Progettazione Analogica e Blocchi Base
|
|
|
- Giuseppa Gianni
- 9 anni fa
- Visualizzazioni
Transcript
1 Progettazione Analogica e Blocchi Base Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
2 Blocchi base Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
3 Blocchi Base: Specchio di Corrente Lo specchio di corrente è un blocco elementare utilizzato per copiare una corrente da un punto all altro del circuito (distribuire una corrente di polarizzazione) o come carica attivo di amplificatori. La corrente in M1 è uguale alla corrente in M2 perché i MOS sono in saturazione ed hanno la stessa tensione di gate. Q2 DEVE essere in saturazione quindi la tensione di uscita (Vout) deve essere: Vout > Veff2
4 Blocchi Base: Specchi di Corrente Il parametro più importante per giudicare uno specchio è la resistenza di uscita, ossia quanto la corrente d uscita rimane stabile ed uguale a quella di ingresso al variare della tensione di uscita. v gs2 =0 R out =r ds2 La resistenza d uscita di uno specchio semplice è limitata dall effetto di modulazione della lunghezza di canale. 1/g m1 r ds2 La resistenza d uscita coincide con la resistenza r ds di Q2. R out =r ds2
5 Blocchi Base: Specchio di Corrente Per i discorsi fatti sulle tecniche di layout: se si vogliono ottenere correnti d uscita in un qualsiasi rapporto con la corrente di ingresso: I OUT = K I IN = N/M I IN Si utilizzano N+M transistor tutti uguali e se ne mettono M in parallelo in ingresso e N in parallelo in uscita. Infatti se volessi facessi semplicemente W 2 =NW 1 e L 2 =NL 1 l effetto delle variazioni effettive delle dimensioni (dimensioni efficaci) avrebbe risultati diversi su M1 e M2. W L eff W 2 L W L NW 1 ML W L M W eff 1 N L
6 Specchio di corrente: rapporti I IN I OUT =I Oj =N I IN I Oj N N correnti in uscita uguali a quella in ingresso si sommano I IN =I in,j =MI in,j I in,j M I OUT =I in,j =I IN /M La corrente in ingresso si divide in M correnti uguali, una sola di queste è copiata in uscita
7 Blocchi Base: Specchio di Corrente Per realizzare rapporti molto elevati si possono usare M transistor in serie in ingresso e N in parallelo in uscita, in questo caso: I OUT =N*M I IN Così posso realizzare un rapporto pari a 16 con soli 8 transistor anziché 17. I IN Equivalente ad un solo MOS con L1=ML2 M I Oj I OUT =I Oj =N I Oj =N(M I IN ) N
8 Specchio di Corrente Cascode Obiettivo: aumentare la resistenza di uscita dello specchio semplice. Sfrutta il fatto che il transistor Q4 mantiene il drain Q2 ad una tensione poco variabile (isola il drain di Q2 dal nodo di uscita). Resistenza di uscita: Rout=r ds4 *(1+r ds2 g m4 ) Controindicazione: aumenta la tensione minima che deve essere presente in uscita: Vmin=2(Vgs-V Tn )+Vtn = 2V eff +V Tn
9 Tensione di Alimentazione L uso di cofigurazioni cascode è limitato dalle tensioni di alimentazione: con lo scaling dei processi CMOS anche le tensioni di alimentazioni sono diminuite (3.3V, 1.8V, 1.2V). Con basse tensioni di alimentazioni è impossibile riuscire ad impilare troppi transistor l uno sull altra mantenendoli tutti in saturazione. Per questo motivo si passa dalle configurazioni cascode alle folded-cascode (cascode ripiegato). Un altro problema è legato alla tensione minima che deve essere presente all uscita di uno specchio cascode: essa è molto maggiore che nel caso di uno specchio semplice. E necessario allora ricorrere all uso di specchi cascode modificati in modo che la loro tensione minima di uscita sia molto minore (specchi wide-swing).
10 Specchio Wide-Swing Cascode Si ricava che, perché Q2 (nel caso che Ibias=Iin) resti in saturazione deve essere: Vout>(n+1)Veff2 Se si sceglie n=1 Vout>2 Veff2 Tale valore è significativamente minore che nel caso di un cascode classico. Se Iin non è costante si sceglierà per Ibias il valore massimo assunto dalla Iin. La resistenza di uscita resta quella di un cascode.
11 Esempio: Wide-Swing per Due Stadi
12 Altissima Resistenza d Uscita Per aumentare ulteriormente la resistenza dello specchio si può introdurre un ulteriore stadio di amplificazione. In questo caso: R out =g m1 r ds1 r ds2 (1+A)
13 Implementazione L implementazione pratica dello specchio ad altissima impedenza di uscita prevede di realizzare l amplificatore A per mezzo di un amplificatore singolo stadio a source comune (Q3 e IB1). In questo caso: Rout=(g m1 g m3 r ds1 r ds2 r ds3 )/2
14 Altissima Resistenza & Wide-Swing Per unire l altissima impedenza ed il wide-swing si usa il circuito in Figura. V out >2V eff
15 Amplificatore a Source Comune Amplificatore con guadagno in tensione e carico attivo: M3 M2 V OUT Carico Guadagno: Av= -g m1 (r ds1 //r ds2 ) Resistenza di ingresso infinita V IN M1 Rout= (r ds1 //r ds2 ) Amplificatore
16 Amplificatore Source Comune Modello a piccoli segnali per il calcolo del guadagno.
17 Amplificatore a Drain Comune Guadagno in tensione prossimo all unità (è usato come buffer visto che ha un guadagno in corrente, oppure come level shifter ossia traslatore di livello). E chiamato anche source follower perché riporta sul drain le variazioni di tensione del source. I B M3 V IN Amplificatore M1 Guadagno: M2 V OUT Carico Av=gm1/(gm1+gs1+gds1+gds2) Essendo in genere gds1 e gds2 molto minori di gm1 in pratica l errore nel guadagno (che si vorrebbe unitario) è introdotto da gs1 che modella l effetto body. Si può eliminare mettendo Q1 in una well e cortocircuitando S e B ma ciò è impossibile in un processo nwell.
Amplificatori Integrati
Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB OTA L amplificatore operazionale
Amplificatori Integrati
Amplificatori Integrati Lucidi del Corso di Microelettronica Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) OTA L amplificatore operazionale
Amplificatori Integrati
Amplificatori Integrati Lucidi del Corso di Circuiti Integrati Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) OTA L amplificatore operazionale
Amplificatori elementari con carico attivo MOSFET E connesso a diodo
Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo
Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39
Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6
Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS
Elettronica Inverter con transistore MOS; tecnologia CMOS e porte logiche combinatorie CMOS Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica
Elettronica dei Sistemi Digitali Le porte logiche CMOS
Elettronica dei Sistemi Digitali Le porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET
Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =
MOSFET o semplicemente MOS
MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:
Elettronica I Porte logiche CMOS
Elettronica I Porte logiche CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/ liberali Elettronica
Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7
Convertitori D/A Un convertitore D/A prende in ingresso un numero digitale (rappresentato da una stringa di 1 e 0) e lo converte in un valore analogico (tipicamente una tensione) proporzionale tramite
Stadi Amplificatori di Base
Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro
Struttura del condensatore MOS
Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n
Coppia differenziale MOS con carico passivo
Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale
Regolatori di tensione dissipativi. Regolatori LDO. Schema elettrico. Stabilità LDO Politecnico di Torino 1
Regolatori di tensione dissipativi 1 Schema elettrico Stabilità LDO 2 2003 Politecnico di Torino 1 Schema elettrico 3 Efficienza La tensione di headroom crea dei problemi: Alta potenza dissipata (necessita
Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1
Indice Cap. 1 Il progetto dei sistemi elettronici pag. 1 1.1 Oggetto dello studio 1 1.2 Concezione, progetto e produzione del sistema elettronico 5 1.3 Il circuito di interfaccia di ingresso 13 1.4 Il
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte A: Transistori in commutazione Lezione n. 3 - A - 3:
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte A: Transistori in commutazione Lezione n. 3 - A - 3: Transistori MOS in commutazione Elettronica II - Dante Del Corso - Gruppo A - 8 n.
14 Giugno 2006 Prova scritta di Circuiti Integrati Analogici (tempo a disposizione 90 min)
14 Giugno 2006 M3 M4 M2 M1 R Nel circuito in figura determinare: 1) trascurando l effetto di modulazione della lunghezza di canale, il legame tra la corrente che scorre nella resistenza R e i parametri
Microelettronica Indice generale
Microelettronica Indice generale Prefazione Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XV XVII XVIII Capitolo 1 Introduzione all elettronica 1 1.1
Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza
Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza C. Del Turco 2007 Indice : Cap. 1 I componenti di base (12) 1.1 Quali sono i componenti di base (12) 1.2 I resistori (12)
Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento
AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE
configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo
Transistori MOS. Ing. Ivan Blunno 21 aprile 2005
Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento
AMPLIFICATORI OPERAZIONALI
AMPLIFICATORI OPERAZIONALI Il termine di amplificatore operazionale deriva dal fatto che, originariamente, tale dispositivo veniva usato nei calcolatori analogici per svolgere operazioni matematiche (come
CAPITOLO 7 DISPOSITIVI INTEGRATI ANALOGICI
139 CAPTOLO 7 DSPOSTV NTEGRAT ANALOGC Negli amplificatori la necessità di ottenere elevate impedenze ed elevati guadagni impone spesso l utilizzo di resistenze di valore molto alto; inoltre l accoppiamento
Porte Logiche. Lucidi del Corso di Elettronica Digitale. Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica
Porte Logiche Lucidi del Corso di Elettronica Digitale Modulo 2 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Porte logiche Una porta logica
Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009
Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico
Elettronica digitale
Elettronica digitale Porte logiche a rapporto e a pass transistor Andrea Bevilacqua UNIVERSITÀ DI PADOVA a.a 2008/09 Elettronica digitale p. 1/22 Introduzione In questa lezione analizzeremo modalità di
IL MOSFET.
IL MOSFET Il MOSFET è certamente il più comune transistor a effetto di campo sia nei circuiti digitali che in quelli analogici. Il MOSFET è composto da un substrato di materiale semiconduttore di tipo
CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590
CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una
Amplificatori in classe A con accoppiamento capacitivo
Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,
Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS
Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]
Amplificatori a FET. Amplificatore a source comune (C.S.) Vdd. Rd R1. C2 out C Rg in. out
Amplificatori a FET Per realizzare un amplificatore a FET, il dispositivo va polarizzato regione attiva (cioè nella regione a corrente costante, detta anche zona di saturazione della corrente). Le reti
Simulazione Spice. Simulazione Circuitale Spice. Netlist. Netlist
Simulazione Spice Simulazione Circuitale Spice Lucidi del Corso di Elettronica Digitale Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB)
4 STRUTTURE CMOS. 4.1 I componenti CMOS
4.1 4 STRUTTURE CMOS 4.1 I componenti CMOS Un componente MOS (Metal-Oxide-Silicon) transistor è realizzato sovrapponendo vari strati di materiale conduttore, isolante, semiconduttore su un cristallo di
Laboratorio di Strumentazione Elettronica
Laboratorio di Strumentazione Elettronica Proposte di attività per il Progetto Elettronico per gli studenti del Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni Pixel monolitici in tecnologia
Amplificatori a Transistori con controreazione
Amplificatori a Transistori con controreazione Esempi di amplificatori inertenti (CS e CE) con controreazione. G. Martines 1 G. Martines 2 Modello equialente a piccolo segnale e guadagno di tensione be
MOS Field-Effect Transistors (MOSFETs)
MOS Field-Effect Transistors (MOSFETs) A. Ranieri Laboratorio di Elettronica A.A. 2009-2010 1 Struttura fisica di un transistore NMOS ad accrescimento. Tipicamente L = 0.1 a 3 m, W = 0.2 a 100 m e lo spessore
L amplificatore operazionale
L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile
Indice generale. Elettronica dello stato solido e dispositivi. Capitolo 1 Introduzione all elettronica 1
Prefazione Autori e Curatori Rigraziamenti dell Editore Guida alla lettura Parte I Elettronica dello stato solido e dispositivi XII XV XVI XVII Capitolo 1 Introduzione all elettronica 1 1.1 Breve storia
Seduta in Laboratorio
Seduta in Laboratorio Corso di misure meccaniche e termiche A.A. 2016/2017 Introduzione Slides a cura del dott. R. Graziola e del dott. M. Hueller Multimetro digitale Agilent Multimetro digitale Agilent
PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M
PROVA SCRITTA DI CIRCUITI ELETTRONICI ELEMENTARI (D.M. 270/04) 27/01/2017 [A] PROVA SCRITTA DI FONDAMENTI DI ELETTRONICA (D.M. 270/04) 27/01/2017 [B] ESERCIZIO 1 [A] [B] DATI: β = 100; k = 4 ma/v 2 ; VTH
Circuiti per l Elaborazione del Segnale: Capacità Commutate
Circuiti per l Elaborazione del Segnale: Capacità Commutate Lucidi del Corso di Microelettronica Parte 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica
Banda passante di un amplificatore
Banda passante di un amplificatore Amplificatore ideale da 40 db con cella RC passa basso e passa alto. La cella passa basso determina la fequenza di taglio superiore fh, mentre la cella passa alto determina
Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale
Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica
Esercitazione n 2: Circuiti di polarizzazione (2/2)
Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2
AMPLIFICATORE DIFFERENZIALE
AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso
Generatori di tensione
Generatori di tensione Laboratorio di Elettronica B Anno accademico 2007-2008 In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di
Il TRANSISTOR. Il primo transistor della storia
Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,
Elettronica Amplificatore operazionale ideale; retroazione; stabilità
Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica Amplificatore operazionale
Indice. 1. Fisica dei semiconduttori La giunzione pn...49
i Indice 1. Fisica dei semiconduttori...1 1.1 La carica elettrica...1 1.2 Tensione...2 1.3 Corrente...5 1.4 Legge di Ohm...6 1.5 Isolanti e conduttori...12 1.6 Semiconduttori...15 1.7 Elettroni nei semiconduttori...18
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici
Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.
Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore risulta fortemente influenzata: dal tipo di sorgente primaria di alimentazione;
Schemi e caratteristiche dei principali amplificatori a BJT
Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n. 29- F - 6: Sistemi di acquisizione
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte F: Conversione A/D e D/A Lezione n. 29- F - 6: Sistemi di acquisizione Elettronica II - Dante Del Corso - Gruppo F.b - 6 n. 1-14/11/97
Reti Logiche Combinatorie
Reti Logiche Combinatorie Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Logica combinatoria Un blocco di logica
Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: Pilotaggio low-side con MOS. Pilotaggio low-side con BJT
Interruttori allo stato solido 1 Questa parte tratta le problematiche del pilotaggio low-side di carichi di potenza: con MOS con BJT Velocità di commutazione MOS Velocità di commutazione BJT 2 2003 Politecnico
Michele Scarpiniti. L'Amplificatore Operazionale
Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE
Porte logiche in tecnologia CMOS
Porte logiche in tecnologia CMOS Transistore MOS = sovrapposizione di strati di materiale con proprietà elettriche diverse tra loro (conduttore, isolante, semiconduttore) organizzati in strutture particolari.
Laboratorio di Progettazione Elettronica Esercitazione 1
Laboratorio di Progettazione Elettronica Esercitazione 1 Esercizio 1: Progettare un amplificatore operazionale in configurazione invertente come rappresentato in Figura 1. Utilizzare l ampificatore operazionale
INVERTITORE RESISTOR-TRANSISTOR LOGIC (RTL)
INERTITORE RESISTOR-TRANSISTOR LOGIC (RTL) FIG. 1. Resistor-Transistor Logic (RTL) inverter. ediamo un esempio di realizzazione di un invertitore (Figura 1). Assumiamo inizialmente che il fan-out dell
Transistor a giunzione bipolare
Transistor In elettronica, il transistor a collettore comune è una configurazione del transistor a giunzione bipolare usata comunemente come buffer di tensione. In tale dispositivo il nodo di collettore
3.1 Verifica qualitativa del funzionamento di un FET
Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la
Elettronica per le telecomunicazioni
POLITECNICO DI TORINO Elettronica per le telecomunicazioni Formulario Anno Accademico 2009/200 Filtri Filtri del primo ordine Passa basso R 2 C 2 R H(s) = R 2 H(0) = R 2 R sr 2 C 2 R f p = φ = 0 90 2πR
OSCILLATORE A PONTE DI WIEN
Istituto Professionale di Stato per l Industria e l Artigianato MOETTO Via Apollonio n BESCIA OSCILLATOE A PONTE DI WIEN Gruppo di lavoro : UDELLI ELIO VASSALINI GIUSEPPE Classe 5AI TIEE corso per Tecnici
Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano
Lezione 2: Amplificatori operazionali Prof. Mario Angelo Giordano L'amplificatore operazionale come circuito integrato è uno dei circuiti lineari maggiormente usati. L'amplificatore operazionale è un amplificatore
5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a
5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale
I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013
I.T.I.. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 03/4 OGNOME E NOME Data: 7//03 Quesito ) (50%) Dato il circuito qui a fianco che rappresenta un oscillatore sinusoidale a ponte
Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +
Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore
Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso Consumo
Università degli Studi di Padova Facoltà di Ingegneria Corso di Laurea in Ingegneria Dell Informazione Tesi di Laurea Triennale Studio e Simulazione di un Amplificatore Operazionale CMOS di Miller a Basso
Circuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/2007
ircuiti statici, dinamici e circuiti sequenziali. Esercizio A 15/07/007 Il circuito di figura è statico o dinamico? Illustrare la funzione del transistore TR Il transistor TR ha il compito di mantenere
A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA
A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA UNITA DI APPRENDIMENTO 1: RETI ELETTRICHE IN DC E AC Essere capace di applicare i metodi di analisi e di risoluzione riferiti alle grandezze
Comparatori. Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold. Comparatori: Eliminazione Offset. Comparatori: Velocità
Comparatori Circuiti per l Elaborazione del Segnale: Comparatori e Sample&Hold Lucidi del Corso di Microelettronica Parte 5 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio
9.Generatori di tensione
9.Generatori di tensione In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di riferimento precise. Mostriamo alcuni metodi per ottenere
A.R.I. - Sezione di Parma. Corso di preparazione esame patente radioamatore Semiconduttori. Carlo Vignali, I4VIL
A.R.I. - Sezione di Parma Corso di preparazione esame patente radioamatore 2017 Semiconduttori Carlo Vignali, I4VIL SEMICONDUTTORI Un semiconduttore è un materiale che ha un apprezzabile conducibilità
Elettronica I Amplificatore operazionale ideale; retroazione; stabilità
Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
Effetti della reazione sui parametri
Effetti della reazione sui parametri Analizziamo come la reazione interviene sui parametri dello amplificatore complessivo, se questo è realizzato con un Amplificatore Operazionale reazionato. A d R 1
Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi
Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi È dato un segnale analogico avente banda 2 khz e dinamica compresa tra -2 V e 2V. Tale segnale deve essere convertito in segnale digitale da un
Lezione A3 - DDC
Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.3 Punto di funzionamento, guadagno e banda distorsioni, rumore, 1 Contenuto dell unità A Lezione A3 Informazioni
FILTRI in lavorazione. 1
FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.
Curva caratteristica del transistor
Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che
In elettronica un filtro elettronico è un sistema o dispositivo che realizza
Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.
Il Sistema Metallo Ossido Semiconduttore (MOS)
Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore
Pilotaggio high-side
Interruttori allo stato solido Introduzione Il pilotaggio high-side è più difficile da realizzare del low-side in quanto nel secondo un capo dell interruttore è a massa Non sempre è possibile il pilotaggio
