Logica CMOS dinamica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Logica CMOS dinamica"

Transcript

1 Logica CMOS dinamica Ing. Ivan Blunno 21 aprile Introduzione In quessta dispensa verrà presentata la logica CMOS dinamica evidenziandone i principi di funzionamento, la tecnica di progetto i vantaggi e gli svantaggi rispetto alla logica CMOS statica. 2 Principio di funzionamento In figura 1 è mostrato lo schema di principio di un circuito in logica dinamica. In questo particolare esempio la funzione logica viene implementata da un blocco di logica composto da transistor NMOS (n-logic block). Il funzionamento dell equivalente circuito implementato con transistor PMOS è analogo. La logica dinamica si basa su due elementi fondamentali: la presenza di una capacità sull uscita e di un segnale di clock. In generale la capacità di carico non sarà un condensatore aggiunto appositamente, ma più semplicemente la capacità parassita della logica che segue il circuito in esame. Più precisamente si tratterà della capacità di gate del transistor MOS di ingresso del dispositivo successivo. Analizziamo ora il funzionamento del circuito di figura 1 mettendo in evidenza due fasi: quella di precarica e quella di valutazione (precharge e evaluation in inglese). = 0: PRECARICA. In questa fase il transistor NMOS è interdetto e pertanto non vi è alcun possibile cammino verso massa (qualunque sia la il comportamento del blocco n-logic. Il transistor PMOS, viceversa, è in conduzione. Il circuito si comporta pertanto come l equivalente di figura 2.a ed il condensatore si carica alla tensione di alimentazione. Durante tutta la fase di precarica Y = 1. = 1: VALUTAZIONE. Durante la fase di valutazione il PMOS è interdetto mentre il NMOS conduce. Il circuito si comporta come l equivalente di figura 2.b dove il blocco n-block è stato sostituito da un interruttore controllato dai segnali di input. Durante la fase di valutazione possono succedere due cose: 1

2 Y input n logic block Figura 1: Logica CMOS dinamica: schema di principio. Y Y a) b) Figura 2: Circuito equivalente durante la fase di a) precarica e b) valutazione. 2

3 Il blocco n-block è in conduzione (per effetto degli ingressi) e la capacità si scarica verso massa. In questo caso, trascorso il breve transitorio, si avrà Y = 0. Il blocco n-block è interdetto. In questo caso il nodo Y risulterà scollegato sia dall alimentazione che da massa e manterrà pertanto la carica accumulata durante la fase di precarica. Si avrà dunque Y = Logica dinamica tipo P Il caso in cui il blocco di logica fosse di tipo P, è assolutamente analogo. In questo caso però si avrebbe una fase di prescarica in corrispondenza del clock a valore 1, ed una fase di valutazione, in corrispondenza del clock a 0, dove il nodo di uscita verrebbe condizionalmente portato a valore logico alto dipendentemente dal valore degli ingressi. 3 Progetto della rete del n-block Abbiamo visto come il valore dell uscita Y dipende, nelle varie fasi, dal segnale (clock) e dalla rete interna al n-block pilotata dagli ingressi della porta logica. Questa rete coincide esattamente con il blocco di pull-down di una porta in logica CMOS statica e pertanto per il suo progetto si utilizzeranno le stesse tecniche viste per quei tipi di circuiti. In modo analogo nel caso di logica di tipo P la rete interna al p-block coinciderà con il blocco di pull-up di una porta logica CMOS statica. A scopo di esempio, supponiamo di voler progettare un circuito realizzante la seguente funzione logica: Y = A (B + C) + D E Si noti come, anche nel caso di logica CMOS dinamica, le funzioni che si possono realizzare sono solo funzioni negate (a meno di utilizzare un ulteriore inverter in cascata). Il risultato sarà quello mostraato in figura 3 dove è stato omesso il condensatore in quanto, essendo intrinsecamente presente in ogni circuito, non deve essere considerato in fase di progetto. È importante sottolineare che i segnali di ingresso devono stabilizzarsi durante la fase di precarica, perché eventuali variazioni durante la fase di valutazione potrebbero portare alla metastabilità o addirittura a dei valori inesatti di Y. Si supponga, ad esempio, che nel circuito di figura 3, A, B, C e D siano tutti posti a 0, mentre E sia posto a 1. Evidentemente, in questa condizione, ci si aspetterebbe una uscita Y = 1. Se però durante la fase di valutazione anche solo per un istante D passa ad 1, il condensatore comincia a scaricarsi perdendo presto la carica immagazzinata nella precedente fase di precarica e portando 3

