Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione del 16/04/2019 Istituzioni di Calcolo delle Probabilità"

Transcript

1 Esercitazione del 6/04/09 Istituzioni di Calcolo delle Probabilità David Barbato Nozioni di riepilogo con esercizi Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile aletoria discreta, sia f una funzione da R in R, se Y := fx) allora Y è una variabile aleatoria discreta e la sua densità è data da: P Y = y) = P X = x) y ) x fx)=y Esercizio. Sia X una variabile aleatoria uniformente distribuita sull insieme {,, 0, +, +} cioè P X = ) = P X = ) = P X = 0) = P X = ) = P X = ) = 5 ) e sia f la funzione definita da fx) = x per ogni x in R. Calcolare la distribuzione di Y := fx). Soluzione: P Y = 0) = 5, P Y = ) = P Y = 4) = 5 Talvolta la funzione f è definita solo su un sottinsieme di R, se tale supporto include il supporto della variabile aleatoria X allora ha comunque senso definire Y := fx) a patto di escludere al più un insieme di misura nulla) ed è possibile usare l uguaglianza ) per calcolare la distribuzione di X. Esercizio. Sia X una variabile aleatoria geometrica di parametro e sia f la funzione definita da fn) = ) n per ogni n in N. Calcolare la distribuzione di Y := fx). Soluzione: P Y = ) =, P Y = ) = Funzione di ripartizione Sia F X una funzione da R in R. consideriamo le seguenti condizioni: F X è non decrescente lim ) x F X x) = lim x F X x) = 0 F X è continua a destra

2 La funzione F X è una funzione di ripartizione di una variabile aleatoria se e solo se soddisfa le condizioni ). Se F X è una funzione definita a tratti tale che all interno di ciascun intervello di definizione è non decrescente e continua a destra allora affinché sia non decrescente e continua a destra su tutto R sarà sufficiente verificare che per ogni x 0 estremo degli intervalli di definizione valga la relazione: lim x x 0 F X x) F X x 0 ) = lim F X x). x x + 0 Esercizio. Per quali valori di α la funzione F X è la funzione di ripartizione di una variabile aleatoria. 0 x < F X x) = + αx x < x Soluzione: α [0, ] Esercizio 4. Per quali valori di α la funzione F X è la funzione di ripartizione di una variabile aleatoria. 0 x < 0 F X x) = x + α sinx)) 0 x < π π x π Sugg: Poiché la funzione F X è derivabile in 0, π) allora si può studiare la monotonia in 0, π) attraverso lo studio del segno della sua derivata prima. Soluzione: α [, +] Variabili aleatorie assolutamente continue. Una variabile aleatoria X è assolutamente continua se esiste una funzione f X da R in R non negativa tale che per ogni intervallo a, b) si abbia: P X a, b)) = b a f X x)dx ) la funzione f X è detta la densità della v.a. X. Dalla ) risulta P a X b) = P a < X < b) = b a f Xx)dx e anche P X = a) = 0, per ogni a e b con

3 a < b. Inoltre se A R, A = i N a i, b i ) con a i, b i ) a j, b j ) = per ogni i j allora P X A) = i bi Infine valgono le seguenti ugualglianze: a i f X x)dx F X a) = a f X x)dx a e f X a) = d da F Xa) per quasi ogni a Valore atteso di variabili aleatorie assolutamente continue. Sia X una variabile aleatoria assolutamente continua e sia f X la sua densità. E[X] = xf X x)dx se x f X x)dx < E[gX)] = R R gx)f X x)dx se R R gx) f X x)dx < Cosa succede se la condizione R x f Xx)dx < oppure la condizione R gx) f Xx)dx < non è verificata? Vediamo il seguente esercizio. Esercizio 5. Sia X una v.a. uniforme sull intervallo 0, ), sia g la funzione definita da { x 0 gx) = x 0 x = 0 Calcolare E[gX)]. Soluzione: E[gX)] = Variabili aleatorie normali. Proposizione. Se X è una v.a. normale, con distribuzione X N µ, σ ) allora anche Y := ax + b è normale e vale Y N aµ + b, a σ ). Proposizione. Se X, X,..., X n sono v.a. normaliindipendenti con distribuzione X i N µ i, σ i ) allora anche Y := a X + a X +..., a n X n sarà normale e vale Y N a µ + a µ +..., a n µ n, a σ + a σ a nσ n). L uguaglianza è vera a meno di un insieme di misura di Lebesque nulla, in particolare se la funzione F è C a tratti allora l uguaglinza sarà vera ovunque all interno di tutti i tratti della F X in cui è C

