 V 2 I parametri di conduttanza dei transistori sono stati impostati nel file di libreria di PSPICE MSimEv_8\lib\Breakout.lib.MODEL MbreakN NMOS LEVEL=1 VTO=0.5 KP=8e-5.MODEL MbreakP PMOS LEVEL=1 VTO=-0.5 KP=8e-5 VDD Si tratta di un generatore di tensione, il suo valore è 2.5V A, B VPULSE Sono generatori d onda trapezoidale. Il simulatore PSPICE non mette a disposizione un generatore d onda quadra proprio. Si può approssimare la caratteristica quadra, impostando dei tempi di salita e discesa del segnale molto bassi, rispetto al semiperiodo alto o basso. A: Valore di tensione Basso: 0V Valore di tensione Alto: 2.5V PER=100ns periodo dell onda TD=0 tempo di ritardo TR=3ns tempo di salita del segnale TF=3ns tempo di discesa del segnale - Questo generatore pilota il gate dei transistori M1, M3 B: Valore di tensione Basso: 2.5V Valore di tensione Alto: 0V PER=150ns periodo dell onda TD=0 tempo di ritardo

3 TR=3ns tempo di salita del segnale TF=3ns tempo di discesa del segnale - Questo generatore pilota il gate dei transistori M2, M4 C L E un condensatore con capacità 0.2pF; permette di stabilizzare il segnale in uscita. Il circuito è stato simulato al calcolatore con PSPICE 9.1 A. Andamento nel tempo della tensione in uscita. Figura 2: Andamento nel tempo degli ingressi A e B. La figura 2 mostra una simulazione in cui è stato chiesto a PSpice di effettuare un analisi Transient, quindi nel dominio del tempo, dei segnali generati dai VPULSE A e B, con i parametri associati ai componenti sopra elencati. Si osservano dei tempi di salita e discesa abbastanza alti, rispetto al periodo alto o basso; infatti sono stati impostati a 3ns sia per la salita che per la discesa del segnale. La combinazione dei ritardi A, B causa comportamenti sgradevoli, specialmente in termini di dissipazione di potenza.

4 Figura 3: Andamento del tempo dell uscita in funzione degli ingressi A e B. La figura mostra l andamento nel tempo della tensione in uscita a fronte degli ingressi A e B. Per poter visualizzare i valori, è stato sufficiente inserire un marker sul nodo interessato. L analisi è riferita ad 1 periodo (300ns) con un Print Step di 0,01ns; Sulle ordinate sono espressi i valori di tensione riferiti all uscita, mentre sulle scisse è rappresentato il tempo in ns. Il periodo risultante dalle 2 forme d onda in ingresso è mcm(a,b) = mcm(100ns,150ns)=300ns Si osserva che il segnale di uscita presenta un valore logico alto quando almeno un segnale in ingresso (A o B) è alto. Il risultato è concorde con le aspettative. Figura 4: Transitorio d assestamento del segnale in uscita.

5 Dalla figura 4 si osserva un picco di tensione in corrispondenza della commutazione dell uscita. Si tratta di un periodo di assestamento del segnale; il transistore ha bisogno di piccoli tempi di assestamento a fronte di una commutazione. Il fenomeno è dovuto sia ai parametri K di conduttanza dei transistori coinvolti nella commutazione, sia ai tempi di salita e discesa dei segnali in ingresso. B. Andamento nel tempo della corrente erogata dal generatore V DD e della potenza istantanea dissipata dal circuito. Figura 5: Andamento nel tempo della corrente erogata da V DD La figura 5 mostra la corrente erogata dal generatore di tensione V DD nel tempo, concorde con quanto espresso nella legenda. L analisi è riferita ad 1 periodo (300ns) con un Print Step di 0,01ns; Sulle ordinate sono espressi i valori di corrente in ma, mentre, sulle scisse, è rappresentato il tempo in ns. Si osservano dei picchi molto alti di corrente, in corrispondenza delle commutazioni del segnale in uscita; infatti, in base alla combinazione dei transistori, che cambiano il proprio stato, si verificano i picchi positivi o negativi. Per il resto del periodo la corrente erogata da V DD è trascurabile.

