ASINTOTI di una funzione
|
|
|
- Oliviero Corso
- 6 anni fa
- Visualizzazioni
Transcript
1 LEZIONI ASINTOTI di una funzione Definizione Sia γ il grafico di una funzione di equazione y = f( ) avente un ramo che si estende all'infinito e sia P un suo punto. Una retta r si dice asintoto per tale funzione se la distanza del punto P di γ dalla retta r tende a zero quando P si allontana indefinitamente su γ. P K H Poiché gli asintoti sono delle rette, questi possono essere: verticali, orizzontali oppure obliqui. Di seguito sono riportati degli esempi di asintoto per il grafico della funzione: y o Fig. a: Asintoto verticale per la funzione Prof. Salvatore Scialpi - Pag. /9
2 fig.b: Asintoto orizzontale N.B. Il grafico di una funzione può intersecare un asintoto orizzontale anche infinite volte mentre può intersecare un asintoto verticale al massimo una volta. fig. b: Asintoto orizzontale fig.c: Asintoto obliquo Prof. Salvatore Scialpi - Pag. /9
3 N.B. Come per gli asintoti orizzontali, il grafico di una funzione può intersecare un asintoto obliquo anche infinite volte. Asintoti verticali. Sia y = f( ) una funzione reale di una variabile reale, definita in X, e sia o un punto di accumulazione a destra [risp. a sinistra] per X. Se al tendere di verso o dalla destra [risp. dalla sinistra] f( ) tende verso + o verso, allora si dice che la retta di equazione = è un o asintoto verticale a sinistra [risp. a destra] per il grafico di f (in alto se il limite di f in o è +, in basso se tale limite è ). Nelle figure che seguono sono rappresentati i grafici di alcune funzioni che ammettono asintoti verticali: a destra nelle prime due, a sinistra nella terza e nella quarta, a sinistra e a destra nelle ultime due. Fig. a Fig. b Fig. c Fig. d Fig. e Fig. f Prof. Salvatore Scialpi - Pag. 3/9
4 Per la ricerca degli eventuali asintoti verticali per il grafico di una funzione y = f() si procede in questo modo. Si determinano sia i punti o di accumulazione per X che non appartengono a X, sia quelli che appartengono a X nei quali la funzione non è continua. Per tali punti potrebbe passare un asintoto verticale per il grafico della y = tg funzione. Più precisamente, il grafico della funzione y = f() presenta un asintoto verticale nella retta lim f( ) = ±. o = se: o π π 3 π Si noti che una funzione può ammettere più di un asintoto verticale, basti pensare alla funzione tangente il cui grafico è riportato accanto. Asintoti orizzontali. Sia f una funzione reale di una variabile reale, definita in un sottoinsieme X di non limitato superiormente [risp. inferiormente]. Se al tendere di verso + [risp. ] la funzione f( ) tende verso un valore finito, allora si dice che la retta di equazione y = rappresenta un asintoto orizzontale a destra [risp. a sinistra] per il grafico di f. Ossia, se lim f( ) =, + con finito, allora il grafico della funzione presenta un asintoto orizzontale a destra [risp. a sinistra] per il grafico di f nella retta y =. Asintoti obliqui. Potrebbe anche accadere, però, che la funzione ammetta un asintoto obliquo, cioè che il suo grafico tenda ad avvicinarsi indefinitamente ad una retta r non parallela né all asse né all asse y. Condizione sufficiente affinché una retta y = m + q sia asintoto obliquo per una funzione y = f() è che f ( m q) lim ( ) + = 0. Dimostrazione Proveremo che al tendere di ad infinito, la distanza del punto P sulla curva dalla retta r tende a zero. Infatti, la differenza Prof. Salvatore Scialpi - Pag. 4/9
5 ( ) f ( ) m + q rappresenta la distanza tra due punti P e Q di uguale ascissa, l uno sulla curva che rappresenta la funzione e l altro sulla retta y = m + q. L ipotesi ( ) lim f ( ) m + q = 0 () indica quindi che al tendere di a infinito la distanza PQ tende a zero ed essendo PQ maggiore di PH, distanza del punto P sulla curva dalla retta r, anche PH tenderà a zero al tendere di ad infinito. c.v.d. Osservazione Al variare di P sulla curva, l angolo α del triangolo PQH rimane costante pertanto il cateto PH risulterà sempre proporzionale a PQ essendo PH = PQsen( α). Conseguenza di questo fatto è che quando PH tende a zero anche PQ tenderà a zero e viceversa. Per cui la C.S. sopra espressa può essere così formulata: Condizione necessaria e sufficiente affinché una retta y = m + q sia asintoto obliquo per una funzione y = f() è che lim f ( ) ( m + q) = 0. Prof. Salvatore Scialpi - Pag. 5/9
6 Di uso frequente è il seguente Teorema f( ) Il grafico della funzione presenta un asintoto ) lim = m con m, m 0 obliquo nella retta di equazione y m q = + ) lim [ f ( ) m] = q con q Dimostrazione Se la funzione ha nella retta y = m + q un asintoto obliquo, necessariamente pertanto: e quindi: Essendo: ( ) lim f ( ) m + q = 0 dalla () segue: ( ) ( + ) = f ( m q) f m q lim lim ( ) = = f( ) q lim m 0 + =. () q lim m m 0 m + = + = (3) f( ) f( ) q q lim = lim m m 0 m m + + = + =. Proviamo ora che q lim [ f ( ) m] = : Prof. Salvatore Scialpi - Pag. 6/9
7 [ ] [ ] ( ) lim f ( ) m = lim f ( ) m q + q = lim f ( ) m q + q = 0 + q = q. c.v.d. N.B. Una funzione che ha un asintoto orizzontale destro [risp. sinistro] non può avere anche un asintoto obliquo destro [risp. sinistro]. La ricerca degli asintoti obliqui come quella degli asintoti orizzontali presuppone che il dominio della funzione sia illimitato. A( ) In particolare poi, se la funzione è razionale fratta, cioè f ( ) =, con il polinomio B( ) A() di grado n ed il polinomio B() di grado n-, dividendo il primo per il secondo polinomio si ha: A ( ) = Q ( ) B ( ) + R ( ), con Q( ) = m + q polinomio quoziente di grado ed R() polinomio resto di grado inferiore a quello di B(). Essendo allora A ( ) R ( ) f ( ) = ( m q) B ( ) = + + B ( ). R ( ) lim [ f ( ) m q] = lim = 0 B ( ) e questo significa che quando tende ad infinito la funzione tende alla retta y = m + q che pertanto rappresenta un asintoto obliquo per la funzione. Vediamone qualche esempio pratico 3 4 La funzione y = ha come asintoto obliquo la retta y =, infatti Eseguendo la divisione si ottiene Q ( ) = mentre R ( ) = + 4 Prof. Salvatore Scialpi - Pag. 7/9
8 Esempi ) Trovare gli asintoti della funzione di equazione y = + Si ha l'asintoto verticale =0: infatti per che tende a zero la funzione tende all'infinito; in particolare se tende a zero +, f() tende a + infinito, se tende a zero -, f() tende a - infinito. Si ha l'asintoto obliquo y=: basta notare che y=/.. Notare che in questo caso l'asintoto obliquo si ha sia per che tende a + infinito che per che tende a - infinito. ) Trovare gli asintoti della funzione di equazione y= y = e ( e + ) La funzione può essere espressa nella forma Prof. Salvatore Scialpi - Pag. 8/9
9 da cui si vede facilmente che non ci sono asintoti verticali. Per gli asintoti obliqui notiamo che /e è infinitesimo per, quindi in tal caso si ha l'asintoto di equazione y= per invece /e tende a + infinito, pertanto in tal caso la funzione non ammette asintoto obliquo, nè asintoto orizzontale. 3) Trovare gli asintoti della funzione di equazione Risulta: Quindi per abbiamo l'asintoto di equazione y=- Analogamente si ha: Quindi per abbiamo l'asintoto di equazione y=. Prof. Salvatore Scialpi - Pag. 9/9
ASINTOTI di una funzione
LEZIONI ASINTOTI di una funzine Definizine Sia il grafic di una funzine di equazine y f ( ) avente un ram che si estende all'infinit e sia P un su punt. Una retta r si dice asintt per tale funzine se la
INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI
2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato
Analisi e Geometria 1 Politecnico di Milano Ingegneria
Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA
ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a
PENDENZA (ripasso classe II)
PENDENZA (ripasso classe II) Vediamo di definire quantitativamente il concetto di pendenza. Già ritroviamo la pendenza indicata in percentuale nei cartelli di pericolo nelle strade di montagna. La definizione
DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.
DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su
Gli asintoti. Richiami ed esempi
Gli asintoti Richiami ed esempi Scheda asintoti Definizioni generali di asintoto orizzontale, verticale e obliquo Scrivere l equazione di una funzione di una variabile dotata di due asintoti, uno orizzontale
Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni
Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i
DERIVATE. 1.Definizione di derivata.
DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al
Argomento 7 - Studi di funzioni Soluzioni Esercizi
Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo
Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1
Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (prima parte) 1. (a) Un numero complesso diverso da zero è invertibile. (b) Una successione illimitata superiormente
APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R.
APPUNTI DI MATEMATICA: I iti e la continuità Le derivate Prof. ssa Prenol R. INTERVALLI e INTORNI Definizione di intervallo: è un sottoinsieme di numeri reali e può essere - ilitato: graficamente viene
Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2
0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.
Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni
Analisi Matematica 1+2
Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali
Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni
Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x
Funzioni derivabili (V. Casarino)
Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
LIMITI - CONFRONTO LOCALE Test di autovalutazione
LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine
SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE
SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco
Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi
ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte
ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni
ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca
ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,
rapporto tra l'incremento della funzione e l' incremento corrispondente della
DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un
FUNZIONI ALGEBRICHE PARTICOLARI
FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI
2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2
Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili
Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica
Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,
MATEMATICA MATEMATICA FINANZIARIA
MATEMATICA e MATEMATICA FINANZIARIA a.a. 7-8 Corso di laurea in Economia Aziendale Fascicolo n. Limite di funzioni e applicazioni. Limite di una funzione Funzioni continue Calcolo dei iti Asintoti Prof.ssa
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
19 LIMITI FONDAMENTALI - II
19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.
Derivata di una funzione
Derivata di una funzione Prof. E. Modica http://www.galois.it [email protected] Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la
LIMITI. 1. Definizione di limite.
LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi
Istituzioni di Matematica I
Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
Concetto intuitivo di limite di una funzione
Concetto intuitivo di limite di una funzione I limiti di funzioni sono valori a cui le funzioni si avvicinano in certi punti particolari, ossia in punti in cui non è possibile definire le funzioni stesse
LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org
LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.
LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi
LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
CONCETTO DI ASINTOTO. Asintoto verticale Asintoto orizzontale Asintoto obliquo
CONCETTO DI ASINTOTO Asintoto e' una parola che deriva dal greco: a privativo che significa no e sympìptein che significa congiungere cioe' significa che non tocca, in pratica si tratta di una retta che
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
Studio di funzione. numeri.altervista.org
Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------
Analisi Matematica I Primo Appello ( ) - Fila 1
Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Studio di una funzione razionale fratta
Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN
CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali
y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m =
DERIVATA DI UNA FUNZIONE IN UN PUNTO SIGNIFICATO GEOMETRICO. EQUAZIONE DELLA RETTA TANGENTE AL GRAFICO NEL PUNTO DI TANGENZA. REGOLE DI DERIVAZIONE. CONTINUITA E DERIVABILITA PUNTI DI NON DERIVABILITA