4 Una variabile aleatoria Z normale con distribuzione Z N 0, ) è detta normale standard, la sua funzione di ripartizione è indicata generalmente con la lettera Φ e si ha: x Φx) = e t dt π Vale Φ x) = Φx) e se X N µ, σ ) allora si ha ) x µ P X x) = Φ σ Approssimazione Normale. Le ragioni del perché molte distribuzioni siano approssivamente normali verranno illustrate quando verrà studiato il teorema del limite centrale. In questa lezione vedremo il come si applica il procedimento di approssiamzione Normale Gaussiana). L ambito di applicazione maggiore è dato dall approssimazione di v.a. X Binn, p) binomiali con il parametro n grande, nel caso della binomiale l approsimazione sarà tanto migliore quanto maggiore è la varianza di X, VARX) = np p) nella maggior parte delle applicazioni una varianza maggiore di 0 sarà considerata sufficiente per poter procedere con l approssiamzione normale. Procedimento di Approssimazione Normale. Sia X la variabile che vogliamo approssimare non necessariamente binomiale). Siano µ = E[X] e σ = V AR[X]. Allora la distribuzione di X verrà approssimata da quella di una v.a. Y normale con la stessa media e la stessa varianza di X: Y N µ, σ ). Correzione di continuità. La correzione di continuità permette di avere stime più precise e si applica quando la variabile da approssimare X è una v.a. binomiale vedere esempio 4f del libro di testo pag 9). La correzione di continuità è cruciale per avere una buona approssimazione quando la varianza non è molto grande. Illustriamo il procedimento con un esempio. Sia X Binn, p), µ = np e σ = np p). Le seguenti probabilità sono uguali P X 60) = P X 60.5) = P X < 6) ) mentre per Y N µ, σ ) si ha P Y 60) P Y 60.5) P Y < 6) La approssimazione migliore per la probabilità ) è data da: ) 60.5 µ P X 60) = P X 60.5) = P X < 6) P Y 60.5) = Φ σ 4

5 Esercizio 6. Una macchina per il confezionamento del latte riempe i cartoni con una quantità di latte casuale, rappresentata da una v.a. X Nµ, σ ). Il valore di riempimento ideale sarebbe 000 ml, ma vi è una certa tolleranza: una confezione è considerata accettabile se contiene tra 975 e 05 ml di latte, e difettosa altrimenti. a) Se µ = 000 e σ = 0. Qualè la probabilità che una confezione sia difettosa. b) Supponiamo ancora che µ = 000, per quali valori di σ la probabilità che una confezione sia difettosa è minore del 5%? Esercizio 7. Calcolo delle Probabilità 8//00 Sia X una variabile aleatoria normale con distribuzion e X N0, 9). Sia Y = max{x, 0}. a) Dimostrare che Y ha funzione di ripartizione: { 0 t < 0 F Y t) = φ t ) t 0 b) Calcolare la derivata: d dt F Y t) per t > 0. c) Calcolare E[Y ]. Solo in Aula. Y è una v.a. mista!) Esercizio 8. Siano X, X e X tre variabili aleatorie indipendenti. Supponiamo inoltre che X abbia una distribuzione binomiale Bn, p) di parametri p = e n = che X abbia una distribuzione normale N µ, σ ) di parametri µ = e σ = e che X abbia invece una distribuzione di Poisson Pλ) di parametro λ =. Siano infine T = X + X + X, Z = X X X e W = maxx, X, X ). a) Calcolare il valore atteso e varianza di T. b) Calcolare il valore atteso e varianza di Z utilizzare la formula VARZ) = E[Z ] E[Z]) ). c) Calcolare P W < ). d) Calcolare E[X + X ) X + X )]. Esercizio 9. Siano X, X e X tre variabili aleatorie indipendenti. Supponiamo inoltre che X abbia una distribuzione bernoulliana di parametro p = che X abbia una distribuzione binomiale Bn, p) di parametri p = e n = che X abbia una distribuzione normale N µ, σ ) di parametri µ = e σ =. Siano infine T = X + X + X, Z = maxx, X, X ). a) Calcolare il valore atteso e la varianza di T. b) Calcolare P X < X ). c) Calcolare P Z > ). d) Calcolare E[ +X ]. 5