6 Figura 6: Andamento nel tempo della potenza dissipata dal circuito. Nella figura 6 è espressa la potenza dissipata dal circuito. L analisi è riferita ad 1 periodo circa (300ns) con un Print Step di 0,01ns; La rappresentazione della potenza è stata ottenuta inserendo un espressione nello strumento Add Trace di PSpice. Il risultato è dovuto alla somma, istante per istante, del contributo di ogni componente passivo. Dalla relazione P = V I si ricava la potenza dissipata da ogni transistore. 6 i= 1 ID(Mi) (V(Mi : d) - V(Mi : s)) ID( Mi) ( V ( Mi : d) V ( Mi : s)) Si tratta del prodotto fra la corrente del nodo di drain del transistore Mi e la differenza di potenziale ai capi del transistore stesso. Si osserva nel grafico che la dissipazione di potenza avviene in concomitanza con i fronti di salita e discesa del segnale in uscita. Il segno dei picchi è positivo, in modo concorde con la convenzione degli utilizzatori, la quale considera negativa la potenza erogata da un componente; al contrario il segno è positivo se il componente la dissipa.

Esame di Elettronica I 1º compitino 23 Gennaio

Esame di Elettronica I 1º compitino 23 Gennaio Esame di Elettronica I 1º compitino 23 Gennaio 2003 0956267308 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 28 gennaio 2003 Lo schema circuitale in figura rappresenta un Inverter,

Dettagli

Esercitazione III Simulazione PSpice dell invertitore CMOS

Esercitazione III Simulazione PSpice dell invertitore CMOS Esercitazione III Simulazione PSpice dell invertitore CMOS Come è noto, nei circuiti CMOS vengono utilizzati sia dispositivi a canale N sia dispositivi a canale P. La principale differenza fra i due tipi

Dettagli

Fondamenti di Elettronica

Fondamenti di Elettronica N ELENCO: Politecnico di Milano Facoltà di Ingegneria dell Informazione Fondamenti di Elettronica Anno Accademico 2004/2005 Nome: Cognome: Matricola: Aula: Banco: Data: Docente del corso: Lezione di laboratorio:

Dettagli

Laboratorio di Elettronica T Esperienza 5 PSPICE

Laboratorio di Elettronica T Esperienza 5 PSPICE Laboratorio di Elettronica T Esperienza 5 PSPICE Postazione N Cognome Nome Matricola 1) Misura della resistenza La corrente nel circuito che dovrete analizzare nel seguito verrà misurata indirettamente

Dettagli

Simulazione di porta logica Domino con SPICE

Simulazione di porta logica Domino con SPICE Università degli Studi di Bologna Seconda Facoltà di Ingegneria - Sede di Cesena C.d.L. in Ingegneria Elettronica e delle Telecomunicazioni Simulazione di porta logica Domino con SPICE Laboratorio di Elettronica

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/ liberali Elettronica

Dettagli

ESERCIZIO 5 1) VALUTAZIONE DELLE CAPACITÁ PARASSITE DI UN INVERTER CMOS:

ESERCIZIO 5 1) VALUTAZIONE DELLE CAPACITÁ PARASSITE DI UN INVERTER CMOS: ESERIZIO 5 Si valutino le capacità parassite al nodo di uscita dovute ai transistori di un inverter MOS, e si verifichi l accuratezza dei risultati confrontando il ritardo di propagazione teorico e quello

Dettagli

Fondamenti di Elettronica

Fondamenti di Elettronica N ELENCO: Politecnico di Milano Facoltà di Ingegneria dell Informazione Fondamenti di Elettronica Anno Accademico 2004/2005 Nome: Cognome: Matricola: Aula: Banco: Data: Docente del corso: Lezione di laboratorio:

Dettagli

Le porte logiche. Elettronica L Dispense del corso

Le porte logiche. Elettronica L Dispense del corso Le porte logiche Elettronica L Dispense del corso Gli Obiettivi Introdurre il concetto di funzione logica. Dare una corrispondenza tra funzioni logiche e strutture di gate elementari. Introdurre l algebra

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

SIMULAZIONE CIRCUITALE CON LTSPICE. Ing. Marco Grossi Università di Bologna, DEI e- mail :

SIMULAZIONE CIRCUITALE CON LTSPICE. Ing. Marco Grossi Università di Bologna, DEI e- mail : SIMULAZIONE CIRCUITALE CON LTSPICE Ing. Marco Grossi Università di Bologna, DEI e- mail : marco.grossi8@unibo.it Simulazione di circuiti elettronici con SPICE SPICE (Simulation Program with Integrated