4 Y D A E B C Figura 3: Ciurcuito che implementa la funzione Y = A (B + C) + D E. così l uscita Y a valore 0 o ad un valore indeterminato (metastabilità). Un altro problema deriva dal fatto che la capacità parassita è molto piccolo (nell ordine di pochi ff) e inoltre presenta inevitabilmente delle perdite. Per questa ragione, se il tempo che intercorre tra la fase di precarica e quella di valutazione è troppo lungo il valore di Y finirà sempre per essere nullo, a prescindere dal valore dei segnali di ingresso. 4 Charge sharing È il fenomento che si verifica quando, a seguito della chiusura di un interruttore, due capacità con tensione diverse vengono a trovarsi in parallelo. Il risultato è che le due capacità si porteranno ad un valore di tensione uguale ed intemedio tra i valori che avevano prima della chiusura dell interrutore. Per meglio comprendere questo fenomeno, analizziamolo riferendoci alla figura 4 Si ricordi che in un condensatore, capacità, quantità di carica immagazzinata e tensione sono legati dalla relazione Q = CV. Siano V i e V z i valori di tensione iniziale. Le quantità di carica immagazzinate nei due condensatori saranno allora 4

5 t = 0 V i C i C z V z Figura 4: Fenomeno del charge sharing. Q z = C z V z e Q i = C i V i Al momento della chiusura dell interrutore la quantità di carica totale sarà data dalla somma delle due quantità di carica Q T = Q z + Q i = C z V z + C i V i Inoltre i due condensatori si troveranno in parallelo, formando un unico condensatore di capacità equivalente C T = C z + C i La tensione dopo la chiusura dell interruttore sarà dunque V T = Q T C T = C ZV Z + C i V i C z + C i Supponiamo, a titolo di esempio, V i = 0 e V z = V DD Alla chiusura dell interrutore C z V T = C zv DD = V DD C z + C i C z + C i In pratica si ha un partitore capacitivo. In una porta logica dinamica il variare di un ingresso può portare in conduzione un transistor mettendo in parallelo al condensatore parassita di uscita, un altro condensatore, andando così ad abbassarne, anche notevolmente la tensione e rendendo irriconoscibile (o addirittura sbagliato) il valore logico dell uscita come mostrato in figura 5. 5

6 T 5V T 5V T? 0V 0V? a) b) c) Figura 5: Charge sharing in una porta logica dinamica (a), con interrutori equivalenti e T aperto (b) e con T chiuso (c). 5 Confronto tra logiche CMOS statiche e dinamiche L esigenza di utilizzare la logica dinamica nasce dal desiderio di ridurre l area necessaria all implementazione di una certa funzione logica. La logica CMOS statica è fortemente ridondante: per ogni segnale di ingresso è necessario inserire un transistor NMOS ed uno PMOS. La logica dinamica è invece decisamente più compatta. In questo secondo caso i transistor utilizzati sono solo la metà più 2 (i due pilotati dal clock). Evidentemente il vantaggio diventa tanto maggiore quanto più sono i segnali di ingresso impiegati. A fronte di questo evidente vantaggio c è però lo svantaggio di dover gestire e distribuire un segnale di clock. La fase di progetto inoltre viene a complicarsi notevolmente, dovendo essere affrontate problematiche di temporizzazione dei segnali di ingresso che, come già detto, non devono variare il loro valore durante la fase di valutazione. La convenienza di una dell altra famiglia logica dipenderà pertanto dalle applicazioni. 6 Connessione di porte logiche dinamiche Nei paragrafi precedenti è stato descritto il funzionamento delle logiche dinamiche in generale. In realtà, per potere completare l analisi di questa famiglia di circuiti è necessario analizzare anche l interconnessione tra blocchi di logica. A questo propossito si esamini l esempio di figura 6. Consideriamo il caso 6