6 Esercizio 0. Siano X, X e X tre variabili aleatorie indipendenti. Sia X v.a. con distribuzione bernoulliana di parametro p = 4. Sia X v.a. con distribuzione normale N µ, σ ) di parametri µ = 5 e σ =. Sia X una variabile aleatoria discreta a valori in {4, 7} con P X = 4) = e P X = 7) =. Siano infine T = X X X e Z = maxx, X, X ). a) Calcolare media, varianza e momento del secondo ordine di X. b) Calcolare media e varianza di T. c) Calcolare P Z > 6). d) Calcolare E[X X ) X + X )]. Esercizio. Sia X, X e X tre variabili aleatorie indipendenti. Sia X v.a. con distribuzione uniforme su 0, 4). Sia X v.a. normale di media µ = e varianza σ = 4. Sia X v.a. con distribuzione bernoulliana di parametro p =. Siano infine Z = X + X + 7 X e W = maxx, X ). a) Calcolare media e varianza di Z. b) Calcolare E[X ], E[X ]. E[X ]. c) Calcolare E[X X + ) X + X )]. d) Calcolare P X > X ). e) Calcolare F W. Esercizio. Siano X e Y due variabili aleatorie indipendenti e sia Z := min{x, Y }. Supponiamo inoltre che X sia discreta con P X = ) =, P X = ) = e P X = ) = mentre Y sia una variabile aleatoria 6 continua con densità f Y : { cosy)+5 siny) y 0, f Y y) := π) 7 0 y / 0, π) a) Calcolare E[X]. b) Calcolare E[X ]. c) Calcolare V AR[X]. d) Calcolare E[Y ]. e) Calcolare E[Y ]. f) Calcolare V AR[Y ]. 6

7 g) Calcolare F X. Scrivere tutti i passaggi. h) Calcolare F Y. Scrivere tutti i passaggi. i) Calcolare P X < Y ). Scrivere tutti i passaggi. l) Calcolare F Z. Scrivere tutti i passaggi. Esercizio. Siano X, Y e Z tre variabili aleatorie indipendenti. Supponiamo che X sia Poissoniana di parametro λ =, Y sia Binomiale di parametri n = e p =, mentre Z ha distribuzione normale di media µ = 0 e varianza σ =. a) Calcolare E[X + Y Z]. b) Calcolare E[XY Z]. c) Calcolare E[X + Y + Z ]. d) Calcolare E[X + Y ) ]. e) Calcolare P X + Y = 0). f) Calcolare P X Y = 0). g) Calcolare P Y Z = 0). h) Calcolare P Y Z > 0). i) Calcolare E[Y 6 ]. Scrivere tutti i passaggi. l) Calcolare P [X = Y ]. Scrivere tutti i passaggi. m) Calcolare P Z > Y ). Scrivere tutti i passaggi. Utilizzare φ0) = 0.5, φ) = e φ) = ) Soluzioni Esercizio 8 E[X ] = np = VARX ) = np p) = E[X] = np p) + n p = E[X ] = µ = VARX ) = σ = E[X] = σ + µ = E[X ] = λ = VARX ) = λ = E[X] = λ + λ = 7