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Esercizi di ELETTRONICA I Raccolta di testi d esame e soluzioni

Esercizi di ELETTRONICA I Raccolta di testi d esame e soluzioni Esercizi di ELETTRONI I Raccolta di testi d esame e soluzioni Polo Didattico e di Ricerca di rema nno 003 vvertenze: 1. Per alcuni problemi è indicata una possibile soluzione. Tale soluzione, in generale,

Dettagli

Laboratorio di Elettronica T Esperienza 3 Gate CMOS

Laboratorio di Elettronica T Esperienza 3 Gate CMOS Laboratorio di Elettronica T Esperienza 3 Gate CMOS Postazione N Cognome Nome Matricola Montaggio del circuito Servendosi del data sheet del circuito integrato CD4011B collegate gli ingressi di tutti i

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

4 STRUTTURE CMOS. 4.1 I componenti CMOS

4 STRUTTURE CMOS. 4.1 I componenti CMOS 4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Gruppo B: Famiglie logiche Lezione n. 9 - B - 5:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Gruppo B: Famiglie logiche Lezione n. 9 - B - 5: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Gruppo B: Famiglie logiche Lezione n. 9 - B - 5: Comportamento dinamico dei circuiti logici Elettronica II - Dante Del Corso - Gruppo B - 7

Dettagli

Inver&tore CMOS. V DD > 0 l altra alimentazione è a massa (0 V) 0 V O V DD

Inver&tore CMOS. V DD > 0 l altra alimentazione è a massa (0 V) 0 V O V DD Inver&tore CMOS S p > 0 l altra alimentazione è a massa (0 V) - = V GSp G n = G p VDSp = - D n = D p 0 Il potenziale più basso nel circuito coincide con la massa il Source del nmos coincide con la massa

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini

I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini I.P.S.I.A. Di BOHIGLIERO a.s. 2010/2011 classe III Materia: Elettronica Multivibratori astabili alunni atalano, Iacoi e Serafini prof. Ing. Zumpano Luigi Generalità Si definiscono multivibratori quei dispositivi

Dettagli

Esercitazione II Uso del simulatore PSpice per l analisi dei circuiti digitali.

Esercitazione II Uso del simulatore PSpice per l analisi dei circuiti digitali. Esercitazione II Uso del simulatore Spice per l analisi dei circuiti digitali. I parametri del circuito In Fig. 1 è mostrato lo schema elettrico di un invertitore realizzato in tecnologia NMOS con carico

Dettagli

Esercitazione del 13 Maggio 2009

Esercitazione del 13 Maggio 2009 Esercitazione del 3 Maggio 2009 Calcolo dei tempi di propagazione - riepilogo. Ipotesi semplificative: commutazione ingressi con fronti istantanei capacità di carico costante rispetto alla polarizzazione

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

6. Amplificatori di potenza

6. Amplificatori di potenza 6.1 Amplificatori switching 6. Amplificatori di potenza Lo studio degli amplificatori in classe A (capitolo 4) ha mostrato come ci sia una relazione lineare fra l ampiezza del segnale d ingresso e quello

Dettagli

CLASSE : V A E.T.A ALUNNO: Bovino Silvano

CLASSE : V A E.T.A ALUNNO: Bovino Silvano CLASSE : V A E.T.A. 2007-2009 ALUNNO: Bovino Silvano SVILUPPO IN SERIE DI FOURIER ANALISI DELLE COMPONENTI ARMONICHE DI UN SEGNALE AD ONDA TRIANGOLARE UNIPOLARE E DI UN SEGNALE IMPULSIVO Lo sviluppo in

Dettagli

Sviluppo tecnologico dell elettronica digitale:

Sviluppo tecnologico dell elettronica digitale: Sviluppo tecnologico dell elettronica digitale: Prestazioni e problemi: Famiglia logica: Insieme di gates che svolgono le funzioni logiche elementari basata su prefissati livelli logici (tensione/corrente),

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Simulatori circuitali di tipo SPICE

Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Simulatori circuitali di tipo SPICE Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Simulatori SPICE SPICE=Simulation Program with Integrated Circuit Emphasis Strumenti software utilizzati per analizzare

