{ v c 0 =A B. v c. t =B
|
|
|
- Emanuele Martelli
- 9 anni fa
- Visualizzazioni
Transcript
1 Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo. Generalmente assumiamo n= I s è una costante specifica di un determinato diodo ad una data temperatura. V T è una costante che dipende dalla temperatura di funzionamento. In condizioni normali, a temperatura ambiente, si può assumere V T =5 mv Se i I s si può, per semplicità assumere i=i s e v /nv T ) Polarizzazione: fissare la condizione di lavoro, considerando solo il grande segnale, e calcolare le grandezze desiderate ) Analisi di piccolo segnale: considerando solo il piccolo segnale. I diodi possono essere visti come resistori di resistenza R=V T /I. 3) Risultato finale: Ottenere le grandezze desiderate sommando le relative componenti di grande segnale e piccolo segnale. Transistori MOS NMOS Il MOS è spento se V GS V T Il MOS è in zona di saturazione se V DS V GS cioè se GSV T {V V GD V T La corrente di saturazione: i D sat = C ' W n OX L v V GS T =k V GS Il MOS è in zona di ohmica se V DS V GS cioè se GSV T {V V GD V T W Corrente in zona ohmica: i D = n C ' OX L [ v GS v DS v DS Per comodità, si definiscono talvolta k= W nc ' OX e V L OVERDRIVE =V OV =V GS Trovare la polarizzazione del MOS significa definire quando lo stesso funziona in zona di saturazione e calcolare le correnti in tutti i rami e le tensioni a tutti i nodi della rete. La polarizzazione viene definita in corrente continua, con le linee di alimentazione accese e i generatori di piccolo segnale spenti. Nel disegno di un transistore MOS (sia n, sia p) la freccia si trova sempre in corrispondenza del source. PMOS: Funziona come un NMOS, ma presenta V GS,V DS e V T negative. Si possono considerare positive, ma si devono scambiare tutti i maggiori delle equazioni precedenti in minori, e viceversa. Inoltre, la corrente I D scorre in senso contrario. ]
2 Stadio source a massa Usato come un inverter: il valore V OUT è l'opposto di quello di ingresso. Usato come un interruttore: V IN V T spento V IN V DD acceso Piccolo Segnale Dopo aver specificato la condizione di funzionamento del transistore nel grande segnale (in corrente continua) è possibile studiare come questo si comporta quando viene applicata un ulteriore segnale, di scarsa entità, detto piccolo segnale (v gs ). Quando si lavora sul piccolo segnale, si considerano spente le linee di alimentazione. Lavorando sul grande segnale, si considerano spenti i generatori di piccolo segnale e circuiti aperti i condensatori. Si può parlare di piccolo segnale se vale la condizione v gs V GS Se tale condizione è valida, detta I D la corrente di grande segnale, si può esprimere la corrente che attraversa il transistore come i D =I D i d con i d = k V GS v gs Corrente e tensione di piccolo segnale sono correlate dalla transconduttanza di piccolo segnale g m = i d v gs = i D v GS = k V GS perciò i d =g m v gs Il guadagno di piccolo segnale è definito come G= v out v in. Per calcolarlo: bisogna porsi nelle condizioni di piccolo segnale (alimentazione spenta, generatori accesi) si trovano { v gs=v g v s i d =g m v gs esprimendo v s in funzione di i d si esplicita i d e la si usa per ricavare v out Piccolo segnale in frequenza Il condensatore di ingresso C inizia a far passare il piccolo segnale per frequenze superiori a f quando =Req con = f C Diagrammi di bode I diagrammi di Bode di una rete amplificatrice con un mos hanno due poli e uno zero. Si disegnano prendendo come frequenze dei poli f =, con C condensatore di ingresso (o uscita) e R C R resistenza vista dal condensatore stesso. Impedenza di uscita Per determinarla: spegnere tutti i generatori e le alimentazioni interne