8 Dove E[X i ] può essere ottenuto anche come E[X i ] = E[X i ]) + VARX i ). a) E[T ] = E[X + X + X ] = E[X ] + E[X ] + E[X ] = + + = VART ) = VARX + X + X ) = VARX ) + VARX ) + VARX ) = = + + = 5 =.5 b) c) P = P W < E[Z] = E[X X X ] = E[X ] E[X ] E[X ] = = E[Z ] = E[X X X ] = E[X ] E[X ] E[X ] = = 6 ) = P VARZ) = E[Z ] E[Z]) = 6 = 5 maxx, X, X ) < ) = P X <, X <, X < ) = X < ) P X < ) P X < ) = P X = 0) P X < ) P X = 0) Utilizzando le definizioni di densità discreta per variabili binomiali e di Poisson si ha : P X = 0) = p) n = 4 P X = 0) = e λ = e Per calcolare P X < ) bisogna ricondursi ad una normale standard: P X < ) X µ = P < µ ) X µ = P < ) σ σ σ P X < ) = φ ) = dunque P W < ) = e = d) Prima di tutto osserviamo che le variabili X + X ) e X + X ) non sono indipendenti perché hanno entrambe X come addendo). Sviluppando il prodotto si ha: E[X + X ) X + X )] = E[X X + X X + X + X X ] = = E[X X ] + E[X X ] + E[X ] + E[X X ] = = E[X ] E[X ] + E[X ] E[X ] + E[X ] + E[X ] E[X ] = = = 5 8

9 Esercizio 9 a) E[X ] = VARX ) = = 9 E[X ] = = VARX ) = = 4 E[X ] = µ = VARX ) = σ = 4 E[T ] = E[X + X + X ] = E[X ] + E[X ] + E[X ] = = + + = + + = 9 VART ) = VARX +X +X ) = VARX )+4 VARX )+9 VARX ) = b) = = 5 9 P X < X ) = P X < X X = 0)P X = 0)+P X < X X = )P X = ) = = P X < 0 X = 0)P X = 0) + P X < X = )P X = ) = = P X < 0) +P X < ) = P X < ) + P X < ) = = Φ ) + Φ 0) = )) Φ + Φ 0) ) + = 0.76 c) P Z > ) = P Z ) = P X ) P X ) P X ) = X P X = 0) P X = 0) P ) = = ) Φ ) = )) 4 Φ =

10 d) [ ] E = + X k=0 + k P X = k) = = = = = 5 Esercizio 0 E[X ] = p = 4 VARX ) = p p) = 6 E[X ] = p = 4 E[X ] = µ = 5 VARX ) = σ = 9 E[X ] = σ + µ = 4 E[X ] = 6 VARX ) = E[X ] = 8 a) Dove E[X ], E[X ] e VarX ) sono state ottenute tramite calcolo esplicito: E[X ] = k k P X = k) = = 6 E[X ] = k k P X = k) = = 8 VarX ) = E[X ] E[X ] = 8 6 = b) Per l indipendenza delle variabili aleatorie si ha che la speranza del prodotto è uguale al prodotto delle speranze E[T ] = E[ X X X ] = E[X ] E[X ] E[X ] = = = 5 VarT ) = E[T ] E[T ]) E[T ] = E[ X X X ) ] = E[4 X X X ] = = 4 E[X] E[X] E[X] = = 9 4 VarT ) = 9 5 = 067 0