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014

Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014 Esercizio : Con riferimento al circuito illustrato in Fig. e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema V DD=V; n=00 A/V ; p=00 A/V ; V TN=0.5V; V TP=-0.5V;

Dettagli

Esercitazioni lab per informatici

Esercitazioni lab per informatici Esercitazioni lab per informatici Turno 1 1) Misura della funzione di trasferimento di una porta CMOS NOT Componente: CD 4011BE Cortocircuitare i due ingressi della porta NAND per ottenere una porta NOT,

Dettagli

Esercitazione del 27 Maggio 2009

Esercitazione del 27 Maggio 2009 Esercitazione del 7 Maggio 009 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

Esercizi di Elettronica Digitale Monostabile #1

Esercizi di Elettronica Digitale Monostabile #1 Esercizi di Elettronica Digitale Monostabile # M.Borgarino Università di Modena e Reggio Emilia Facoltà di ngegneria (0/09/006 Descrizione del circuito Lo schematico riportato nella seguente Figura rappresenta

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Esercizio svolto 1 Dati: R 1

Esercizio svolto 1 Dati: R 1 Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

Dati: k n1 = =1mA/V 2

Dati: k n1 = =1mA/V 2 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICAA - AA 2012/2013 1 Appello 18 Luglio 2013 Indicare chiaramente la domanda a cui si sta rispondendo. Add esempio 1a) Esercizio 1. V DD= =5V D 1 k n

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI 17 FEBBRAIO 2004 DOMANDE DI TEORIA 1) E dato un generatore con impedenza di sorgente di 50 Ω, che pilota un amplificatore di cui è nota la figura di rumore

Dettagli

R 2 R 1 R 3 R 4 V DD B M 6 A M 5 C M 4 Y M 3 C M 2 M 1 C 2. C 1 v in. v out 2 _

R 2 R 1 R 3 R 4 V DD B M 6 A M 5 C M 4 Y M 3 C M 2 M 1 C 2. C 1 v in. v out 2 _ Raccolta dei testi d'esame di ELETTRONI Polo idattico e di Ricerca di rema nno 1999 1 Prova scritta del 1 Febbraio 1999 ompitino: esercizi 1.1, 1.2 e 1.3. I 0 R 4 1.2 Nel circuito in gura 2, l'amplicatore

Dettagli

Pilotaggio high-side

Pilotaggio high-side Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio

Dettagli

MINIGUIDA A SPICE DEFINIZIONE DEL CIRCUITO

MINIGUIDA A SPICE DEFINIZIONE DEL CIRCUITO MINIGUIDA A SPICE Questa guida fornisce le basi per l'utilizzo del programma di simulazione circuitale SPICE (Simulation Program with Integrated Circuit Emphasis) ai fini delle esercitazioni nell'ambito

Dettagli

Corso di Circuiti Integrati Anno Accademico 2018/2019

Corso di Circuiti Integrati Anno Accademico 2018/2019 Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica EOLAB - Laboratorio di Microelettronica Corso di Circuiti Integrati Anno Accademico 2018/2019 ESERCITAZIONE 1 Dato

Dettagli

Esercitazione del 21 Maggio 2008

Esercitazione del 21 Maggio 2008 Esercitazione del 1 Maggio 008 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

Esercitazione sui gate complessi CMOS

Esercitazione sui gate complessi CMOS Esercitazione sui gate complessi CMOS Esercizio N1: Testo V DD PU X PD O Si assuma la capacità di ingresso dell invertitore C INV =1pF: Si realizzino le reti PU e PD in modo che la funzione di uscita sia

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005 Tecnologia CMOS Ing. Ivan lunno 2 aprile 25 Introduzione In questa dispensa verranno presentati i circuiti CMOS (Complementary MOS). Nella prima parte verrà analizzato in dettaglio il funzionamento di

Dettagli

Diodo. Marco Ianna 23 maggio 2014

Diodo. Marco Ianna 23 maggio 2014 Diodo Marco Ianna 23 maggio 214 1 Introduzione: Diodo Un diodo ideale è un oggetto che può fare passare corrente solo in un certo verso e la cui caratteristica è quindi rappresentabile come in figura 1.

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014.

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014. ognome Nome Matricola Firma Parti svolte: E E E D Esercizio I I R 6 R 5 D 6 G 0 g Supponendo noti i parametri dei componenti e la matrice di conduttanza del tripolo, illustrare il procedimento di risoluzione

Dettagli

Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist

Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist Simulazione Spice Simulazione Circuitale Spice Lucidi del Corso di Elettronica Digitale Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)

Dettagli

Lezione 6: Circuiti dinamici

Lezione 6: Circuiti dinamici Lezione 6: Circuiti dinamici Cosa impareremo: 1. Inserire interruttori 2. Assegnare le condizioni iniziali 3. Condurre l analisi Transient 4. Analizzare circuiti del 1 ordine 5. Determinare la costante

Dettagli

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS

Esercizio 1 Grandezze tipiche delle caratteristiche dei MOS Esercizio Grandezze tipiche delle caratteristiche dei MOS Supponiamo di avere una tecnologia MOS con: ensione di alimentazione, dd 5 ensione di soglia, t Dimensione minima minlminfµm. I file di tecnologia

Dettagli

Bandgap reference ad elevato PSRR

Bandgap reference ad elevato PSRR Bandgap reference ad elevato PSRR Tale lavoro descrive un riferimento di tensione realizzato in tecnologia Cmos a 0.25µm. Il circuito a 27C genera una tensione di riferimento di 1.1143V, ha un coefficiente

Dettagli

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)

14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min) 14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri

Dettagli

Le due principali tipologie di sorgenti di rumore nei circuiti elettronici sono il rumore termico e il rumore flicker.

Le due principali tipologie di sorgenti di rumore nei circuiti elettronici sono il rumore termico e il rumore flicker. Simulazioni di rumore in ambiente Cadence Il rumore si manifesta in un circuito elettronico sotto forma di variazioni aleatorie dei valori di corrente e tensione. Essendo aleatorie tali variazioni possono

Dettagli

Esame Elettronica T-1 Prof. Elena Gnani 18/07/2014

Esame Elettronica T-1 Prof. Elena Gnani 18/07/2014 Esercizio 1: Con riferimento al circuito illustrato in Fig. 1(a) e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema L 1 = 3mm; L 2= 2mm; L 3 = 1mm; R WIRE = 0.25

Dettagli

Cross section and top view

Cross section and top view The nmos Transistor Polysilicon Aluminum nmosfet VBS 0 and VBD 0 VB = 0 Cross section and top view Polysilicon gate Source n + L W Drain n + Bulk p+ L Top view Gate-bulk overlap t ox Gate oxide n + L n

Dettagli

Prova scritta del 14 Luglio 2009 (secondo appello)

Prova scritta del 14 Luglio 2009 (secondo appello) A.A. 2008-2009 - Corso di Teoria dei Circuiti Digitali Docente: Prof. Simone Buso Prova scritta del 4 Luglio 2009 (secondo appello) Cognome e nome: Matricola: Risolvere i seguenti problemi, indicando le

Dettagli

Prova scritta del 17 Giugno 2009 (primo appello)

Prova scritta del 17 Giugno 2009 (primo appello) A.A. 28-29 - Corso di Teoria dei Circuiti Digitali Docente: Prof. Simone Buso Prova scritta del 17 Giugno 29 (primo appello) Cognome e nome: Matricola: Risolvere i seguenti problemi, indicando le risposte

Dettagli

V T = 1.2 V W / L = 20

V T = 1.2 V W / L = 20 Esercizio 1 Fondamenti di Elettronica - AA 2002/2003 1 a prova - Recupero 18 febbraio 2003 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Dato il circuito in Fig. 1: a) Polarizzare

Dettagli

INVERTITORE NMOS CON CARICO A SVUOTAMENTO

INVERTITORE NMOS CON CARICO A SVUOTAMENTO CAPITOLO 3 INVERTITORE NMOS CON CARICO A SVUOTAMENTO 3.1 Schema circuitale e tracciato del circuito La Figura 3.1 mostra lo schema elettrico di un invertitore realizzato in tecnologia NMOS con carico a

Dettagli

Le modulazioni impulsive

Le modulazioni impulsive Le modulazioni impulsive a cura di Francesco Galgani (www.galgani.it) Indice 1 Introduzione 2 2 La modulazione PAM 3 2.1 Cenni teorici....................................... 3 2.2 Simulazione con il computer