7 Y1 Y2 IN1 Figura 6: Cascata di due celle di logica dinamica. semplice in cui i blocchi abbiano un solo ingresso. In particolare la seconda cella dipende solo dalla prima (anche se le conclusioni a cui arriveremo valgono per qualunque caso). Poiché i blocchi che realizzano le due celle sono composti solo di transistor NMOS, è evidente che, qualunnque sia la funzione che implementano, se l ingresso è a 1 logico l uscita dovrà essere, a regime, di zero logico. Analogamente se l ingresso è a 0 logico l uscita sarà pari a 1 logico (ovviamente, trantandosi di porte ad un solo ingresso che implementano funzioni invertenti, non è possibile ottenere altro che un inverter!). Il funzionamento, che per una porta sola isolata dal mondo esterno è già stato analizzato, in questo caso non è quello previsto. Infatti durante la fase di precarica entrambe le uscite (Y1 ed Y2) sono ad 1 logico. Quando poi si passa alla fase di valutazione, Y1 dovrebbe scaricarsi e diventare uno 0 mentre Y2 dovrebbe mantenere il suo valore di 1 logico. Quello che in realtà succedde è che all inizio della fase di valutazione Y1 è ancora ad 1 e pertanto porta in conduzione il n-logic block della seconda cella che comincerà pertanto a scaricare Y2. La scarica di Y2 continuerà fin tanto che Y1 non avrà raggiunto un valore sufficientemente prossimo allo 0. In generale potrebbe essere totale. In ogni caso si verifica esattamente ciò che nel paragrafo precedente avevamo detto essere proibito: gli ingressi di una porta cambiano di valore durante la fase di valutazione. Questo fenomeno si presenta a prescindere dalla funzione logica implementata dalla porta e dal numero di ingressi. La natura stessa della rete logica (implementata da NMOS) che conduce sicuramente quando tutti gli ingressi sono ad 1 (ed all inizio della fase di valutazione è sempre così) rende questo tipo di connessione in cascata non attuabile nei casi reali, rendendo necessario il ricorso ad alcune piccole varianti. 7

8 Y1 Z1 Y2 Z2 Y3 Z3 d1 d2 d3 Figura 7: Logica domino. 6.1 Logica domino Una prima possibile soluzione al problema visto nel paragrafo precedente consiste nell inserire un inverter all uscita di ogni stadio della cascata. Il risultato è che al termina della fase di precarica, tutte le uscite sono allo zero logico e non portando pertanto in conduzione lo stadio successivo fin tanto che la valutazione non sia terminata ed abbia determinato un 1 (che però a questo punto è corretto) sull uscita. Analizziamo allora l esempio di figura 7 dove d 1, d 2 ed 3 rappresentano i ritardi (in fase di valutazione) dei tre stadi di logica dinamica. Supponiamo che a regime l uscita Z 1 del primo stadio debba valere 1. Durante la fase di precarica tutti i nodi Y i sono ad 1 e di conseguenza tutti i nodi Z i sono a 0. Al tempo t = 0 inizia la fase di valutazione che però ha effetto solo sul primo stadio in quanto tutti quelli successivi hanno gli ingressi a 0 che interdicono il blocco NMOS. Dopo un tempo t = d 1 l uscita Z 1 sarà salita ad 1 ed anche il secondo stadio comincerà a scaricare il nodo Y 2. Stesso discroso può essere ripetuto al tempo t = d 1 + d 2 e t = d 1 + d 2 + d 3. In pratica, quello che succede, è che il termine della fase di valutazione di uno stadio fa partire (se necessario) la fase di valutazione dello stadio successivo. Si ottiene così una propagazione in cascata dei risultati proprio come nel gioco del domino (da cui il nome di questa particolare implementazione di logica dinamica). Sebbene il problema iniziale sia stato risolto, sono ancora presenti alcuni inconvenienti: Ogni porta ha bisogno di una inverter aggiuntivo (al costo di due transistor in più). Resta ancora il problema de charge sharing. Per risolvere il problema del charge sharing è possibile aggiungere un transistore PMOS di pull-up debole (vedi figura 8.a) cioè a basso guadagno che 8

9 Y Y inputs n logic block inputs n logic block a) b) Figura 8: Possibili soluzioni al problema del charge sharing. interviene a ripristinare la carica persa solo nel caso che l uscita debba rimanere a 1. Lo stesso transistor, proprio perché debole, non riuscirà a contrastare l azione della rete di pull-down nel caso questa cercasse di portare l uscita a 0. Alternativamente è possibile collegare il pmos debole all uscita dell inverter in modo che, nel momento in cui la rete di pull-down comincia a portare l ingresso dell inverter a livello basso, l uscita sale a 1 spegnendo il transistor di pull-up (figura 8.b). Il transistor così aggiunto permette inoltre di lavorare anche a frequenze più basse compensando le correnti di perdita. 6.2 Logica domino NP Un idea alternativa alla precedente è qulle mostrata in figura 9 dove le porte in logica N si alternano a quelle in logica P. In questo caso, al fine di sincronizzare tra di loro le fasi di precarica e prescarica, i blocchi in logica P avranno il clock negato. Il vantaggio di questo tipo di architettura è che si risparmia l inverter da interporre tra una porta e la successsiva, lo svantaggio è che bisognerà di stribuire due segnali di clock (il negato ed il non negato). 7 Logica a 2 fasi L ultima architettura di logica dinamica che viene presentata in questa dispensa è la logica a 2 fasi, il cui schema elettrico è mostrato in figura 10 nel caso di un solo ingresso. Ancora una volta si fa notare che i condensatori evidenziati esplicitamente nello schema elettrico sono in realtà condensatori parassiti. Esaminiamo il funzionamento di questo tipo di logica. 9