11 c) P Z > 6) = P max{x, X, X } > 6) = P max{x, X, X } 6) = = P X 6, X 6, X 6) = P X 6) P X 6) P X 6) = d) F X 6) = φ 6 µ σ ) = φ ) 0.79 E[X X ) X +X )] = E[X X)] = E[X] E[X ] = 4 =.75 4 Esercizio a) 7, b),, c) 4 d) 8 e) F W w) = 0 w < 0 w 0 w < 8 w w < 4 4 w 4

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 21/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del /0/0 Istituzioni di Calcolo delle Probabilità David Barbato Funzione di ripartizione Sia F X una funzione da in. consideriamo le seguenti condizioni: F X è non decrescente lim ( ) x F

Dettagli

Esercitazione del 28/10/2011 Calcolo delle probabilità

Esercitazione del 28/10/2011 Calcolo delle probabilità Esercitazione del 28/0/20 Calcolo delle probabilità Distribuzione di una funzione di una variabile aleatoria discreta. Sia X una variabile aletoria discreta, sia f una funzione da in, se Y := f(x) allora

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 8/0/01 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio 1. Sia X una v.a. aleatoria assolutamente continua con densità f X data da { 0 x < 0 f X

Dettagli

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità Esercitazione del 19/0/013 Istituzioni di Calcolo delle Probabilità David Barbato Variabili aleatorie esponenziali. Minimo di v.a. esponenziali indipendenti. Ricordiamo innanzitutto che due variabili aleatorie

Dettagli

Esercitazione del 21/10/2011 Calcolo delle probabilità

Esercitazione del 21/10/2011 Calcolo delle probabilità Esercitazione del /0/0 Calcolo delle probabilità Funzione di ripartizione Sia F X una funzione da R in R. consideriamo le seguenti condizioni: F X è non decrescente ( ) x F X (x) x F X (x) 0 F X è continua

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 13

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 13 Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 13 David Barbato Approssimazioni normali. Theorem 1 (Teorema del limite centrale). Siano X 1,..., X n variabili aleatorie indipendenti ed identicamente

Dettagli

Esercitazione del 03/06/2014 Probabilità e Statistica

Esercitazione del 03/06/2014 Probabilità e Statistica Esercitazione del 03/06/2014 Probabilità e Statistica David Barbato Esercizio 1. Sia (X i ) i N una successione di variabili aleatorie i.i.d. con distribuzione geometrica di parametro p = 1 2. Sia Y i

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/06/2019 Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 17/6/219 COGNOME e NOME... N. MATRICOLA... Esercizio 1. Un forno produce rosette di pane. Il peso di una

Dettagli

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità

Esercitazione del 30/05/2018 Istituzioni di Calcolo delle Probabilità Esercitazione del /5/8 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Somma di variabili aleatorie indipendenti. Caso discreto. Siano X e Y due variabili aletaroie discrete

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI

PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI PROBABILITÀ I. a.a. 2011/2012 DIARIO DELLE LEZIONI Settimana 5-9 marzo. Elementi di analisi combinatoria (vedasi capitolo I del Ross). Integrazioni: triangolo di Tartaglia, dimostrazione diretta della

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013

Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013 Prova d esame di Istituzioni di Calcolo delle Probabilità Laurea Triennale in Scienze Statistica. 09/09/2013 COGNOME e NOME... N. MATRICOLA... Esercizio 1. (V. 12 punti.) Supponiamo di avere due urne che

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/3/ Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio. E la notte di San Lorenzo, Alessandra decide di andare a vedere le stelle cadenti. Osserverà

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

CP210 Introduzione alla Probabilità: Esame 2

CP210 Introduzione alla Probabilità: Esame 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 2018-19, II semestre 9 luglio, 2019 CP210 Introduzione alla Probabilità: Esame 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

CP110 Probabilità: esame del 20 giugno 2017

CP110 Probabilità: esame del 20 giugno 2017 Dipartimento di Matematica, Roma Tre Pietro Caputo 6-7, II semestre giugno, 7 CP Probabilità: esame del giugno 7 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita

9. Test del χ 2 e test di Smirnov-Kolmogorov. 9.1 Stimatori di massima verosimiglianza per distribuzioni con densità finita 9. Test del χ 2 e test di Smirnov-Kolmogorov 9. Stimatori di massima verosimiglianza per distribuzioni con densità finita Supponiamo di avere un campione statistico X,..., X n e di sapere che esso è relativo

Dettagli

CP110 Probabilità: Esame 27 gennaio Testo e soluzione

CP110 Probabilità: Esame 27 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 27 gennaio, 213 CP11 Probabilità: Esame 27 gennaio 213 Testo e soluzione 1. (6 pts) Tre amici dispongono di 6 monete da un euro e

Dettagli

II Esonero - Testo B

II Esonero - Testo B Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 29 Gennaio 2018 II Esonero - Testo B Cognome Nome Matricola Esercizio 1. (20%) Si

Dettagli

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue Esercitazioni di Statistica Matematica A Lezione 7 Variabili aleatorie continue.) Determinare la costante k R tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 II Esonero - 15 Gennaio 2015

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2014/2015 II Esonero - 15 Gennaio 2015 UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 014/015 II Esonero - 15 Gennaio 015 1 3 4 5 6 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio;

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio; TEST DI AUTOVALUTAZIONE - SETTIMANA 3 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Una variabile casuale

Dettagli

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio Variabili aleatorie multiple X = (X 1,..., X n ) vettore aleatorio F X (x 1,..., x n ) = P(X 1 x 1,..., X n x n ) caso particolare n = 2 (variabile doppia) F X,Y (x, y) = P(X x, Y y) V.a. discreta: (X,

Dettagli

Primi elementi di Probabilità

Primi elementi di Probabilità Primi elementi di Probabilità Sergio Polidoro Dipartimento di Matematica, Università di Bologna In queste dispense vengono introdotte le nozioni di valore atteso e di varianza per variabili aleatorie discrete

Dettagli

4.1 Variabili casuali discrete e continue, e loro distribuzioni

4.1 Variabili casuali discrete e continue, e loro distribuzioni 4 Variabili casuali 4.1 Variabili casuali discrete e continue, e loro distribuzioni Nel Capitolo di Statistica Descrittiva abbiamo chiamato variabile una quantità numerica che vegna rilevata o misurata.

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +.

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +. Problema 1. Siano X, Y 1, Y,... variabili aleatorie indipendenti. Si supponga che X abbia media m e varianza σ e che le Y i abbiano distribuzione gaussiana con media µ e varianza σ. Dato α in (, 1, si

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Prova di giovedi febbraio 2005 (tempo a disposizione: 3 ore). consegna compiti e inizio orale Lunedì

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x () t x ( t ) q Tempo Discreto Continuo Segnale Analogico ( ) x t k t t Segnale

Dettagli

STATISTICA A D (72 ore)

STATISTICA A D (72 ore) STATISTICA A D (72 ore) Marco Riani mriani@unipr.it http://www.riani.it Tipologia di v.a. v.a. discreta numero finito di valori (infinità numerabile) x 1 x 2,, x k con probabilità p 1 p 2, p k Esempio:

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Esercizi: fascicolo 4

Esercizi: fascicolo 4 Esercizi: fascicolo 4 Esercizio 1 Dimostrare le seguenti proprietà (1), (2) e (3): (1) X 1 = 0 X 0; (2) X L 1 (Ω, P ), λ R λx 1 = λ X 1 ; (3) X, Y L 1 (Ω, P ) X + Y 1 X 1 + Y 1. Esercizio 2 Si estraggono

Dettagli

Esercizi di Calcolo delle Probabilità. David Barbato

Esercizi di Calcolo delle Probabilità. David Barbato Esercizi di Calcolo delle Probabilità. David Barbato 2 A chi è rivolto questo eserciziario. Questa è una raccolta di esercizi tratti dai testi d esame dei corsi di Istituzioni di Probabilità e Calcolo

Dettagli

Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010

Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010 Probabilità 1, laurea triennale in Matematica Prova scritta sessione invernale a.a. 2008/09 del 26/01/2010 1. Nello scaffale di un negozio vi sono 20 CD-Rom di software, di cui 2 di grafica e gli altri

Dettagli

V.a. continue. Statistica e biometria. D. Bertacchi. Le v.a. continue. Uniforme. Normale. Indipendenza di v.a. continue

V.a. continue. Statistica e biometria. D. Bertacchi. Le v.a. continue. Uniforme. Normale. Indipendenza di v.a. continue gge una v.a. V.a. continue Ricoramo: DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è una funzione che ha come dominio Ω e come codominio R. In formule: X : Ω R. DEFINIZIONE

Dettagli

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c.

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c. Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 48 Outline 1 2 3 () Statistica 2 / 48 Variabili casuali continue Una variabile casuale X è continua

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

La funzione di ripartizione caratterizza la v.a. Ad ogni funzione di ripartizione corrisponde una ed una sola distribuzione.

La funzione di ripartizione caratterizza la v.a. Ad ogni funzione di ripartizione corrisponde una ed una sola distribuzione. Funzione di ripartizione X v.a. a valori in IR F X (x) = P (X x), x IR Indice X omesso quando chiaro Proprietà funzione di ripartizione F (i) F X (x) ; x (ii) è non decrescente Sia a < b P (a < X b) =

Dettagli

Esercizi - Fascicolo IV

Esercizi - Fascicolo IV Esercizi - Fascicolo IV Esercizio Una compagnia di assicurazioni emette una polizza che pagherà n euro se l evento E si verificherà entro un anno. Se la compagnia stima che l evento E si verificherà entro

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 3 Abbiamo visto: Definizione di partizione di Teorema di Bayes Definizione di variabile aleatoria

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 28 giugno 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 8 giugno 01 Matricola: ESERCIZIO 1. Sia (A n n una successione di eventi indipendenti, tali che P (A n 1 1 n. Sia B := + n=

Dettagli

STATISTICA (modulo II - Inferenza Statistica) Soluzione Esercitazione I

STATISTICA (modulo II - Inferenza Statistica) Soluzione Esercitazione I Soluzione Esercitazione I Esercizio A. Si indichi con A i l evento la banca i decide di aprire uno sportello per il quale Pr(A i = 0.5 (e dunque Pr(A i = 0.5 per i =, 2, 3. Lo spazio degli eventi dato

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

X Vincita (in euro) Tabella 1: Vincite

X Vincita (in euro) Tabella 1: Vincite Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente

Dettagli

CP110 Probabilità: Esame 5 giugno Testo e soluzione

CP110 Probabilità: Esame 5 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 5 giugno, 212 CP11 Probabilità: Esame 5 giugno 212 Testo e soluzione 1. (6 pts) Sette biglietti numerati da 1 a 7 vengono distribuiti

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 30 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Capitolo 1. Elementi di Statistica Descrittiva. 1.5 Esercizi proposti

Capitolo 1. Elementi di Statistica Descrittiva. 1.5 Esercizi proposti Capitolo 1 Elementi di Statistica Descrittiva 1.5 Esercizi proposti Esercizio 1.5.1 In questo caso n = 24 e, dopo aver ordinato i dati (usando il metodo stem-and-leaf per esempio), 3 4 4 5 5 5 6 6 7 7

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (1)

Computazione per l interazione naturale: fondamenti probabilistici (1) Computazione per l interazione naturale: fondamenti probabilistici (1) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di mercoledì 22 Settembre 24 (tempo a disposizione: 2 ore e 4 minuti. consegna compiti e inizio

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2013/2014 www.mat.uniroma2.it/~caramell/did 1314/ps.htm 04/03/2014 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 4 luglio 2006 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del 4 luglio 26 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