Dettagli

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1

. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1 Invertitore logico (NOT) La caratteristica di trasferimento in tensione (VTC) Per un ingresso logico 0, cioè v I V IL l'uscita logica è 1, cioè v O V OH ; per ingresso 1 cioè v I V IH uscita 0, cioè v

Dettagli

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007 ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere

Dettagli

Circuiti a microonde attivi in regime di grandi segnali

Circuiti a microonde attivi in regime di grandi segnali Circuiti a microonde attivi in regime di grandi segnali In un circuito a microonde che comprende elementi attivi (transistor) pilotati con livelli di potenza non sono trascurabili, si genera distorsione

Dettagli

Elettronica I Potenza dissipata dalle porte logiche CMOS

Elettronica I Potenza dissipata dalle porte logiche CMOS Elettronica I Potenza dissipata dalle porte logiche MOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 rema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

06AZN - Fondamenti di Informatica (GES, LOP, ORG) - esercitazione del 8/10/08 - v ā b + b c + ā c =...

06AZN - Fondamenti di Informatica (GES, LOP, ORG) - esercitazione del 8/10/08 - v ā b + b c + ā c =... Esercizio 1 Si dimostri se la seguente espressione ooleana è un eguaglianza o meno: a b + b c + a c = ā b + b c + ā c [ è un eguaglianza ] pplicando le proprietà dell algebra ooleana e lavorando esclusivamente

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

Politecnico di Milano Elettronica analogica, Prof. Marco Sampietro 18/10 e 25/ Anno accademico 2018/2019

Politecnico di Milano Elettronica analogica, Prof. Marco Sampietro 18/10 e 25/ Anno accademico 2018/2019 Politecnico di Milano Elettronica analogica, Prof. Marco Sampietro 18/10 e 25/10 2018 - Anno accademico 2018/2019 Analisi della DISTORSIONE in amplificatori di tensione a MOSFET Parte 1: Circuito Source

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

Esercitazione del 29 Aprile 2009

Esercitazione del 29 Aprile 2009 Esercitazione del 29 Aprile 2009 Invertitore Resistor-Transistor Logic (RTL) V out a) Parametri BJT Altri V out β F = 70 = 5V Q 1 I B V V CE V on = 0.7V = 0.8V = 10kΩ = 1kΩ b) CE = 0.1V Figura 1: Porta

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

A c r h c i h te t t e t t u t r u a r d g e li e l e abo b ra r t a o t ri Reti combinatorie

A c r h c i h te t t e t t u t r u a r d g e li e l e abo b ra r t a o t ri Reti combinatorie Architettura degli elaboratori Reti combinatorie ARGOMENTI DELLA LEZIONE Porte logiche Reti combinatorie Codificatore e Decodificatore Addizionatore e Sottrattore Comparatore aritmetico e logico Architettura

Dettagli

MicroSim Eval 8 SPICE CIRCUIT FILE

MicroSim Eval 8 SPICE CIRCUIT FILE MicroSim Eval 8 SPICE CIRCUIT FILE Un File di un Circuito di SPICE è una sequenza di istruzioni statements che soddisfa tre scopi: definisce gli elementi devices componenti il circuito e come sono collegati;

Dettagli

Tipo 1 - Compiti A01 A04 A07 A10 A13 A16 A19 A22 A25 A28 A31. Esercizio 1. Esercizio 2

Tipo 1 - Compiti A01 A04 A07 A10 A13 A16 A19 A22 A25 A28 A31. Esercizio 1. Esercizio 2 Tipo - Compiti A0 A0 A07 A0 A A6 A9 A A5 A8 A Esercizio Esempio di risoluzione. Scelto come riferimento il nodo C, le incognite sono le tensioni di nodo V A e V D. (La tensione V B = V 6 è nota.). Il sistema

Dettagli

La struttura circuitale del multivibratore monostabile deriva da quella dell astabile modificata nel seguente modo:

La struttura circuitale del multivibratore monostabile deriva da quella dell astabile modificata nel seguente modo: Generalità Il multivibratore monostabile è un circuito retroazionato positivamente, che presenta una tensione di uscita V out stabile che può essere modificata solo a seguito di un impulso esterno di comando

Dettagli

Coppia differenziale MOS con carico passivo

Coppia differenziale MOS con carico passivo Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale

Dettagli

I circuiti logici NMOS. A.Carini Elettronica digitale

I circuiti logici NMOS. A.Carini Elettronica digitale I circuiti logici NMOS A.Carini Elettronica digitale Invertitore NMOS Analisi per via analitica I f (, ) D GS DS R I D DS Analisi per via grafica Calcolo di min I I D D N K per ( GS T ) DS DS DS GS K N

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Circuiti con diodi e resistenze: Analisi e Progetto

Circuiti con diodi e resistenze: Analisi e Progetto Circuiti con diodi e resistenze: Analisi e Progetto Esercizio 1: Calcolare e descrivere graficamente la caratteristica di trasferimento del seguente circuito: 1 D 3 110 KΩ 5 KΩ 35 KΩ V z3 5 V Svolgimento

Dettagli

PROVA DI LABORATORIO # 4

PROVA DI LABORATORIO # 4 PROA DI LABORAORIO # 4 DEL 27/0/998 orso di ecnica delle Alte ensioni ANALISI DI UN IRUIO RADDRIZZAORE E DI UN DUPLIAORE DI ENSIONE ON SHEMA DI OKROF-WALON Si analizzi un circuito raddrizzatore a semplice

Dettagli

Condizioni di trasparenza e generazione locale del clock senza scorrimento

Condizioni di trasparenza e generazione locale del clock senza scorrimento STRUTTURE DI MEMORIA AD UNA FASE Registro D tipico Condizioni di trasparenza e generazione locale del clock senza scorrimento Latch statici Microelettronica 81 Latch e registri dinamici Due latch in serie

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL)

INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) INERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) FIG. 1. Resistor-Transistor Logic (RTL) inverter. ediamo un esempio di realizzazione di un invertitore (Figura 1). Assumiamo inizialmente che il fan-out dell

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) III a Esperienza del Laboratorio di Fisica Generale II Oscillazioni libere e risonanza di un circuito LC-serie (Trattazione analitica del circuito LC-serie) Con questa breve nota si vuole fornire la trattazione

Dettagli

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI CORSO DI EETTRONICA DEE TEECOMUNICAZIONI 8 UGIO 004 DOMANDE DI TEORIA ) Per descrivere le prestazioni di rumore di un circuito pilotato con una data impedenza (ad esempio 50Ω) è sufficiente un parametro,

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

Esercitazione 8 : LINEE DI TRASMISSIONE

Esercitazione 8 : LINEE DI TRASMISSIONE Esercitazione 8 : LINEE DI TRASMISSIONE Specifiche Scopo di questa esercitazione è verificare il comportamento di spezzoni di linea in diverse condizioni di pilotaggio e di terminazione. L'esecuzione delle

Dettagli

INDICE Capitolo I - I dispositivi elettronici. Condizioni operative statiche. 1.1) Introduzione. 1.2) Interruttori ideali e reali.

INDICE Capitolo I - I dispositivi elettronici. Condizioni operative statiche. 1.1) Introduzione. 1.2) Interruttori ideali e reali. INDICE Capitolo I - I dispositivi elettronici. Condizioni operative statiche. 1.1) Introduzione. 1 1.2) Interruttori ideali e reali. 1 1.3) Condizioni operative statiche del transistore a giunzione. 5

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

Esercitazione 6: Convertitori A/D Delta e Sigma-Delta

Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il comportamento di un convertitore A/D differenziale - Determinare

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Interruttori Digitali

Interruttori Digitali Interruttori Digitali Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In questa dispensa verranno presentati gli interruttori digitali. In particolar modo si parlerà delle possibili realizzazioni mediante

Dettagli

Polarizzazione Diretta (1)

Polarizzazione Diretta (1) Polarizzazione Diretta () E Con la polarizzazione diretta della giunzione, la barriera di potenziale si riduce aumenta la mobilità dei portatori maggioritari e si riduce quella dei portatori minoritari

Dettagli

I circuiti digitali. Dispense del corso Elettronica L

I circuiti digitali. Dispense del corso Elettronica L I circuiti digitali Dispense del corso Elettronica L Gli Obiettivi - Comprendere il funzionamento del più elementare dei circuiti digitali - Invertitore o NOT - Introdurre definizioni e grandezze caratteristiche

Dettagli