Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità"

Transcript

1 Esercitazione del 8/0/01 Istituzioni di Calcolo delle Probabilità David Barbato Esercizio 1. Sia X una v.a. aleatoria assolutamente continua con densità f X data da { 0 x < 0 f X x) = cxe x x 0 a) Determinare la costante c. b) Determinare la funzione di ripartizione F X. c) Determinare la funzione di rischio di F X. d) A quale distribuzione tra quelle viste a lezione) appartiene la distribuzione di X? Indicare i parametri della distribuzione. e) Calcolare E[X] e V ar[x]. Utilizzare il risultato del quesito d).) Esercizio. Sia X una v.a. aleatoria assolutamente continua con densità f X data da 0 x < 0 α x f X x) = 0 x < α 0 α x con α > 0. a) Determinare α. b) Determinare la funzione di ripartizione F X. c) Calcolare E[X]. d) Determinare la funzione di rischio di F X. e+) Sia Y una v.a. uniforme sull intervallo 0, 1), trovare una funzione g da 0, 1) in R non decrescente tale che posto Z = gy ) si abbia Z X. f) Calcolare E[gY )], utilizzando la formula per il calcolo di una funzione di variabile aleatoria assolutamente continua. Verificare che E[gY )] = E[X]) Esercizio 3. Siano X e Y due variabili aleatorie indipendenti. Supponiamo inoltre che X abbia una distribuzione bernoulliana di parametro p = 1 e che Y abbia invece una distribuzione esponenziale di parametro λ = 3. Sia infine 1

2 Z = X + Y e T = X Y. a) Calcolare il valore atteso di Z e di T. b) Calcolare la funzione di ripartizione di Z. c) Calcolare la funzione di ripartizione di T. d) Calcolare P Z > T ). Esercizio. Siano X 1, X e X 3 tre variabili aleatorie indipendenti. Supponiamo inoltre che X 1 abbia una distribuzione binomiale Bn, p) di parametri p = 1 e n = che X abbia una distribuzione normale N µ, σ ) di parametri µ = 1 e σ = 1 e che X 3 abbia invece una distribuzione di Poisson Pλ) di parametro λ = 1. Siano infine T = X 1 + X + X 3, Z = X 1 X X 3 e W = maxx 1, X, X 3 ). a) Calcolare il valore atteso e varianza di T. b) Calcolare il valore atteso e varianza di Z utilizzare la formula VARZ) = E[Z ] E[Z]) ). c) Calcolare P W < 1). d) Calcolare E[X 1 + X ) X + X 3 )]. Esercizio 5. Siano X 1, X e X 3 tre variabili aleatorie indipendenti. Supponiamo inoltre che X 1 abbia una distribuzione bernoulliana di parametro p = 1 3 che X abbia una distribuzione binomiale Bn, p) di parametri p = 1 e n = 3 che X 3 abbia una distribuzione normale N µ, σ ) di parametri µ = 1 e σ =. Siano infine T = X 1 + X + 3X 3, Z = maxx 1, X, X 3 ). a) Calcolare il valore atteso e la varianza di T. b) Calcolare P X 3 < X 1 ). c) Calcolare P Z > 1 ). d) Calcolare E[ 1 1+X ]. Esercizio 6. Sia x 1 =, x =, p = 1 e λ = 1. Siano X 1, X e X 3 tre variabili aleotorie indipendenti. Sia X 1 v.a. con distribuzione binomiale di parametri 3, p). Sia X v.a. con P X = x 1 ) = p e P X = x ) = 1 p. Sia X 3 v.a. con distribuzione esponenziale di parametro λ. Siano infine T = X 1 X X 3 e Z = X + X 3. a) Calcolare media e varianza di T. b) Calcolare E[e X 1+X ]. c) Calcolare P Z 1), P Z 3) e P Z 5). d) Calcolare F Z. Esercizio 7. Siano X 1, X e X 3 tre variabili aleatorie indipendenti. Sia X 1 v.a. con distribuzione bernoulliana di parametro p = 1. Sia X v.a. con distribuzione normale N µ, σ ) di parametri µ = 5 e σ = 3. Sia X 3 una variabile aleatoria discreta a valori in {, 7} con P X 3 = ) = 1 3

3 e P X 3 = 7) = 3. Siano infine T = X 1 X X 3 e Z = maxx 1, X, X 3 ). a) Calcolare media, varianza e momento del secondo ordine di X 3. b) Calcolare media e varianza di T. c) Calcolare P Z > 6). d) Calcolare E[X 1 X ) X 1 + X )]. Esercizio 8. Siano X 1, X e X 3 tre variabili aleatorie indipendenti. Supponiamo inoltre che X 1 abbia una distribuzione bernoulliana di parametro p = 1 che X abbia una distribuzione esponenziale di parametro λ 1 = e che X 3 abbia una distribuzione di Poisson di parametro λ = 3. Siano infine T = X 1 X X 3, Z = X 1 + X + X 3 e W = min{x 1, X }. a) Calcolare il valore atteso e la varianza di T. b) Calcolare P Z < 1). c) Calcolare la funzione di ripartizione di W. d) Calcolare E[e X ]. Esercizio 9. Sia X 1, X e X 3 tre variabili aleotorie indipendenti. Sia X 1 v.a. con distribuzione uniforme su 0, ). Sia X v.a. normale di media µ = 3 e varianza σ =. Sia X 3 v.a. con distribuzione bernoulliana di parametro p = 1. Siano infine Z = X 1 + X + 7 X 3 e W = maxx 1, X 3 ). a) Calcolare media e varianza di Z. b) Calcolare E[X 1 ], E[X ]. E[X 3 3]. c) Calcolare E[X 3 X 3 + 1) X 3 + X )]. d) Calcolare P X 3 > X 1 ). e) Calcolare F W. Esercizio 10. Siano X e Y due variabili aleatorie indipendenti e sia Z := min{x, Y }. Supponiamo inoltre che X sia discreta con P X = 1) = 1, P X = ) = 1 e P X = 3) = 1 mentre Y sia una variabile aleatoria 3 6 continua con densità f Y : { cosy)+5 siny) y 0, f Y y) := π) 7 0 y / 0, π) a) Calcolare E[X]. b) Calcolare E[X ]. c) Calcolare V AR[X]. 3

4 d) Calcolare E[Y ]. e) Calcolare E[Y ]. f) Calcolare V AR[Y ]. g) Calcolare F X. Scrivere tutti i passaggi. h) Calcolare F Y. Scrivere tutti i passaggi. i) Calcolare P X < Y ). Scrivere tutti i passaggi. l) Calcolare F Z. Scrivere tutti i passaggi. Esercizio 11. Siano X, Y e Z tre variabili aleatorie indipendenti. Supponiamo che X sia Poissoniana di parametro λ = 3, Y sia Binomiale di parametri n = e p = 1, mentre Z ha distribuzione normale di media µ = 0 e varianza σ = 1. a) Calcolare E[X + Y Z]. b) Calcolare E[XY Z]. c) Calcolare E[X + Y + Z ]. d) Calcolare E[X + Y ) ]. e) Calcolare P X + Y = 0). f) Calcolare P X Y = 0). g) Calcolare P Y Z = 0). h) Calcolare P Y Z > 0). i) Calcolare E[Y 6 ]. Scrivere tutti i passaggi. l) Calcolare P [X = Y ]. Scrivere tutti i passaggi. m) Calcolare P Z > Y ). Scrivere tutti i passaggi. Utilizzare φ0) = 0.5, φ1) = e φ) = ) Esercizio 1. Siano X, Y e Z tre variabili aleatorie indipendenti. Supponiamo che X sia esponenziale di parametro λ =, Y sia uniforme sull intervallo 0, 10), mentre Z ha distribuzione discreta con P Z = 1) = 1, P Z = 0) = 1 e P Z = +1) = 1.

5 a) Calcolare E[X + Y + Z]. b) Calcolare E[XY Z]. c) Calcolare E[Z ]. d) Calcolare VAR[Z]. e) Calcolare E[X + Z) ]. f) Calcolare E[e Z ]. g) Calcolare E[e X+Z ]. h) Calcolare P Y < Z). i) Calcolare E[cosπZ)]. l) Calcolare P Y Z > ). Soluzioni Esercizio 1 a) c = 1 b) F X x) = { 0 x < 0 1 e x xe x x 0 c) ht) = t per ogni t 0 1+t d) X Gammaα =, λ = 1) e) E[X] =, V AR[X] =. Esercizio a) α = b) 0 x < 0 F X x) = x x 0 x < 1 x c) E[x] = 3 d) ht) = per ogni t 0, ) t e) gy) = y per ogni y 0, 1) Esercizio 3 a) E[Z] = E[X + Y ] = E[X] + E[Y ] = p + 1 = = 5 λ 3 6 E[T ] = E[X Y ] = E[X] E[Y ] = p 1 = 1 1 = 1 λ 3 6 Dove la seconda uguaglianza segue dall indipendenza di X e Y. 5

6 b) F Z z) = P Z z) = P Z z, X = 0) + P Z z, X = 1) = P X + Y z, X = 0) + P X + Y z, X = 1) = P Y z, X = 0) + P 1 + Y z, X = 1) = P Y z, X = 0) + P Y z 1, X = 1) = P Y z) P X = 0) + P Y z 1) P X = 1) = F Y z) F Y z 1) 0.5 Sapendo che Y è esponenziale di parametro 3, si ha { 0 y 0 F Y y) = 1 e 3y y > 0 e dunque considerando i tre casi, z < 0, 0 z < 1 e z 1. 0 z < 0 F Z z) = e 3z ) 0 z < e 3z ) e 3z 1 ) z 1 c) F T t) = P T t) = P T t, X = 0) + P T t, X = 1) = P X Y z, X = 0) + P X Y t, X = 1) = P 0 t, X = 0) + P Y t, X = 1) = P 0 t) P X = 0) + P Y t) P X = 1) = P t 0) F Y t) 0.5 considerando i due casi, t < 0, e t 0 si ha: { 0 t < 0 F T t) = e 3t ) t 0 d) P Z > T ) = P X + Y > X Y ) = P X + Y > X Y, X = 0) + P X + Y > X Y, X = 1) = P Y > 0, X = 0) + P 1 + Y > Y, X = 1) = P Y > 0) P X = 0) + P Y < 1) P X = 1) = e 3 ) 0.5 = e 3 6

7 Esercizio E[X 1 ] = np = 1 VARX 1 ) = np1 p) = 1 E[X 1] = np1 p) + n p = 3 E[X ] = µ = 1 VARX ) = σ = 1 E[X ] = σ + µ = E[X 3 ] = λ = 1 VARX 3 ) = λ = 1 E[X 3] = λ + λ = Dove E[X i ] può essere ottenuto anche come E[X i ] = E[X i ]) + VARX i ). a) E[T ] = E[X 1 + X + X 3 ] = E[X 1 ] + E[X ] + E[X 3 ] = = 3 VART ) = VARX 1 + X + X 3 ) = VARX 1 ) + VARX ) + VARX 3 ) = = = 5 =.5 b) c) P = P W < 1 E[Z] = E[X 1 X X 3 ] = E[X 1 ] E[X ] E[X 3 ] = = 1 E[Z ] = E[X 1 X X 3] = E[X 1] E[X ] E[X 3] = 3 = 6 ) = P VARZ) = E[Z ] E[Z]) = 6 1 = 5 maxx 1, X, X 3 ) < 1 ) = P X 1 < 1, X < 1, X 3 < 1 ) = X 1 < 1 ) P X < 1 ) P X 3 < 1 ) = P X 1 = 0) P X < 1 ) P X 3 = 0) Utilizzando le definizioni di densità discreta per variabili binomiali e di Poisson si ha : P X 1 = 0) = 1 p) n = 1 P X 3 = 0) = e λ = e 1 Per calcolare P X < ) 1 bisogna ricondursi ad una normale standard: P X < 1 ) 1 X µ = P < µ ) X µ = P < 1 ) σ σ σ P X < 1 ) = 1 φ 1 ) = dunque P W < 1 ) = e 1 =

8 d) Prima di tutto osserviamo che le variabili X 1 + X ) e X + X 3 ) non sono indipendenti perché hanno entrambe X come addendo). Sviluppando il prodotto si ha: E[X 1 + X ) X + X 3 )] = E[X 1 X + X 1 X 3 + X + X X 3 ] = = E[X 1 X ] + E[X 1 X 3 ] + E[X ] + E[X X 3 ] = = E[X 1 ] E[X ] + E[X 1 ] E[X 3 ] + E[X ] + E[X ] E[X 3 ] = = = 5 Esercizio 5 E[X 1 ] = 1 3 VARX 1 ) = = 9 E[X ] = 3 1 = 3 VARX ) = = 3 E[X 3 ] = µ = 1 VARX 3 ) = σ = a) E[T ] = E[X 1 + X + 3X 3 ] = E[X 1 ] + E[X ] + 3E[X 3 ] = = = = 19 3 VART ) = VARX 1 +X +3X 3 ) = VARX 1 )+ VARX )+9 VARX 3 ) = = = 9 9 b) P X 3 < X 1 ) = P X 3 < X 1 X 1 = 0)P X 1 = 0)+P X 3 < X 1 X 1 = 1)P X 1 = 1) = = P X 3 < 0 X 1 = 0)P X 1 = 0) + P X 3 < 1 X 1 = 1)P X 1 = 1) = = P X 3 < 0) 3 +P X 3 < 1) 1 3 = 3 P X3 1 < 1 ) P X3 1 < 1 1 ) = = 3 Φ 1 ) Φ 0) = )) Φ Φ 0) ) = c) P Z > 1 ) = 1 P Z 1 ) = 8

9 1 P X 1 1 ) P X 1 ) P X 3 1 ) = 1 X3 1 1 P X 1 = 0) P X = 0) P 1 ) = = 1 ) Φ 1 ) = 1 1 )) Φ = d) [ ] 1 E = 1 + X 3 k= k P X = k) = = = = 5 96 = 15 3 Esercizio 6 E[X 1 ] = np = 3 VARX 1 ) = np1 p) = 3 E[X 1] = 3 E[X ] = 3 VARX ) = 1 E[X ] = 10 E[X 3 ] = 1 λ = VARX 3) = 1 λ = E[X 3] = 8 Dove E[X ] = P X = ) + P X = ) = 3. E[X ] = P X = ) + P X = ) = 10 VARX ) = E[X ] E[X i ]) = 1 Mentre per X 1 e X si può utilizzare la formula E[X i ] = E[X i ]) +VARX i ). a) E[T ] = E[X 1 X X 3 ] = E[X 1 ] E[X ] E[X 3 ] = 3 3 = 9 E[T ] = E[X 1 X X 3] = E[X 1] E[X ] E[X 3] = = 0 VART ) = E[T ] E[T ]) = 0 81 = 159 b) E[e X 1+X ] = E[e X1 e X ] = E[e X 1 ] E[e X ] Calcoliamo separatamente E[e X 1 ] E[e X ]. E[e X 1 ] = k e k P X 1 = k) = 9

10 = e 0 P X 1 = 0) + e 1 P X 1 = 1) + e P X 1 = ) + e 3 P X 1 = 3) = Dunque E[e X ] = k E[e X 1 ] = 1 + 3e + 3e + e 3 8 e k P X = k) = e P X = ) + e P X = ) = E[e X ] = e + e E[e X 1+X ] = 1 + 3e + 3e + e 3 e + e 8 c) Z = X +X 3. Prima di tutto osserviamo che X può assumere solo i valori e mentre X 3 è una v.a. a valori in 0, + ) con funaione di ripartizione: { 0 x 0 F X3 x) = 1 e λx x > 0 P Z 1) = P X + X 3 1) = = P X =, X + X 3 1) + P X =, X + X 3 1) = = P X =, + X 3 1) + P X =, + X 3 1) = = P X =, X 3 1) + P X =, X 3 3) = 0 Si procede in maniera analoga per P Z 3) P Z 3) = P X + X 3 3) = = P X =, X + X 3 3) + P X =, X + X 3 3) = = P X =, + X 3 3) + P X =, + X 3 3) = = P X =, X 3 1) + P X =, X 3 1) = = P X = ) P X 3 1) + P X = ) P X 3 1) = Calcoliamo infine P Z 5) = 1 1 e 1 1 ) = 1 e 1 P Z 5) = P X + X 3 5) = = P X =, X + X 3 5) + P X =, X + X 3 5) = = P X =, + X 3 5) + P X =, + X 3 5) = 10

11 = P X =, X 3 3) + P X =, X 3 1) = = P X = ) P X 3 3) + P X = ) P X 3 1) = = e 1 ) e 1 ) = 1 e 3 + e 1 d) Procedendo in maniera analoga a quanto fatto per il punto c) si ottiene Esercizio 7 0 z < 1 e F Z z) = z z < z e +e 1 z z E[X 1 ] = p = 1 VARX 1 ) = p1 p) = 3 16 E[X 1] = p = 1 E[X ] = µ = 5 VARX ) = σ = 9 E[X ] = σ + µ = 3 E[X 3 ] = 6 VARX 3 ) = E[X 3] = 38 a) Dove E[X 3 ], E[X 3] e VarX 3 ) sono state ottenute tramite calcolo esplicito: E[X 3 ] = k k P X 3 = k) = = 6 E[X 3] = k k P X 3 = k) = = 38 VarX 3 ) = E[X 3] E[X 3 ] = 38 6 = b) Per l indipendenza delle variabili aleatorie si ha che la speranza del prodotto è uguale al prodotto delle speranze E[T ] = E[ X 1 X X 3 ] = E[X 1 ] E[X ] E[X 3 ] = = = 15 VarT ) = E[T ] E[T ]) E[T ] = E[ X 1 X X 3 ) ] = E[ X 1 X X 3] = = E[X1] E[X] E[X3] = = 19 11

12 VarT ) = = 1067 c) P Z > 6) = P max{x 1, X, X 3 } > 6) = 1 P max{x 1, X, X 3 } 6) = = 1 P X 1 6, X 6, X 3 6) = 1 P X 1 6) P X 6) P X 3 6) = d) 1 1 F X 6) 1 3 = 1 φ 6 µ σ ) 3 = 1 φ 1 3 ) E[X 1 X ) X 1 +X )] = E[X1 X)] = E[X1] E[X ] = 1 3 = Esercizio 8 a) 3, b) 3 e 3 e ) c) F W w) = d) Esercizio 9 a) 17, 11 1 b), 13, 1 c) d) 1 8 e) F W w) = 0 w < e w ) 0 w < 1 1 w 1 0 w < 0 w 0 w < 1 8 w 1 w < 1 w 1

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità Esercitazione del 19/0/013 Istituzioni di Calcolo delle Probabilità David Barbato Variabili aleatorie esponenziali. Minimo di v.a. esponenziali indipendenti. Ricordiamo innanzitutto che due variabili aleatorie

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità

Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/04/09 Istituzioni di Calcolo delle Probabilità David Barbato Nozioni di riepilogo con esercizi Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

II Esonero - Testo B

II Esonero - Testo B Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 29 Gennaio 2018 II Esonero - Testo B Cognome Nome Matricola Esercizio 1. (20%) Si

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Esercitazione del 03/06/2014 Probabilità e Statistica

Esercitazione del 03/06/2014 Probabilità e Statistica Esercitazione del 03/06/2014 Probabilità e Statistica David Barbato Esercizio 1. Sia (X i ) i N una successione di variabili aleatorie i.i.d. con distribuzione geometrica di parametro p = 1 2. Sia Y i

Dettagli

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del /0/0 Istituzioni di Calcolo delle Probabilità David Barbato Funzione di ripartizione Sia F X una funzione da in. consideriamo le seguenti condizioni: F X è non decrescente lim ( ) x F

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 13

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 13 Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 13 David Barbato Approssimazioni normali. Theorem 1 (Teorema del limite centrale). Siano X 1,..., X n variabili aleatorie indipendenti ed identicamente

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010

Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010 Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010 1. Nello scaffale di un negozio vi sono 20 CD-Rom di software, di cui 2 di grafica e gli altri

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

X Vincita (in euro) Tabella 1: Vincite

X Vincita (in euro) Tabella 1: Vincite Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente

Dettagli

Esercitazione del 28/10/2011 Calcolo delle probabilità

Esercitazione del 28/10/2011 Calcolo delle probabilità Esercitazione del 28/0/20 Calcolo delle probabilità Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile aletoria discreta, sia f una funzione da in, se Y := f(x) allora

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019 Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/6/219 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Un forno produce rosette di pane. Il peso di una

Dettagli

Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013

Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013 Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013 COGNOME e NOME... N. MATRICOLA... Esercizio 1. (V. 12 punti.) Supponiamo di avere due urne che

Dettagli

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/3/ Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio. E la notte di San Lorenzo, Alessandra decide di andare a vedere le stelle cadenti. Osserverà

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità Esercitazione del /5/8 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Somma di variabili aleatorie indipendenti. Caso discreto. Siano X e Y due variabili aletaroie discrete

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Esercizi di Calcolo delle Probabilità. 2010-2011. David Barbato

Esercizi di Calcolo delle Probabilità. 2010-2011. David Barbato Esercizi di Calcolo delle Probabilità. 1-11 David Barbato A chi è rivolto questo eserciziario. Questa è una raccolta di esercizi tratti dai testi d esame dei corsi di Istituzioni di Probabilità e Calcolo

Dettagli

Esercizi su leggi condizionali e aspettazione condizionale

Esercizi su leggi condizionali e aspettazione condizionale Esercizi su leggi condizionali e aspettazione condizionale. Siano X, Y, Z v.a. a valori in uno spazio misurabile (E, E) e tali che le coppie (X, Y ) e (Z, Y ) abbiano la stessa legge (in particolare anche

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

CP110 Probabilità: esame del 4 febbraio Testo e soluzione

CP110 Probabilità: esame del 4 febbraio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 20-2, II semestre 4 febbraio, 203 CP0 Probabilità: esame del 4 febbraio 203 Testo e soluzione . (6 pts) In un triangolo rettangolo i cateti X e Y sono

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 26 Giugno 2018 Scritto del 26-6 -18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Esercitazione Maggio 2019

Esercitazione Maggio 2019 Esercitazione 6 9 Maggio 019 Esercizio 1 E noto che la durata di un determinato tipo di Hard Disk per Server segue la legge esponenziale con media pari a 8 anni. a) Calcolare la probabilità che un Hard

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

STATISTICA (modulo II - Inferenza Statistica) Soluzione Esercitazione I

STATISTICA (modulo II - Inferenza Statistica) Soluzione Esercitazione I Soluzione Esercitazione I Esercizio A. Si indichi con A i l evento la banca i decide di aprire uno sportello per il quale Pr(A i = 0.5 (e dunque Pr(A i = 0.5 per i =, 2, 3. Lo spazio degli eventi dato

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Prova di giovedi febbraio 2005 (tempo a disposizione: 3 ore). consegna compiti e inizio orale Lunedì

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

CP110 Probabilità: Esame 27 gennaio Testo e soluzione

CP110 Probabilità: Esame 27 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 27 gennaio, 213 CP11 Probabilità: Esame 27 gennaio 213 Testo e soluzione 1. (6 pts) Tre amici dispongono di 6 monete da un euro e

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Probabilità 1, laurea triennale in Matematica II prova di valutazione in itinere a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova di valutazione in itinere a.a. 2008/09 robabilità, laurea triennale in Matematica II prova di valutazione in itinere a.a. 008/09. Francesco lancia ripetutamente due dadi non truccati: sia T il numero di lanci necessario ad ottenere per la prima

Dettagli

CP110 Probabilità: esame del 20 giugno 2017

CP110 Probabilità: esame del 20 giugno 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 6-7, II semestre giugno, 7 CP Probabilità: esame del giugno 7 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

CP110 Probabilità: Esame 5 giugno Testo e soluzione

CP110 Probabilità: Esame 5 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 5 giugno, 212 CP11 Probabilità: Esame 5 giugno 212 Testo e soluzione 1. (6 pts) Sette biglietti numerati da 1 a 7 vengono distribuiti

Dettagli

CP210 Introduzione alla Probabilità: Esame 2

CP210 Introduzione alla Probabilità: Esame 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, II semestre 9 luglio, 2019 CP210 Introduzione alla Probabilità: Esame 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Esercitazione del 21/10/2011 Calcolo delle probabilità

Esercitazione del 21/10/2011 Calcolo delle probabilità Esercitazione del /0/0 Calcolo delle probabilità Funzione di ripartizione Sia F X una funzione da R in R. consideriamo le seguenti condizioni: F X è non decrescente ( ) x F X (x) x F X (x) 0 F X è continua

Dettagli

, B con probabilità 1 4 e C con probabilità 1 4.

, B con probabilità 1 4 e C con probabilità 1 4. Laurea triennale in MATEMATICA, Corso di PROBABILITÀ Prof. L. Bertini - G. Nappo - F. Spizzichino Esonero del 0.06.00 N.B. Scrivere le soluzioni degli esercizi su questi fogli giustificando brevemente

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina)

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina) Calcolo delle probabilità (3/7/00). La distribuzione di probabilità di un numero aleatorio X non negativo soddisfa la condizione P (X > x + y X > y) = P (X > x), x > 0, y > 0. Inoltre la previsione di

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

CALCOLO DELLE PROBABILITA - 13 Aprile 2011 CdL in STAD, SIGAD - docente: G. Sanfilippo

CALCOLO DELLE PROBABILITA - 13 Aprile 2011 CdL in STAD, SIGAD - docente: G. Sanfilippo Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 13 Aprile 211 CdL in STAD, SIGAD - docente: G Sanfilippo Motivare dettagliatamente le risposte su fogli allegati e scrivere le risposte negli appositi

Dettagli

Esercizi - Fascicolo IV

Esercizi - Fascicolo IV Esercizi - Fascicolo IV Esercizio Una compagnia di assicurazioni emette una polizza che pagherà n euro se l evento E si verificherà entro un anno. Se la compagnia stima che l evento E si verificherà entro

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

CP110 Probabilità: Esame 2 settembre Testo e soluzione

CP110 Probabilità: Esame 2 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 2 settembre, 2011 CP110 Probabilità: Esame 2 settembre 2011 Testo e soluzione 1. (5 pts) Nel gioco dello Yahtzee si lanciano cinque

Dettagli

Variabili aleatorie n-dim

Variabili aleatorie n-dim Sessione Live #6 Settimana dal 6 maggio al giugno 003 Variabili aleatorie n-dim Funzioni di ripartizione e di densità (F.D.R. e f.d.d.) congiunte e marginali, valori medi e momenti misti, funzione generatrice

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2008/09

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2008/09 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 28/9 Prova scritta del 4//29 Una ditta produce bottoni, con una (bassa) frequenza p di pezzi difettosi. Una merceria, cliente abituale, acquista regolarmente

Dettagli

Il valore atteso del prodotto di v.a.i. Valore atteso (8)

Il valore atteso del prodotto di v.a.i. Valore atteso (8) Il valore atteso del prodotto di v.a.i. Valore atteso (8) Siano X,Y : Ω N v.a. indipendenti (per semplicità a valori in N) E(X Y) = k Nk P(X Y = k) = h i P(X,Y = h,i) h,i N = h i P(X=h) P(Y=i) h,i N =

Dettagli

(e it + e 5 2 it + e 3it )

(e it + e 5 2 it + e 3it ) CALCOLO DELLE PROBABILITÀ - 13 gennaio 1999 1. Siano A, B, C eventi, con P (A) = 0.3, P (B) = 0.5, P (C) = 0.7, e per i quali è noto che i relativi costituenti sono C 1 = A c B c C c, C 2 = AB c C c, C

Dettagli

Capitolo 1. Elementi di Statistica Descrittiva. 1.5 Esercizi proposti

Capitolo 1. Elementi di Statistica Descrittiva. 1.5 Esercizi proposti Capitolo 1 Elementi di Statistica Descrittiva 1.5 Esercizi proposti Esercizio 1.5.1 In questo caso n = 24 e, dopo aver ordinato i dati (usando il metodo stem-and-leaf per esempio), 3 4 4 5 5 5 6 6 7 7

Dettagli

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013 I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. / 9 Giugno Recupero I esonero o prova scritta di Probabilità da 5 cfu o di Probabilità e Statistica da cfu: esercizio ; esercizio

Dettagli

SOLUZIONI DEL TEST DI PREPARAZIONE ALLA 2 a PROVA INTERMEDIA

SOLUZIONI DEL TEST DI PREPARAZIONE ALLA 2 a PROVA INTERMEDIA SOLUZIONI DEL TEST DI PREPARAZIONE ALLA a PROVA INTERMEDIA Esercizio. Le v.c. X e Y possono assumere solo i valori e (ad es. ingresso ed uscita di un canale di comunicazione binario). Sapendo che X è una

Dettagli

CP110 Probabilità: Esame 2 luglio Testo e soluzione

CP110 Probabilità: Esame 2 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 2 luglio, 213 CP11 Probabilità: Esame 2 luglio 213 Testo e soluzione 1. (6 pts Due mazzi di carte francesi vengono uniti e mischiati.

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di mercoledì 22 Settembre 24 (tempo a disposizione: 2 ore e 4 minuti. consegna compiti e inizio

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile casuale normale Da un analisi di bilancio è emerso che, durante i giorni feriali

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 II Esonero - 15 Gennaio 2015

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 II Esonero - 15 Gennaio 2015 UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 014/015 II Esonero - 15 Gennaio 015 1 3 4 5 6 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2010/11

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2010/11 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 00/ Prova scritta del /0/0 Esercizio Due variabili aleatorie indipendenti, X e Y, verificano la relazione X Y. ) Si provi che F Y (x) F X (x) per ogni numero

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 luglio 6 Vettori aleatori e funzioni di v.a. Esercizio Si lanciano due dadi equi. Qual è la probabilità che la somma sia? [ ] Siano X, X le v.a.

Dettagli

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 7 Maggio 2013 Esercizio

Dettagli

Risultati X P(X) TTT 0 1/8 TTC 1 1/8 TCT 1 1/8 CTT 1 1/8 TCC 2 1/8 CTC 2 1/8 CCT 2 1/8 CCC 3 1/8 X P(X) F(X) 0 1/8 1/8 1 3/8 4/8 2 3/8 7/8 3 1/8 1

Risultati X P(X) TTT 0 1/8 TTC 1 1/8 TCT 1 1/8 CTT 1 1/8 TCC 2 1/8 CTC 2 1/8 CCT 2 1/8 CCC 3 1/8 X P(X) F(X) 0 1/8 1/8 1 3/8 4/8 2 3/8 7/8 3 1/8 1 Esercizio 1 Determinare la distribuzione di probabilità e la funzione di ripartizione della v.c. discreta X = numero di croci in 3 lanci di una moneta. Calcolare F(-1), F(1.5), F(300). Risultati X P(X)

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

PROVA SCRITTA DI STATISTICA (COD COD ) 7 luglio 2005 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A

PROVA SCRITTA DI STATISTICA (COD COD ) 7 luglio 2005 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A PROVA SCRITTA DI STATISTICA (COD. 047 - COD. 403-37-377) 7 luglio 200 APPROSSIMARE TUTTI I CALCOLI ALLA QUARTA CIFRA DECIMALE SOLUZIONI MODALITÀ A Esercizio (9 punti) Supponiamo di aver osservato la seguente

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 3 Abbiamo visto: Definizione di partizione di Teorema di Bayes Definizione di variabile aleatoria

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ 2 (Laurea Specialistica) 28 giugno 2006 Motivare dettagliatamente le risposte su fogli allegati 1.- Sia X un numero aleatorio a valori { α, 0, α}, con α > 0 e P (X = α) = P (X

Dettagli

STATISTICA A D (72 ore)

STATISTICA A D (72 ore) STATISTICA A D (72 ore) Marco Riani mriani@unipr.it http://www.riani.it Tipologia di v.a. v.a. discreta numero finito di valori (infinità numerabile) x 1 x 2,, x k con probabilità p 1 p 2, p k Esempio:

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Stima puntuale di parametri Ines Campa Probabilità e Statistica -

Dettagli

PROVA SCRITTA DI STATISTICA. CLEA/CLEFIN/CLEMIT (cod. 5047/4038/371/377) 3 Novembre 2004 MOD. A

PROVA SCRITTA DI STATISTICA. CLEA/CLEFIN/CLEMIT (cod. 5047/4038/371/377) 3 Novembre 2004 MOD. A PROVA SCRITTA DI STATISTICA CLEA/CLEFIN/CLEMIT (cod. 547/438/37/377) 3 Novembre 4 MOD. A Esercizio N. (3 punti). Data la v.s. X avente funzione di densità: / x < 9/4 x < 3 f(x) = / 3 x < 7 / 7 x < 9 altrove

Dettagli

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO CALCOLO DELLE PROBABILITÀ - gennaio 00 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Nuovo Ordinamento esercizi -4. Vecchio Ordinamento esercizi -6..

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4,

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4, Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 04/05 Prova di Esonero Maggio 05 degli esercizi proposti Siano G, E, E tre variabili aleatorie gaussiane indipendenti, rispettivamente

Dettagli

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana Esercitazioni di Statistica Matematica A Lezione 2 Variabili con distribuzione gaussiana.) Una bilancia difettosa ha un errore sistematico di 0.g ed un errore casuale che si suppone avere la distribuzione

Dettagli