10 Y1 Y2 Y3 IN1 N logic P logic N logic Figura 9: Logica domino NP. Φ 1 Φ 1 Φ 2 Φ 2 T 1 N T 2 N logic logic L 1 L 2 Φ 1 Φ 2 Φ 1 Φ 2 Figura 10: Logica a 2 fasi: schema circuitale. 10

11 Φ Φ 1 2 Figura 11: Logica a 2 fasi:segnali di clock. φ 1 = 1. T 1 fa passare il dato mentre L 1 è in precarica. Il dato viene memorizzato nel condensatore. φ 1 = 0. T 1 si apre garantendo che l ingresso non cambi più. Contemporaneamente L 1 va in valutazione. φ 2 = 1. T 2 fa passare il dato mentre L 2 è in precarica. Il dato viene memorizzato nel condensatore. φ 2 = 0. T 2 si apre garantendo che l ingresso non cambi più. Contemporaneamente L 2 va in valutazione. È molto importante che le due fasi del clock (φ 1 e φ 2 ) non siano mai ad 1 contemporaneamente, come mostrato in figura 11 per evitare che gli ingressi di uno stadio possano cambiare valore durante la fase di valutazione. Ogni blocco comandato dalla fase φ 1 è preceduto e seguito da uno comandato dalla fase φ 2 e viceversa. 11

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005

Tecnologia CMOS. Ing. Ivan Blunno 21 aprile 2005 Tecnologia CMOS Ing. Ivan lunno 2 aprile 25 Introduzione In questa dispensa verranno presentati i circuiti CMOS (Complementary MOS). Nella prima parte verrà analizzato in dettaglio il funzionamento di

Dettagli

Logica cablata (wired logic)

Logica cablata (wired logic) Logica cablata (wired logic) Cosa succede quando si collegano in parallelo le uscite di più porte appartenenti alla stessa famiglia logica? Si realizza una ulteriore funzione logica tra le uscite Le porte

Dettagli

Pilotaggio high-side

Pilotaggio high-side Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio

Dettagli

Elettronica I Porte logiche CMOS

Elettronica I Porte logiche CMOS Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/ liberali Elettronica

Dettagli

{ v c 0 =A B. v c. t =B

{ v c 0 =A B. v c. t =B Circuiti RLC v c t=ae t / B con τ=rc e { v c0=ab v c t =B Diodo La corrente che attraversa un diodo quando questo è attivo è i=i s e v /nv T n ha un valore tra e. Dipende dalla struttura fisica del diodo.

Dettagli

Gli alimentatori stabilizzati

Gli alimentatori stabilizzati Gli alimentatori stabilizzati Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua ( cioè costante nel tempo), necessaria per poter alimentare un dispositivo elettronico

Dettagli

Elettronica dei Sistemi Digitali Registri di memoria CMOS e reti sequenziali

Elettronica dei Sistemi Digitali Registri di memoria CMOS e reti sequenziali Elettronica dei Sistemi igitali Registri di memoria CMOS e reti sequenziali Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 263 Crema e-mail: [email protected]

Dettagli

Un semplice multivibratore astabile si può realizzare con le porte logiche, come nel seguente circuito:

Un semplice multivibratore astabile si può realizzare con le porte logiche, come nel seguente circuito: Pagina 1 di 8 MULTIVIBRATORI Si dice multivibratore un circuito in grado di generare in uscita una forma d'onda di tipo rettangolare. Vi sono tre tipi di multivibratori. Multivibratore monostabile, multivibratore

Dettagli

4 STRUTTURE CMOS. 4.1 I componenti CMOS

4 STRUTTURE CMOS. 4.1 I componenti CMOS 4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di

Dettagli

II.3.1 Inverter a componenti discreti

II.3.1 Inverter a componenti discreti Esercitazione II.3 Caratteristiche elettriche dei circuiti logici II.3.1 Inverter a componenti discreti Costruire il circuito dell invertitore in logica DTL e verificarne il funzionamento. a) Posizionando

Dettagli

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007

Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007 ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere

Dettagli

MULTIVIBRATORI NE 555

MULTIVIBRATORI NE 555 MULTIVIBRATORI Si dice multivibratore un circuito in grado di generare in uscita una forma d'onda di tipo rettangolare. Vi sono tre tipi di multivibratori. Multivibratore monostabile, multivibratore bistabile,

Dettagli

Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per:

Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per: INTRODUZIONE AI CONTATORI Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per: o Conteggio di eventi o Divisione di frequenza o Temporizzazioni Principi

Dettagli

Porte logiche in tecnologia CMOS

Porte logiche in tecnologia CMOS Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.

Dettagli

Misure Elettriche ed Elettroniche Esercitazioni Lab - Circuiti con diodi e condensatori 1. Circuiti con diodi e condensatori

Misure Elettriche ed Elettroniche Esercitazioni Lab - Circuiti con diodi e condensatori 1. Circuiti con diodi e condensatori Esercitazioni Lab - Circuiti con diodi e condensatori 1 Circuiti con diodi e condensatori Esercitazioni Lab - Circuiti con diodi e condensatori 2 Circuito con diodo e condensatore Consideriamo un circuito

Dettagli

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS

Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica

Dettagli

TIMER 555. tensioni ci servono come tensionii di riferimento per i due comparatori interni.

TIMER 555. tensioni ci servono come tensionii di riferimento per i due comparatori interni. TIMER 555 Il timer è un circuito integrato complesso avente lo scopo di regolare per un tempo prestabilito determinati circuiti. In pratica il timer 555 è un temporizzatore. Nella seguente figura vediamo

Dettagli

Elettronica dei Sistemi Digitali Le porte logiche CMOS

Elettronica dei Sistemi Digitali Le porte logiche CMOS Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/

Dettagli

Lo schema a blocchi del circuito integrato Timer 555 è il seguente:

Lo schema a blocchi del circuito integrato Timer 555 è il seguente: Il timer 555 è un circuito integrato progettato allo scopo di fornire impulsi di durata prestabilita. In pratica il timer 555 è un temporizzatore. Lo schema a blocchi del circuito integrato Timer 555 è

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini

I.P.S.I.A. Di BOCCHIGLIERO Multivibratori astabili ---- Materia: Elettronica. prof. Ing. Zumpano Luigi. Catalano, Iacoi e Serafini I.P.S.I.A. Di BOHIGLIERO a.s. 2010/2011 classe III Materia: Elettronica Multivibratori astabili alunni atalano, Iacoi e Serafini prof. Ing. Zumpano Luigi Generalità Si definiscono multivibratori quei dispositivi

Dettagli

Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica

Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Porte Logiche Lucidi del Corso di Elettronica Digitale Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Porte logiche Una porta logica

Dettagli

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT

Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente

Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente Per potenze superiore alle decine di MVA ed a causa dell elevato costo dei GTO di più elevate prestazioni è spesso economicamente conveniente ricorrere all impiego di Tiristori. A differenza dei Transitor

Dettagli

Circuiti per l Elaborazione del Segnale: Capacità Commutate

Circuiti per l Elaborazione del Segnale: Capacità Commutate Circuiti per l Elaborazione del Segnale: Capacità Commutate Lucidi del Corso di Microelettronica Parte 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: [email protected] Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

I circuiti logici: definizione delle funzioni logiche

I circuiti logici: definizione delle funzioni logiche I circuiti logici: definizione delle funzioni logiche Prof. lberto orghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimenti al testo: ppendice C, sezioni C.1

Dettagli

Curva caratteristica del transistor

Curva caratteristica del transistor Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che

Dettagli

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24 Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della

Dettagli

Esame di Elettronica I 2º compitino 4 Febbraio

Esame di Elettronica I 2º compitino 4 Febbraio Esame di Elettronica I 2º compitino 4 Febbraio 2003 0870061666 Simulazione al calcolatore con PSpice Melzani Yari Matricola: 634009 Crema 12 febbraio 2003 Figura 1: Schema circuitale di una porta OR tracciato

Dettagli

Il protocollo RS Introduzione. 1.2 Lo Standard RS-232

Il protocollo RS Introduzione. 1.2 Lo Standard RS-232 1 Il protocollo RS232 1.1 Introduzione Come noto un dispositivo di interfaccia permette la comunicazione tra la struttura hardware di un calcolatore e uno o più dispositivi esterni. Uno degli obiettivi

Dettagli

I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice.

I convertitori c.a.-c.a. possono essere suddivisi in tre categorie: convertitori a controllo di fase, cicloconvertitori, convertitori a matrice. Tra i vari tipi di convertitori monostadio, i convertitori c.a.-c.a. sono quelli che presentano il minore interesse applicativo, a causa delle notevoli limitazioni per quanto concerne sia la qualità della

Dettagli

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici

Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Laboratorio di Architettura degli Elaboratori A.A. 2016/17 Circuiti Logici Per ogni lezione, sintetizzare i circuiti combinatori o sequenziali che soddisfino le specifiche date e quindi implementarli e

Dettagli

Circuiti sequenziali. Circuiti sequenziali e applicazioni

Circuiti sequenziali. Circuiti sequenziali e applicazioni Circuiti sequenziali Circuiti sequenziali e applicazioni Circuiti sequenziali Prima di poter parlare delle memorie è utile dare un accenno ai circuiti sequenziali. Per circuiti sequenziali intendiamo tutti

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Progettazione Analogica e Blocchi Base

Progettazione Analogica e Blocchi Base Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Blocchi base

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: I Transistor RLAZION DI TLCOMUNICAZIONI ITIS Vobarno Titolo: I Transistor Nome: Samuele Sandrini 4AT 05/10/14 Un transistor a giunzione bipolare (BJT Bipolar Junction Transistor) è formato da tre zone di semiconduttore

Dettagli

Circuiti sequenziali e latch

Circuiti sequenziali e latch Circuiti sequenziali e latch Prof. Alberto Borghese Dipartimento di Scienze dell Informazione [email protected] Università degli Studi di Milano A.A. 23-24 /27 Sommario Circuiti sequenziali Latch asincroni

Dettagli

Progetto di Contatori sincroni. Mariagiovanna Sami Corso di reti Logiche 8 Anno

Progetto di Contatori sincroni. Mariagiovanna Sami Corso di reti Logiche 8 Anno Progetto di Contatori sincroni Mariagiovanna Sami Corso di reti Logiche 8 Anno 08 Introduzione Per le reti sequenziali esistono metodologie di progettazione generali, che partendo da una specifica a parole

Dettagli

Memorie a semiconduttore

Memorie a semiconduttore Memorie a semiconduttore Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Memorie: classificazione Le

Dettagli

SISTEMI. impostazione SISTEMI. progettazione. Saper utilizzare modelli di circuiti combinatori

SISTEMI. impostazione SISTEMI. progettazione. Saper utilizzare modelli di circuiti combinatori E1y - Presentazione del gruppo di lezioni E 1/3- Dove siamo? A SISTEMI impostazione componenti analogici C D E componenti digitali F SISTEMI progettazione E1y - Presentazione del gruppo di lezioni E 2/3-

Dettagli

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale:

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Raddrizzatore a doppia semionda: caso ideale Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Questa particolare struttura di collegamento di quattro diodi

Dettagli

Convertitori Tensione / Frequenza. Author: Ing. Sebastiano Giannitto (ITIS M.BARTOLO PACHINO)

Convertitori Tensione / Frequenza. Author: Ing. Sebastiano Giannitto (ITIS M.BARTOLO PACHINO) Convertitori Tensione / Frequenza Author: Ing. Sebastiano Giannitto (ITIS M.BARTOLO PACHINO) I convertitori tensione-frequenza (VFC: voltage to frequency converter) sono circuiti elettronici che forniscono

Dettagli

METODI DI RISOLUZIONE DEI SEGNALI BLOCCANTI. Prof. Mario Angelo Giordano

METODI DI RISOLUZIONE DEI SEGNALI BLOCCANTI. Prof. Mario Angelo Giordano METODI DI RISOLUZIONE DEI SEGNALI BLOCCANTI Prof. Mario Angelo Giordano Ipotizziamo ora di considerare la sequenza costituita da due cilindri A e B, entrambi DE: A+/B+/B-/A- E ipotizziamo che tale sequenza

Dettagli

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7 Convertitori D/A Un convertitore D/A prende in ingresso un numero digitale (rappresentato da una stringa di 1 e 0) e lo converte in un valore analogico (tipicamente una tensione) proporzionale tramite

Dettagli

Esercizi di Elettronica Digitale Monostabile #1

Esercizi di Elettronica Digitale Monostabile #1 Esercizi di Elettronica Digitale Monostabile # M.Borgarino Università di Modena e Reggio Emilia Facoltà di ngegneria (0/09/006 Descrizione del circuito Lo schematico riportato nella seguente Figura rappresenta

Dettagli

TRASFORMATA DI LAPLACE

TRASFORMATA DI LAPLACE TRASFORMATA DI LAPLACE La Trasformata di Laplace è un operatore funzionale che stabilisce una corrispondenza biunivoca tra una funzione di variabile reale (tempo t), definita per t, e una funzione di variabile

Dettagli

4.13 Il circuito comparatore

4.13 Il circuito comparatore 4.13 Il circuito comparatore Il circuito comparatore è utile in tutti quei casi in cui si debba eseguire un controllo d ampiezza di tensioni continue; il dispositivo si realizza, generalmente, con un microamplificatore

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime AC, frequenza 50 Hz, valore efficace

Dettagli

Relazione di laboratorio di telecomunicazioni. 23/01/2014. Calcolare la Vc per ogni istante t (da t = 0 ms a t = 1 ms).

Relazione di laboratorio di telecomunicazioni. 23/01/2014. Calcolare la Vc per ogni istante t (da t = 0 ms a t = 1 ms). Relazione di laboratorio di telecomunicazioni. 23/01/2014 Titolo: Carica di un condensatore. Obiettivi: Calcolare Tau con la formula R x C. Calcolare la Vc per ogni istante t (da t = 0 ms a t = 1 ms).

Dettagli

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di Convertitore D/A Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di trasformare un dato digitale in una grandezza analogica, in generale una tensione. Naturalmente vi deve essere

Dettagli

Trasformatore reale monofase

Trasformatore reale monofase Macchine elettriche parte Trasformatore reale monofase ei paragrafi precedenti si è ricavato il circuito equivalente del trasformatore ideale, si è anche visto che la corrente di primario (corrente di

Dettagli

I.I.S.S. G. CIGNA MONDOVI

I.I.S.S. G. CIGNA MONDOVI I.I.S.S. G. CIGNA MONDOVI PROGRAMMAZIONE INDIVIDUALE ANNO SCOLASTICO 2016-2017 CLASSE QUARTA A TRIENNIO TECNICO-ELETTRICO MATERIA ELETTROTECNICA ED ELETTRONICA DOCENTE BONGIOVANNI DARIO MATTEO LIBRI DI

Dettagli

La memoria-gerarchia. Laboratorio di Informatica - Lezione 3 - parte I La memoria - La rappresentazione delle informazioni

La memoria-gerarchia. Laboratorio di Informatica - Lezione 3 - parte I La memoria - La rappresentazione delle informazioni La memoriaparametri di caratterizzazione Un dato dispositivo di memoria è caratterizzato da : velocità di accesso, misurata in base al tempo impiegato dal processore per accedere ad uno specificato indirizzo

Dettagli

Teoria dei circuiti reazionati

Teoria dei circuiti reazionati Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n. 23 - E - 5:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n. 23 - E - 5: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 23 - E - 5: Oscillatori a quarzo Astabili e multivibratori Elettronica II - Dante Del

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

M045 - ESAME DI STATO DI ISTITUTO PROFESSIONALE

M045 - ESAME DI STATO DI ISTITUTO PROFESSIONALE M045 - ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO Indirizzo: TECNICO DELLE INDUSTRIE ELETTRICHE Tema di: SISTEMI AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE Sessione d esame: 2013

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n. 29- F - 6: Sistemi di acquisizione

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n. 29- F - 6: Sistemi di acquisizione ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte F: Conversione A/D e D/A Lezione n. 29- F - 6: Sistemi di acquisizione Elettronica II - Dante Del Corso - Gruppo F.b - 6 n. 1-14/11/97

Dettagli

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO 1 CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene indicato

Dettagli

Regolatori di tensione dissipativi. Regolatori serie. Schema elettrico. Controllo della tensione d uscita Politecnico di Torino 1

Regolatori di tensione dissipativi. Regolatori serie. Schema elettrico. Controllo della tensione d uscita Politecnico di Torino 1 Regolatori di tensione dissipativi 1 Schema elettrico Controllo della tensione d uscita 2 2003 Politecnico di Torino 1 Schema elettrico 3 Schema di principio I regolatori serie sono composti da un elemento

Dettagli

Progetto di un Interruttore a Combinazione

Progetto di un Interruttore a Combinazione Università di Lecce Diploma Universitario in Ingegneria Informatica Corso di Elettronica II Studente Angelo D Agnano matr. 9N/63 Progetto di un Interruttore a Combinazione Scopo del circuito proposto è

Dettagli

Circuito logico AND / AND Gate

Circuito logico AND / AND Gate Circuito logico AND / AND Gate Introduzione Lo scopo del progetto è creare un circuito elettrico che rappresenti la tabella di verità della porta logica AND. Il circuito logico preso in analisi restituisce

Dettagli

Alimentatore con uscita variabile

Alimentatore con uscita variabile D N400 LM7 SW F T 5 - + 4 D4 D + C 00uF VI GND VO R 0 R K D N400 + C uf A 4 8 0:8 BRIDGE R4,8K + C 0uF R,K V Versione del 6 ottobre 006 Alimentatore con uscita variabile Vogliamo progettare un alimentatore

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 25

Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 25 Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 25 Esercizi svolti Es.. Si progetti in dettaglio il circuito che, dati quattro registri sorgente Si e quattro registri destinazione

Dettagli

1N4001 LM317 VI GND. + C1 2200uF. + C2 10uF

1N4001 LM317 VI GND. + C1 2200uF. + C2 10uF Alimentatore con uscita variabile rev. del /06/008 pagina /0 D N400 LM7 SW F T 5 - + 4 D4 D + C 00uF VI GND VO 0 K D N400 + C uf A 4 8 0:8 BIDGE 4,8K + C 0uF,K V Alimentatore con uscita variabile Vogliamo

Dettagli

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq Appunti di ELETTONIA lassi QUINTE Integratori e Derivatori attivi:.d.t., diagrammi di Bode, risposte nel tempo A.S. 999-000 - martedì 7 dicembre 999 Pagina n. 53..d.T. con uno EO nell'origine ed un POLO

Dettagli

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1

Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1 Regolatori di tensione dissipativi 1 Schema elettrico Stabilità LDO 2 2003 Politecnico di Torino 1 Schema elettrico 3 Efficienza La tensione di headroom crea dei problemi: Alta potenza dissipata (necessita

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali Nome: Samuele Sandrini 4AT 7/3/5 Gli oscillatori sinusoidali sono circuiti che producono un segnale sinusoidale di ampiezza e

Dettagli

Collaudo statico di un ADC

Collaudo statico di un ADC Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni

Dettagli

Componenti a Semiconduttore

Componenti a Semiconduttore Componenti a Semiconduttore I principali componenti elettronici si basano su semiconduttori (silicio o germani) che hanno subito il trattamento del drogaggio. In tal caso si parla di semiconduttori di

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013 I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte

Dettagli

Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità

Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità Comparatori Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold Lucidi del Corso di Microelettronica Parte 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio

Dettagli

Le modulazioni impulsive

Le modulazioni impulsive Le modulazioni impulsive a cura di Francesco Galgani (www.galgani.it) Indice 1 Introduzione 2 2 La modulazione PAM 3 2.1 Cenni teorici....................................... 3 2.2 Simulazione con il computer

Dettagli

a.a. 2015/2016 Docente: Stefano Bifaretti

a.a. 2015/2016 Docente: Stefano Bifaretti a.a. 2015/2016 Docente: Stefano Bifaretti email: [email protected] Controllo ad anello aperto Il filtro LC è necessario per ridurre le ondulazioni di corrente e di tensione ed è dimensionato in

Dettagli

2 Alimentazione. +Vdc. Alimentazione 1 IGBT1 GND1. Alimentazione 2 IGBT2 GND2. -Vdc. Fig.1 - Alimentazione corretta degli switchs di uno stesso ramo

2 Alimentazione. +Vdc. Alimentazione 1 IGBT1 GND1. Alimentazione 2 IGBT2 GND2. -Vdc. Fig.1 - Alimentazione corretta degli switchs di uno stesso ramo 2 Alimentazione In un convertitore di potenza l alimentazione rappresenta un elemento fondamentale di tutto il progetto. L alimentatore deve essere in grado di fornire il livello di tensione e la corrente

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n F - 5: Circuiti di Sample-Hold

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n F - 5: Circuiti di Sample-Hold ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte F: Conversione A/D e D/A Lezione n. 28 - F - 5: Circuiti di Sample-Hold Riferimenti al testo Millman-Grabel: Cap. 16: Signal conditioning

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime C, frequenza 50 Hz, valore efficace

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : [email protected] - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

In elettronica un filtro elettronico è un sistema o dispositivo che realizza Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.

Dettagli

I Circuiti combinatori: LOGISIM

I Circuiti combinatori: LOGISIM 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY I Circuiti combinatori: LOGISIM Prof. G. Ciaschetti 1. Le porte logiche Un circuito combinatorio (o sistema combinatorio o rete combinatoria) è un circuito elettrico,

Dettagli

Circuiti sincroni Circuiti sequenziali: i bistabili

Circuiti sincroni Circuiti sequenziali: i bistabili Architettura degli Elaboratori e delle Reti Lezione 8 Circuiti sincroni Circuiti sequenziali: i bistabili Proff. A. Borghese, F. Pedersini ipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Esercitazione 2 I Flip Flop 1. ual è la differenza tra un latch asincrono e un Flip Flop? a. Il latch è abilitato da un segnale di clock b. Il latch ha gli ingressi asincroni perché questi ultimi controllano

Dettagli