3 inserire un generatore di tensione di test (v t ) tra la terra e il punto in cui si vuole calcolare l'impedenza trascurare eventuali resistenze poste sul ramo di cui si vuole calcolare l'impedenza al di là del punto in cui si è inserito il generatore di test calcolare la corrente (i t ) che va verso terra. Se il mos è acceso, viene considerato come una resistenza di valore. L'impedenza è Z g out = v t m i t Memoria dinamica DRAM Consiste di un solo NMOS (transistore di accesso) e di un condensatore C s in cui è memorizzato il dato Bit Tensione V cs 0 0 V DD -V T Il condensatore tende a scaricarsi, quindi la cella deve periodicamente essere aggiornata, riportando V CS al valore corretto. L'aggiornamento deve essere effettuato ogni 5/0 ms. Lettura La cella di memoria viene attivata alzando la rispettiva Word Line (il MOS permette passaggio di corrente) V La Bit Line viene precaricata al valore DD La variazione della tensione sulla Bit Line permette di leggere il valore memorizzato V = C s C B V CS V DD è la differenza di tensione tra il segnale alto e il segnale basso. L'operazione di lettura è equivalente all'operazione di refresh. Per calcolare la tensione sulla Bit Line dopo un'operazione di lettura, bisogna usare la conservazione della carica (Q'=Q'') ricordando che Q=CV. CMOS All'uscita, il CMOS si comporta come un inverter, in quanto presenta sempre il segnale opposto a quello presente su V IN. Potenza dissipata La porta CMOS dissipa potenza solo in transitorio. In una porta CMOS ci sono due contributi alla dissipazione di potenza: potenza di cross-conduzione (quando entrambe le porte sono aperte per breve tempo) e potenza dinamica (per la corrente che scorre durante il transitorio per la carica e scarica del condensatore. Sommando tutti i contributi, la potenza dissipata da una porta CMOS è p dinamica = E c =E f =C L V DD f ciclo carica + ciclo scarica energia sul condensatore frequenza f Fan Out È il massimo numero di porte identiche che una porta logica può sopportare alla propria uscita. Questo numero è N = C L C p definendo C p la capacità della porta.
4 Tempo di commutazione Il tempo di propagazione (con approssimazione ohmica) al 50% di un segnale attraverso una rete di transistori (con capacità di carico C L ) è: t=t a50 =0,693=0,693 R eq C L Più in generale, definita la percentuale del transitorio già trascorso, si può ricavare il tempo t t dalla relazione V DD = Ae B con { y0=ab y =B ottenendo quindi t= ln = ln R eq C L Quando un mos è acceso e lascia passare corrente può essere approssimato con un resistore R ON = in serie a un generatore di tensione V k V DD T. Le serie e i paralleli di transistori R ON permettono di trovare R eq da utilizzare per calcolare il tempo di propagazione. Il tempo di commutazione (con il MOS in saturazione) si calcola tramite la formula v c t=v C 0± I D SAT t carica, scarica C v c (0) è la tensione ai capi del condensatore all'inizio del transitorio. Generalmente è un po' meno di V DD in caso di uscita alta (0.9 V DD circa) e un po' più di 0 (0. V DD circa) in caso di uscita bassa. v c (t) è il punto di commutazione (generalmente V DD /, ma può anche essere una percentuale precisa del transitorio. Ad es: transitorio di carica esaurito al 90% v c (t)=0.9v DD oppure transitorio di scarica esaurito al 90% v c (t)=0.v DD Il tempo di propagazione minimo si ha quando tutti i mos contribuiscono alla transizione. Se l'uscita è alta agisce la PUN e il minimo si ha per ABC =. Se l'uscita è bassa agisce la PDN e il minimo si ha per ABC =000. Il tempo minimo si ottiene calcolando la R eq di tutta la rete (PDN o PUN) e usandola nella formula precedente. Margini di rumore La funzione di trasferimento di tensione di un inverter con evidenziati i punti critici.