Esercizi - Fascicolo V

Esercizi - Fascicolo V Esercizi - Fascicolo V Esercizio Sia X una v.c. uniformenente distribuita nell intervallo ( π 2, π 2 ), cioè f X (x) = π ( π 2, π 2 ) (x). Posto Y = cos(x), trovare la distribuzione di Y. Esercizio 2 Si

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità M. Pratelli e M. Romito Gli esercizi che seguono sono stati proposti nel corso Probabilità dell Università di Pisa negli a.a. 2012-13 e 2013-14 (M. Romito) e 2014-15

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 luglio 6 Vettori aleatori e funzioni di v.a. Esercizio Si lanciano due dadi equi. Qual è la probabilità che la somma sia? [ ] Siano X, X le v.a.

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità

7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità 7.6 Distribuzione Esponenziale. 111 7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità { λe λx se x, (76) f(x) = se x

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 29 maggio, 2012 CP110 Probabilità: Esonero 2 Testo e soluzione 1. (8 punti) La freccia lanciata da un arco è distribuita uniformemente

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

(e it + e 5 2 it + e 3it )

(e it + e 5 2 it + e 3it ) CALCOLO DELLE PROBABILITÀ - 13 gennaio 1999 1. Siano A, B, C eventi, con P (A) = 0.3, P (B) = 0.5, P (C) = 0.7, e per i quali è noto che i relativi costituenti sono C 1 = A c B c C c, C 2 = AB c C c, C

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto

Dettagli

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012

Calcolo delle Probabilità e Statistica Matematica Fisciano, 10/1/2012 Fisciano, 10/1/2012 Esercizio 1 Un esperimento consiste nel generare a caso un vettore di interi (x 1, x 2, x 3, x 4 ), dove x i {1, 2, 3, 4, 5, 6} i. (i) Si individui lo spazio campionario, determinandone

Dettagli

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016

Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 01/02/2016 Primo appello prova scritta di Calcolo delle probabilità Laurea Triennale in Matematica 0/0/06 COGNOME e NOME... N. MATRICOLA... Esercizio. (9 punti) Sia {S n } n N una passeggiata aleatoria standard (cioè

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

, B con probabilità 1 4 e C con probabilità 1 4.

, B con probabilità 1 4 e C con probabilità 1 4. Laurea triennale in MATEMATICA, Corso di PROBABILITÀ Prof. L. Bertini - G. Nappo - F. Spizzichino Esonero del 0.06.00 N.B. Scrivere le soluzioni degli esercizi su questi fogli giustificando brevemente

Dettagli

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina)

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina) Calcolo delle probabilità (3/7/00). La distribuzione di probabilità di un numero aleatorio X non negativo soddisfa la condizione P (X > x + y X > y) = P (X > x), x > 0, y > 0. Inoltre la previsione di

Dettagli

Correzione terzo compitino, testo A

Correzione terzo compitino, testo A Correzione terzo compitino, testo A 24 maggio 2 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

Esercizi di Calcolo delle Probabilità. 2010-2011. David Barbato

Esercizi di Calcolo delle Probabilità. 2010-2011. David Barbato Esercizi di Calcolo delle Probabilità. 1-11 David Barbato A chi è rivolto questo eserciziario. Questa è una raccolta di esercizi tratti dai testi d esame dei corsi di Istituzioni di Probabilità e Calcolo

Dettagli

SOLUZIONI DEL TEST DI PREPARAZIONE ALLA 2 a PROVA INTERMEDIA

SOLUZIONI DEL TEST DI PREPARAZIONE ALLA 2 a PROVA INTERMEDIA SOLUZIONI DEL TEST DI PREPARAZIONE ALLA a PROVA INTERMEDIA Esercizio. Le v.c. X e Y possono assumere solo i valori e (ad es. ingresso ed uscita di un canale di comunicazione binario). Sapendo che X è una

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli