Effetti della reazione sui parametri
|
|
|
- Romeo Spada
- 8 anni fa
- Visualizzazioni
Transcript
1 Effetti della reazione sui parametri Analizziamo come la reazione interviene sui parametri dello amplificatore complessivo, se questo è realizzato con un Amplificatore Operazionale reazionato. A d R 1 R I V E Ar, Ri, Ru Il guadagno Ar dipende solo dal rapporto / La reazione determina una stabilizzazione del guadagno Resistenza di ingresso Ri Il morsetto di ingresso dell amplificatore complessivo coincide con ul morsetto di ingresso dell Operazionale; con l approssimazione di Amplificatore Operazionale ideale, nel morsetto di ingresso non scorre corrente, quindi: Ri. Resistenza di uscita Ru la frazione di tensione di uscita riportata all ingresso è determinata dal partitore /, e non dipende dal carico, quindi: Ru = 0 Lezione A3, slide 17
2 Test lezione A3 Quali sono le caratteristiche di un amplificatore operazionale ideale? Quanto vale la tensione differenziale di ingresso di un operazionale (ideale)? Per quale motivo l impedenza di ingresso di un amplificatore di tensione deve essere alta? 18 Perché la reazione negativa abbassa la resistenza di uscita di un amplificatore di tensione? 19 Dove è utile un amplificatore con guadagno di tensione unitario Cosa è una massa virtuale? Come riconoscere un amplificatore invertente da uno non invertente? Nella risoluzione di una rete elettrica con amplificatori operazionali, quale operazione conviene eseguire per prima? 48 Come si calcola l uscita complessiva in presenza di più ingressi? 56 Una catena formata da 5 amplificatori di tensione noninvertenti può essere ricondotta a un doppio bipolo con 2/3/4 parametri? Come si può ottenere un amplificatore di tensione invertente con elevata impedenza di ingresso? , 32 Lezione A3, slide 69
3 Circuito con più operazionali Circuito semplificato A1 R 6 V 1 R 5 R 4 R 10 A2 Primo amplificatore (A1) Configurazione di amplificatore di tensione non invertente Vu1 = V1(R4/01) Secondo amplificatore Configurazione di amplificatore di tensione invertente (in realtà è di transresistenza, la tensione di ingresso viene trasformata in corrente da R5, e questa stessa corrente circolando in R6 determina la tensione di uscita Vu = Vi2 R6/R5 Funzione di trasferimento complessiva Vu = V1 (R4/0 1) R6 / R5 Lezione A3, slide 68
4 Calcolo complessivo Per analizzare un circuito con più ingressi occorre Separare gli ingressi Trasformate la rete in una catena di amplificatori Analizzare separatamente ciascun amplificatore con un solo ingresso Combinare i risultati. R 6 V 1 R 4 R 1 V 2 R 3 R5 R 7 R 8 R 6 V1 1 R3 V2 R7 R6 V E //R4 2 Lezione A3, slide 62
5 Ingresso V2 Le resistenze e R4 vanno in parallelo tra morsetto invertente e massa Le resistenze R3 e R7 formano un partitore dalla V2 al morsetto noninvertente R 6 R 4 V 2 R 3 R 7 L amplificatore è in una configurazione di amplificatore di tensione noninvertente, con un partitore all ingresso R3 V2 R7 Vd R6 VE //R4 VU2 Lezione A3, slide 59
6 Ingresso V1 Le resistenze R3 e R7 vanno in parallelo tra di loro, tra morsetto noninvertente e massa in R3//R7 non circola corrente, la caduta di tensione è 0 possono essere sostituite da un Corto Circuito La resistenza R4 è tra un nodo a potenziale 0 (massa virtuale) e massa non è mai percorsa da corrente e può essere rimossa. R 6 V 1 R 4 R 3 R 7 Rimane un amplificatore invertente, con guadagno R6/ R 6 V1 1 Lezione A3, slide 58
7 Componenti non rilevanti È collegata tra due generatori di tensione; la corrente che scorre in dipende solo da V1 e V2, non dal resto del circuito. Può essere rimossa (sostituita con Circuito Aperto). R5 R8 Inserita in serie a un ingresso di Amplificatore Operazionale, quindi percorsa da corrente nulla. La caduta di tensone su R5 è sempre = 0. Può essere sostituita con un Corto Circuito. Collegata in parallelo a un generatore di tensione (Ad Vd, in uscita all operazionale). Può essere rimossa. R 6 V 1 R 1 R 4 V 2 R 3 R5 R 7 R 8 R 6 V 1 R 4 V 2 R 3 R 7 Lezione A3, slide 56
8 Esempio 2 Resistenze tra nodi alla stessa tensione I = V/R: non scorre corrente, possono essere sostituite con circuiti aperti Resistenze in rami a corrente nulla V = I R: non cade tensione, possono essere sostituite con cortocircuiti. Queste variazioni modificano la potenza dissipata non modificano correnti e tensioni nella altre parti della rete Lezione A3, slide 50
9 Esempio 1 Resistenze in parallelo a generatori di tensione non modificano la tensione ai capi del generatore. possono essere sostituite con circuiti aperti. Resistenze in serie a generatori di corrente non modificano la corrente nella maglia. possono essere sostituite con cortocircuiti. Vale anche per le Z! Lezione A3, slide 49
10 Reazione positiva In tutti gli esempi precedenti la reazione è sempre fornita da un elemento inserito tra morsetto di uscita e morsetto di ingresso (in questi casi una resistenza). Questa reazione negativa (o controreazione) tende a rendere minime le variazioni di tensione all ingresso, e ha l effetto di stabilizzare il punto di funzionamento e in generale i parametri dell amplificatore. VI Vd VU In questo schema la resistenza di reazione è collegata tra uscita e il morsetto di ingresso: la reazione è positiva, e ha l effetto di esaltare le variazioni applicate all ingresso. I circuiti con reazione positiva non sono amplificatori: in questo caso si tratta di un comparatore di soglia con isteresi (analizzato all inizio della parte sui moduli digitali). Lezione A3, slide 46
11 Amplificatore di tensione invertente Il circuito ha un elemento ( ) collegato tra uscita e morsetto : è presente reazione negativa le grandezze di ingresso e uscita sono tensioni è un amplificatore di tensione L ingresso è sul morsetto : è un amplificatore invertente L ovale tratteggiato evidenzia un circuito con lo stesso schema, ma disegno differente Lezione A3, slide 45
12 Amplificatore di tensione noninvertente Il circuito ha un elemento ( ) collegato tra uscita e morsetto : è presente reazione negativa Le grandezze di ingresso e uscita sono tensioni: è un amplificatore di tensione L ingresso è sul morsetto : è un amplificatore non invertente L ovale tratteggiato evidenzia un circuito con lo stesso schema, ma disegnato in modo differente Lezione A3, slide 44
13 Riconoscere la configurazione Riconoscere il tipo di amplificatore e la configurazione (I/nonI) I1 I2 II VD I Zc IU A I M I I Rm B V D VD Ad C VI VE VU VI VD Ad Rc IU D VS Rs E VU Vd VU F VI Lezione A3, slide 43
14 Amplificatori con uscita in corrente Questo amplificatore ha ingresso in tensione e uscita in corrente Ri alta, Ru alta E un amplificatore di transconduttanza (Gm) V = 0, I U d V = R S S I VI = R V = V S S G m = 1 R S V D V S Zc Rs I U Lezione A3, slide 41
15 Calcoli per amplificatore di corrente Tutta la corrente del generatore esterno deve circolare nell ingresso Ri bassa Tutta la corrente in uscita deve circolare nel carico Ru alta La corrente di uscita Iu si ripartisce nel partitore di corrente /. La frazione che scorre in è pari alla corrente di ingresso Ii. V = 0, I 1 U d I = 0, I R 1 = I 2 R I = I I 2 1 = I1 I2 = II I R 2 R = I R 2 2 I I I 1 I 2 Zc I U Esempio di amplificatore con ingresso in corrente e uscita in corrente (current follower) Questo circuito riporta la corrente di ingresso Ii su un carico Zc. Il generatore di ingresso lavora in CC (Vd = 0). E un buffer (ripetitore) di corrente (a guadagno unitario) V = 0, U d I = 0, I = I = I 1 I I = I I 1 I I I I 1 Zc I U Lezione A3, slide 40
16 Perché Ri = 0? Il morsetto di ingresso corrisponde all ingresso invertente dell Amplificatore Operazionale. Quando l A.O. opera in linearità, la tensione differenziale di ingresso Vd è nulla. Il morsetto noninvertente () è collegato a massa, quindi anche il morsetto invertente () è a 0 V (massa virtuale) La corrente iniettata nel nodo di ingresso non modifica la sua tensione: V = 0 per qualunque I; la Requivalente è = 0 Dato che Ri = 0, tutta la corrente fornita dal generatore I1 diventa corrente Ii entrante nel morsetto di massa virtuale (ovvero non circola corrente nella resistenza equivalente Rg del generatore). Dato che I = 0, tutta la corrente Ii circola nella resistenza di reazione Rm. La tensione di uscita è Vu = 0V(massa virtuale) Im Rm = I1 Rm Il circuito è un amplificatore con transresistenza Rm R I I M I I I R M I 1 R G A.O. Lezione A3, slide 31
17 Esempio numerico schema base con R 1 = 90 kω, = 10 kω ; Av =? I = 0; non vi è caduta su Rs Vi = Vs Rs V S V A d d V E R 1 R c Vd = 0; Ve = Vi = Vs Dal partitore di uscita: Ve = Vu /( ) Complessivamente Av = Vu/Vi = ()/ = (9010)/10 = 10 non intervengono generatore: Rs carico: Rc è un amplificatore ideale di tensione Lezione A3, slide 21
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici
Tipi di amplificatori e loro parametri
Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali
APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale
APPUNTI DI ELETTONICA AMPLIFICATOE OPEAZIONALE L amplificatore operazionale ideale Lo schema seguente è lo schema circuitale dell amplificatore operazionale (A.O.): vd v v A ( v v ) dove: è la tensione
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)
Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3
Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano
Lezione 2: Amplificatori operazionali Prof. Mario Angelo Giordano L'amplificatore operazionale come circuito integrato è uno dei circuiti lineari maggiormente usati. L'amplificatore operazionale è un amplificatore
Michele Scarpiniti. L'Amplificatore Operazionale
Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE
Amplificatori Differenziali
Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente
Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +
Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore
AMPLIFICATORE DIFFERENZIALE
AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso
L amplificatore operazionale
L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile
Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una
l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale
GLI AMPLIFICATORI OPERAZIONALI
Elettronica & Telecomunicazioni GLI AMPLIFICATORI OPERAZIONALI Alunni Marcone Luigina Martire Settimio Classe V B Anno Scolastico 1999/2000 GLI AMPLIFICATORI OPERAZIONALI Alunni: Marcone Luigina, Martire
ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11
Altri circuiti con operazionali rev. del /06/008 pagina / ALT CCUT CON OPEAZONAL Sommatore invertente Sommatore non invertente Amplificatore differenziale 7 Buffer Altri circuiti con operazionali Sommatore
Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)
Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2
Amplificatori Differenziali
Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente
Reti elettriche: definizioni
TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO
ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : [email protected] - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO B8 Esercizi parte B (2)» Generatore Q-T e Q» Monostabili» Laboratorio ELN-1 22/10/2013-1 ElapB8-2013 DDC Page 1 2013 DDC 1 Come
Amplificatori Differenziali
Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente
AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE
configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo
Teoria dei circuiti reazionati
Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi
Transitori nelle reti ad una costante di tempo. Lezione 6 1
Transitori nelle reti ad una costante di tempo Lezione 6 1 Circuito con amplificatore Calcolare v(t) vt () = v(0 ), t< 0 [ ] t τ vt () = v(0 ) V e + V, t> 0 + Continuità della tensione sul condensatore
Componenti in corrente continua
Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione
Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo
Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:
AMPLIFICATORI OPERAZIONALI
AMPLIFICATI PEAZINALI Configurazione invertente Configurazione non invertente 6 AMPLIFICATI PEAZINALI Un amplificatore operazionale è un dispositivo integrato il cui simbolo circuitale è il seguente U
Esercitazione 3 (B7- U9) Misure su amplificatori. Modulo SISTEMI ELETTRONICI AA ESERCITAZIONI DI LABORATORIO - 3. Scopo dell esercitazione
Esercitazione 3 (B7- U9) Misure su amplificatori Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento e misurare i parametri di moduli amplificatori, - Verificare
1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1
Prova scritta di fine corso di Meccanica Applicata alle Macchine, modulo da 5CFU Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli motori DC Il circuito mostrato in figura è uno
Elettronica per telecomunicazioni
Elettronica per telecomunicazioni 1 Cosa c è nell unità corso Elettronica per telecomunicazioni 0: presentazione (questa lezione) A: amplificatori, filtri, oscillatori, mixer B: circuiti ad aggancio di
Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi
Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di
Elettronica I Amplificatore operazionale ideale; retroazione; stabilità
Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected] http://www.dti.unimi.it/
MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET
Elettronica Applicata a.a. 2015/2016 Esercitazione N 4 MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET Elettronica applicata Prof. Ing. Elena Biagi Sig. Marco
Soluzione di circuiti RC ed RL del primo ordine
Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare
Elettronica Amplificatore operazionale ideale; retroazione; stabilità
Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected] Elettronica Amplificatore operazionale
ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1
ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1
Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli
Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere
6. Generatori di corrente controllati
6. Generatori di corrente controllati 6.1 Generatori con un solo operazionale In molte applicazioni è utile poter disporre di generatori di corrente controllati in tensione. Un modo semplice, ad esempio,
Collegamento di resistenze
Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice
Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni
Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i
Laboratorio II, modulo Amplificatori operazionali (cfr.
Laboratorio II, modulo 2 20152016 Amplificatori operazionali (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Amplificatori operazionali Amplificatori operazionali sono disegnati come triangoli
Generatori di tensione
Generatori di tensione Laboratorio di Elettronica B Anno accademico 2007-2008 In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di
Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica:
I comparatori sono dispositivi che consentono di comparare (cioè di confrontare ) due segnali. Di norma uno dei due è una tensione costante di riferimento Vr. Il dispositivo attivo utilizzato per realizzare
LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE
LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di
Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A
Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Gennaio - Marzo 2009 Identità ed equazioni relative all elettronica analogica tratti dalle lezioni del corso di Circuiti Elettronici Analogici L-A alla
Impedenze ed Ammettenze 1/5
Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2
Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -
Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che
Regola del partitore di tensione
Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,
Laboratorio di Telecomunicazioni
I.I.S. Perlasca sez. ITIS Vobarno (BS) Data 02 /10/15 Laboratorio di Telecomunicazioni Castellini Fabio Cognome e Nome Relazione n 1 Classe Gruppo 4 Obiettivo L esperienza, suddivisa in 2 parti distinte,
5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a
5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale
Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali
Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione
COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze)
COLLEGAMENTO SERIE E PARALLELO DI BIPOLI (Resistenze) Per realizzare un circuito elettrico è necessario collegare tra loro più bipoli. Il tipo di collegamento che si effettua dipende dalle esigenze e dagli
ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n. 23 - E - 5:
ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 23 - E - 5: Oscillatori a quarzo Astabili e multivibratori Elettronica II - Dante Del
9.Generatori di tensione
9.Generatori di tensione In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di riferimento precise. Mostriamo alcuni metodi per ottenere
1. Serie, parallelo e partitori. ES Calcolare la
Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore
CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590
CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una
VERIFICA DELLE PROPRIETÀ E DELLE CARATTERISTICHE DEL CIRCUITO APERTO E DEL CORTO CIRCUITO
VEFCA DELLE POPETÀ E DELLE CAATTESTCHE DEL CCUTO APETO E DEL COTO CCUTO Le caratteristiche di un circuito aperto sono: A. Tensione massima: V ca Max B. Corrente nulla: ca 0 C. Tutti i bipoli passivi che
Materiale didattico > Uso delle basette per montaggi senza saldature
Esercitazione 3 Convertitore D/A e A/D con rete di peso Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il funzionamento di un convertitore D/A a 4 bit, - Individuare
ELETTRONICA APPLICATA E MISURE
Ingegneria dell Informazione ELETTRONICA APPLICATA E MISURE Dante DEL CORSO De3 ESERCIZI PARTI B e D» Esempi di esercizi da scritti di esame AA 2015-16 01/12/2015-1 ElapDe2-2014 DDC Page 1 2014 DDC 1 De3:
Amplificatori Operazionali
Amplificatori Operazionali L'amplificatore Operazionale e' un amplificatore differenziale in continua con guadagni molto grandi, resistenze di ingresso alte e resistenze di uscita piccole. Il simbolo circuitale
LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora
LICEO SCIENTIFICO CAVOUR COMPITO DI FISICA PER LA CLASSE 5D Durata della prova 1 ora 1)Nel circuito rappresentato in figura la pila fornisce una differenza di potenziale di 12 V e le tre resistenze hanno
Schemi e caratteristiche dei principali amplificatori a BJT
Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore
Lezione A3 - DDC
Elettronica per le telecomunicazioni Unità A: Amplificatori, oscillatori, mixer Lezione A.3 Punto di funzionamento, guadagno e banda distorsioni, rumore, 1 Contenuto dell unità A Lezione A3 Informazioni
Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff
ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando i principi di Kirchhoff, la potenza erogata (o eventualmente assorbita) dai
IL TEOREMA DI THEVENIN
IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio
Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una
Misure su linee di trasmissione
Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare
Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo
alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita
DAC Digital Analogic Converter
DAC Digital Analogic Converter Osserviamo lo schema elettrico riportato qui a lato, rappresenta un convertitore Digitale-Analogico a n Bit. Si osservino le resistenze che di volta in volta sono divise
ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017
ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,
ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona.
ESERCITAZIONI DI AZIONAMENTI ELETTRICI Circuiti equivalenti della macchina asincrona. 1. Le prove a vuoto e a rotore bloccato di una macchina asincrona, eseguite in laboratorio, hanno dato i seguenti risultati:
Esercizio svolto 1 Dati: R 1
Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.
Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.
Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi
ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 5. a.a
32586 - ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica Lezione 5 a.a. 2010-2011 Amplificatori Operazionali NON ideali Impedenza di gresso Differenziale e di modo comune Zd Amplificatore Differenziale
DOCENTI: Accardo Giovanna Caruti Marco ( ITP)
ANNO SCOLASTICO 2016/2017 PROGRAMMAZIONE PREVENTIVA DI ELETTROTECNICA ED ELETTRONICA DOCENTI: Accardo Giovanna Caruti Marco ( ITP) CLASSE 4BEA Ore settimanali: 4 ( 2 in laboratorio) Per un totale di ore
ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO
ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO Materia: ELETTRONICA TELECOMUNICAZIONI & APPLICAZIONI Il circuito proposto appare abbastanza semplice perché si tratta di un dispositivo
Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti
Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano [email protected]
Università degli studi di Bergamo Facoltà di Ingegneria
Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la
per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,
100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari
7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,
Amplificatori OPERAZIONALI
Amplificatori OPERAZIONALI L amplificatore operazionale (op amp) è usato in un ampia varietà di applicazioni: inizialmente era usato in sistemi analogici per integrare e sommare il segnale (da cui il nome
Stadi Amplificatori di Base
Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro
Multimetri elettronici
Multimetri elettronici La strumentazione elettronica è in genere più precisa e sensibile di quella analogica. Presentazione della misura : analogica (ago) digitale: errore di quantizzazione (± 0.5 cifra
Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo; generatori controllati
Elettronica I Serie e parallelo; cortocircuito e circuito aperto; dualità; stella e triangolo; generatori controllati Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano,
Dispositivi e Tecnologie Elettroniche. Modelli di ampio e piccolo segnale del MOSFET
Dispositivi e Tecnologie Elettroniche Modelli di ampio e piccolo segnale del MOFET Modello di ampio segnale Le regioni di funzionamento per ampio segnale sono: interdizione quadratica saturazione I D =
Liberamente tratto da Prima Legge di Ohm
Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale
Amplificatori operazionali
Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i
Corrente ele)rica. Cariche in movimento e legge di Ohm
Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma senza una differenza