5 Porte logiche CMOS A B... A B... RETE DI PULL UP (PUN) RETE DI PULL DOWN (PDN) V DD y La rete di pull up ha il compito di mettere in comunicazione l'alimentazione con l'uscita SOLO quando y= f A, B,= Per disegnare la PUN si usano SOLO PMOS (che hanno ingresso attivo basso) perciò è comodo esprimerla come y= f A, B,. All'occorrenza si utilizzano opportune trasformazioni come le leggi di De Morgan. La rete di pull down ha il compito di cortocircuitare l'uscita con la terra SOLO quando y= f A, B,=0. Per disegnare la PDN si usano SOLO NMOS (che hanno ingresso attivo alto) e la rete deve essere aperta quando l'uscita è bassa, perciò è comodo esprimerla come y= f A, B,. Conoscendo una delle due reti e dovendo disegnare l'altra, si scrive la funzione logica della prima e la si nega. Ad esempio, se si conosce la PDN: y=ab, la PUN si ottiene come y=ab=a B Per passare facilmente dalla funzione logica alla rete disegnata (e viceversa) ricordare che esiste (sia Parallelo OR per i PMOS, sia per gli NMOS) l'equivalenza: Serie AND
. Nota: le tensioni dono riferite all'ingresso ed all'uscita dello stesso circuito. G. Martines 1
Invertitore logico (NOT) La caratteristica di trasferimento in tensione (VTC) Per un ingresso logico 0, cioè v I V IL l'uscita logica è 1, cioè v O V OH ; per ingresso 1 cioè v I V IH uscita 0, cioè v
Elettronica I Porte logiche CMOS
Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/ liberali Elettronica
Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS
Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica
Transistori MOS. Ing. Ivan Blunno 21 aprile 2005
Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento
Elettronica dei Sistemi Digitali Le porte logiche CMOS
Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005
Tecnologia CMOS Ing. Ivan lunno 2 aprile 25 Introduzione In questa dispensa verranno presentati i circuiti CMOS (Complementary MOS). Nella prima parte verrà analizzato in dettaglio il funzionamento di
Coppia differenziale MOS con carico passivo
Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale
Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009
Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico
Pilotaggio high-side
Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio
Logica cablata (wired logic)
Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte
MOSFET o semplicemente MOS
MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:
Circuiti con diodi e resistenze: Analisi e Progetto
Circuiti con diodi e resistenze: Analisi e Progetto Esercizio 1: Calcolare e descrivere graficamente la caratteristica di trasferimento del seguente circuito: 1 D 3 110 KΩ 5 KΩ 35 KΩ V z3 5 V Svolgimento
Liberamente tratto da Prima Legge di Ohm
Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale
Porte logiche in tecnologia CMOS
Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.
4 STRUTTURE CMOS. 4.1 I componenti CMOS
4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di
Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A
Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3
La struttura circuitale del multivibratore monostabile deriva da quella dell astabile modificata nel seguente modo:
Generalità Il multivibratore monostabile è un circuito retroazionato positivamente, che presenta una tensione di uscita V out stabile che può essere modificata solo a seguito di un impulso esterno di comando
Modello di Ebers-Moll del transistore bipolare a giunzione
D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il
Amplificatori elementari con carico attivo MOSFET E connesso a diodo
Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo
INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL)
INERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) FIG. 1. Resistor-Transistor Logic (RTL) inverter. ediamo un esempio di realizzazione di un invertitore (Figura 1). Assumiamo inizialmente che il fan-out dell
Stadi Amplificatori di Base
Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro
Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT
Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico
Diodo. Marco Ianna 23 maggio 2014
Diodo Marco Ianna 23 maggio 214 1 Introduzione: Diodo Un diodo ideale è un oggetto che può fare passare corrente solo in un certo verso e la cui caratteristica è quindi rappresentabile come in figura 1.
Un semplice multivibratore astabile si può realizzare con le porte logiche, come nel seguente circuito:
Pagina 1 di 8 MULTIVIBRATORI Si dice multivibratore un circuito in grado di generare in uscita una forma d'onda di tipo rettangolare. Vi sono tre tipi di multivibratori. Multivibratore monostabile, multivibratore
FILTRI in lavorazione. 1
FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.
Curva caratteristica del transistor
Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che
12BHD - Informatica - soluzioni Appendice D del quaderno di testo - v. 2.00
Esercizio 1 Semplificare la seguente espressione ooleana: a (b + c) + b (a + c) pplicando le proprietà dell algebra ooleana: [ a + b c ] a b + a c + a b + b c = a (b + b) + a c + b c = a 1 + a c + b c
Amplificatori in classe A con accoppiamento capacitivo
Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,
Soluzioni di circuiti contenenti diodi. Come si risolve? a) per via grafica b) metodi iterativi
Soluzioni di circuiti contenenti diodi Come si risolve? a) per via grafica b) metodi iterativi Applicazioni Rettificatore Equazione di Shockley. Regolatore di tensione Varistor Rotture per valanga e/o
Elettronica Analogica. Luxx Luca Carabetta
Elettronica Analogica Luxx Luca Carabetta Diodi Raddrizzatori Alimentatori Diodi Il nome sta a ricordare la struttura di questo componente, che è formato da due morsetti, anodo e katodo. La versione che
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici
Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006
Esonero del 14 giugno 2006 Dato il circuito di figura C 2 R 3 OP v IN C 1 v o in cui = =0.5K!, R 3 =250!, C 1 =1µF, C 2 =1nF e v IN (V) 2 1 2 t (µs) 2 determinare l evoluzione temporale di V 0, supponendo
DIODO. La freccia del simbolo indica il verso della corrente.
DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il
TIMER 555. tensioni ci servono come tensionii di riferimento per i due comparatori interni.
TIMER 555 Il timer è un circuito integrato complesso avente lo scopo di regolare per un tempo prestabilito determinati circuiti. In pratica il timer 555 è un temporizzatore. Nella seguente figura vediamo
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:
I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini
I.P.S.I.A. Di BOHIGLIERO a.s. 2010/2011 classe III Materia: Elettronica Multivibratori astabili alunni atalano, Iacoi e Serafini prof. Ing. Zumpano Luigi Generalità Si definiscono multivibratori quei dispositivi
Corrente ele)rica. Cariche in movimento e legge di Ohm
Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante
RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor
RLAZION DI TLCOMUNICAZIONI ITIS Vobarno Titolo: I Transistor Nome: Samuele Sandrini 4AT 05/10/14 Un transistor a giunzione bipolare (BJT Bipolar Junction Transistor) è formato da tre zone di semiconduttore
Esame Elettronica T-1 Prof. Elena Gnani 19/09/2014
Esercizio : Con riferimento al circuito illustrato in Fig. e ai valori assegnati dei parametri si risponda ai seguenti quesiti: Parametri del problema V DD=V; n=00 A/V ; p=00 A/V ; V TN=0.5V; V TP=-0.5V;
MULTIVIBRATORI NE 555
MULTIVIBRATORI Si dice multivibratore un circuito in grado di generare in uscita una forma d'onda di tipo rettangolare. Vi sono tre tipi di multivibratori. Multivibratore monostabile, multivibratore bistabile,
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.
Politecnico di Torino DU Ingegneria Elettronica - AA Elettronica Applicata II - Workbook / Note per appunti - Gruppo argomenti 1
E2.1. ALIMENTATORI Tutti i circuiti e sistemi elettronici richiedono energia per funzionare; tale energia viene fornita tramite una o più alimentazioni, generalmente in forma di tensione continua di valore
AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE
configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo
Corrente ele)rica. Cariche in movimento e legge di Ohm
Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza
Multivibratore astabile con Amp. Op.
Multivibratore astabile con Amp. Op. Il multivibratore astabile è un generatore di onde quadre e rettangolari; esso è un circuito retroazionato positivamente, avente due stati entrambi instabili, che si
ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.
POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende
D2x - Presentazione della lezione D2. D2a STADI DI USCITA
D2x - Presentazione della lezione D2 /- Obiettivi! conoscere diverse forme di stadi di uscita di dispositivi logici! saper calcolare resistori di pull-up per open collector! saper eseguire calcoli di fanout!
Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007
ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere
a.a. 2015/2016 Docente: Stefano Bifaretti
a.a. 2015/2016 Docente: Stefano Bifaretti email: [email protected] Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in
Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)
Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2
Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39
Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6
Circuito Invertitore (1)
Circuito Invertitore () Implementazione della funzione NOT in logica positiva V() = 2 Volts V(0) = 0.2 Volts VR = -2 Volts Circuito Invertitore (2) Se l ingresso vi è nello stato 0 (V=0 Volts) il transistor
Michele Scarpiniti. L'Amplificatore Operazionale
Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE
Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1
Regolatori di tensione dissipativi 1 Schema elettrico Stabilità LDO 2 2003 Politecnico di Torino 1 Schema elettrico 3 Efficienza La tensione di headroom crea dei problemi: Alta potenza dissipata (necessita
Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una
l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale
CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI
139 CAPTOLO 7 DSPOSTV NTEGRAT ANALOGC Negli amplificatori la necessità di ottenere elevate impedenze ed elevati guadagni impone spesso l utilizzo di resistenze di valore molto alto; inoltre l accoppiamento
Soluzione di circuiti RC ed RL del primo ordine
Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare
Tecnologie per l'elettronica digitale. Parametri Componenti elettronici Porte a diodi RTL, TTL CMOS
Tecnologie per l'elettronica digitale Parametri Componenti elettronici Porte a diodi RTL, TTL CMOS Codifica digitale dell informazione Superare l effetto del rumore Non eliminabile dai circuiti analogici
Teoria dei circuiti reazionati
Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi
Appunti di Elettronica per Fisici
Università degli Studi di Firenze Dipartimento di Fisica Marcello Carlà Appunti di Elettronica per Fisici A.A. 2010-2011 Copyright c 2005-2010 Marcello Carlà Ogni riproduzione completa o parziale di questo
Elettronica digitale
Elettronica digitale Porte logiche a rapporto e a pass transistor Andrea Bevilacqua UNIVERSITÀ DI PADOVA a.a 2008/09 Elettronica digitale p. 1/22 Introduzione In questa lezione analizzeremo modalità di
Esame di Elettronica I 2º compitino 4 Febbraio
Esame di Elettronica I 2º compitino 4 Febbraio 2003 0870061666 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 12 febbraio 2003 Figura 1: Schema circuitale di una porta OR tracciato
Elettronica Digitale. 1. Sistema binario 2. Rappresentazione di numeri 3. Algebra Booleana 4. Assiomi A. Booleana 5. Porte Logiche OR AND NOT
Elettronica Digitale. Sistema binario 2. Rappresentazione di numeri 3. Algebra Booleana 4. Assiomi A. Booleana 5. Porte Logiche OR AND NOT Paragrafi del Millman Cap. 6 6.- 6.4 M. De Vincenzi AA 9- Sistema
Misure Elettriche ed Elettroniche Esercitazioni Lab - Circuiti con diodi e condensatori 1. Circuiti con diodi e condensatori
Esercitazioni Lab - Circuiti con diodi e condensatori 1 Circuiti con diodi e condensatori Esercitazioni Lab - Circuiti con diodi e condensatori 2 Circuito con diodo e condensatore Consideriamo un circuito
ELETTRONICA II. Caratteristiche I C,V CE. Transistori in commutazione - 2 I C. Prof. Dante Del Corso - Politecnico di Torino
ELETTRONICA II Caratteristiche I C,V CE Prof. Dante Del Corso - Politecnico di Torino I C zona attiva Parte A: Transistori in commutazione Lezione n. 2 - A - 2: Transistori BJT in commutazione zona di
3.1 Verifica qualitativa del funzionamento di un FET
Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la
Struttura del condensatore MOS
Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n
valore v u = v i / 2 V u /V i = 1/ 2
I Filtri Il filtro è un circuito che ricevendo in ingresso segnali di frequenze diverse è in grado di trasferire in uscita solo i segnali delle frequenze volute, in pratica seleziona le frequenze che si
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte f Variabili di stato In un dato istante di tempo, l energia immagazzinata nell elemento reattivo (condensatore od induttore)
Esercitazioni lab per informatici
Esercitazioni lab per informatici Turno 1 1) Misura della funzione di trasferimento di una porta CMOS NOT Componente: CD 4011BE Cortocircuitare i due ingressi della porta NAND per ottenere una porta NOT,
Circuito logico AND / AND Gate
Circuito logico AND / AND Gate Introduzione Lo scopo del progetto è creare un circuito elettrico che rappresenti la tabella di verità della porta logica AND. Il circuito logico preso in analisi restituisce
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO B8 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 22/10/2013-1 ElapB8-2013 DDC Page 1 2013 DDC 1 Come
RISONANZA. Fig.1 Circuito RLC serie
RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza
4.4 Il regolatore di tensione a diodo zener.
4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo
Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente
Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente ricorrere all impiego di Tiristori. A differenza dei Transitor
Effetti della reazione sui parametri
Effetti della reazione sui parametri Analizziamo come la reazione interviene sui parametri dello amplificatore complessivo, se questo è realizzato con un Amplificatore Operazionale reazionato. A d R 1
Logica CMOS dinamica
Logica CMOS dinamica Ing. Ivan Blunno 21 aprile 2005 1 Introduzione In quessta dispensa verrà presentata la logica CMOS dinamica evidenziandone i principi di funzionamento, la tecnica di progetto i vantaggi
Cella di memoria SRAM a 6T
- memorie volatili - in base al meccanismo di scrittura RAM statiche (SRAM) o dinamiche (DRAM) - scrittura del dato tramite reazione positiva o carica su di una capacità - configurazioni tipo a 6 MOS/cella
Q V C = coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.
CAPACITÀ ELETTRICA Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale. Si definisce capacità elettrica Unità di misura della capacità elettrica nel S.I. C
Banda passante di un amplificatore
Banda passante di un amplificatore Amplificatore ideale da 40 db con cella RC passa basso e passa alto. La cella passa basso determina la fequenza di taglio superiore fh, mentre la cella passa alto determina
PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M
PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M. 270/04) 27/01/2017 [B] ESERCIZIO 1 [A] [B] DATI: β = 100; k = 4 ma/v 2 ; VTH
9.Generatori di tensione
9.Generatori di tensione In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di riferimento precise. Mostriamo alcuni metodi per ottenere
Collaudo statico di un ADC
Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni
ESPERIMENTAZIONI DI FISICA 3. Traccia delle lezioni di Elettronica digitale M. De Vincenzi A.A:
ESPERIMENTZIONI DI FISIC 3 Traccia delle lezioni di Elettronica digitale M. De Vincenzi.: 22-23 Contenuto. Sistemi elettrici a 2 livelli 2. lgebra di oole Definizione Sistemi funzionali completi Leggi
Reti elettriche: definizioni
TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.
Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso)
ESERCIZI SUI CIRCUITI RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente
14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)
14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri
Elettronica = Elaborazione e trasmissione di. Grandezza Fisiche Trasduttori Segnali Elettrici (V,I)
Elettronica = Elaborazione e trasmissione di Segnale Potenza Grandezza Fisiche Trasduttori Segnali Elettrici (V,I) Informazione contenuta nella variazione rispetto ad un livello di riferimento Segnali
CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:
CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.
per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,
100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21
0 : costante dielettrica nel vuoto
0 : costante dielettrica nel vuoto Φ Flusso del campo elettrico E dφ E E da EdAcosθ Se la superficie è chiusa (superficie gaussiana) il flusso si calcola come integrale chiuso: Φ E dφ E E da v EdAcosθ
GENERAZIONE DI FUNZIONE LOGICA CON MULTIPLEXER
GENERAZIONE I UNZIONE LOGICA CON MULTIPLEXER Spesso è conveniente utilizzare un multiplexer come generatore di funzione logica al fine di limitare il numero di circuiti integrati che bisognerebbe, altrimenti,
Dispositivi e Tecnologie Elettroniche. Il transistore MOS
Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del
I circuiti logici: definizione delle funzioni logiche
I circuiti logici: definizione delle funzioni logiche Prof. lberto orghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimenti al testo: ppendice C, sezioni C.1
SISTEMI. impostazione SISTEMI. progettazione. Saper utilizzare modelli di circuiti combinatori
E1y - Presentazione del gruppo di lezioni E 1/3- Dove siamo? A SISTEMI impostazione componenti analogici C D E componenti digitali F SISTEMI progettazione E1y - Presentazione del gruppo di lezioni E 2/3-
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : [email protected] - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO
