SIMULAZIONE - 22 APRILE QUESITI
|
|
|
- Elisa Gigli
- 10 anni fa
- Visualizzazioni
Transcript
1 Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione, giustificando la isposta. Q ) La funzione è definita, continua e deivabile su tutto l asse eale. Risulta: f (x) = (x )e x 8 pe ogni x, quindi la funzione è sempe cescente in senso stetto, quindi è invetibile (cioè ealizza una coispondenza biunivoca ta dominio e codominio). ) Posto x = f (y), isulta x (y) = y (x) e siccome y (x) = se x =, f non è deivabile in coispondenza di x=, cioè in y = f() = e 8. Notiamo che il dominio della f è il codominio della f, che è y>. Anche se non ichiesto, deteminiamo l espessione analitica della funzione invesa. Da y = f(x) = e x 8 icaviamo: x 8 = ln(y), da cui x = f (y) = 8 + ln (y). Q Data l'equazione diffeenziale del pimo odine y = x deteminae la soluzione del poblema di Cauchy, tenendo conto della condizione iniziale y()=. Da y = x icaviamo: y = dx = ln x + k e dovendo essee y() = otteniamo: = k. x La soluzione ichiesta, definita in un intono di x=, quindi dove x->, è : y = ln (x ) / 6
2 Di quale delle seguenti equazioni diffeenziali è soluzione la funzione y = ln(x )? a) (x ) y (x ) y + = b) x y (x ) y + x + = c) (x ) y (x ) y + = d) x y + y + x 9 = Giustificae la isposta. Q Notiamo che la funzione è continua pe x>, ed ammette deivata pima e deivata seconda, che sono: y = x y = (x ) a) (x ) y (x ) y + = x (x ) + b) x y (x ) y + x + = x (x ) + x + c) (x ) y (x ) y + = + = veificata d) x y + y + x 9 = x (x ) + x + x 9 La soluzione è quindi la c). Veificae il caattee della seie Q4 + n= n + 7n + e, nel caso in cui sia convegente, deteminae la sua somma. Notiamo che il temine geneale a n = n +7n+ è asintotico a n, quindi la seie è convegente. Si tatta di una seie telescopica, la cui somma si ottiene pocedendo nel modo seguente: Poiché n + 7n + = (n + )(n + 4), isulta: n + 7n + = (n + )(n + 4) = a n + + b n + 4 = a(n + 4) + b(n + ) (n + )(n + 4) = n(a + b) + 4a + b (n + )(n + 4) Da cui, dato che l uguaglianza deve essee veificata pe ogni valoe accettabile di n: a + b = { 4a + b = Petanto: b = a { a = b = { a = / 6
3 a n = n + 7n + = a n + + b n + 4 = n + n + 4 La successione delle somme paziali è quindi: s n = a + a + + a n = ( 4 ) + ( 4 5 ) + + ( n + n + ) + ( n + n + 4 ) = n + 4 Risulta: lim s n = lim ( n + n + n + 4 ) = Quindi la seie è convegente ed ha pe somma. Q5 Pe pogettae un sito web è necessaio geneae dei codici unici di accesso. Si vogliono utilizzae, a tale scopo, due lettee maiuscole dell'alfabeto inglese seguite da una seie di numei compesi ta e 9. Tutti i codici di accesso dovanno avee lo stesso numeo di cife ed è ammessa la ipetizione di lettee e numei. Qual è il numeo minimo di cife da impostae in modo da iuscie a geneae almeno 5 milioni di codici di accesso divesi? Giustificae la isposta. La scelta delle due lettee (ta le 6 possibili) è data dalle disposizioni con ipetizioni di 6 oggetti a due a due: D 6, = 6 = 676 La scelta di n cife ( n ) è data dalle disposizioni con ipetizioni di oggetti ad n ad n: D,n = n Il numeo di codici unici possibile è dato da: D 6, D,n = 676 n Si vuole che i codici siano almeno 5 milioni, quindi deve essee: 676 n 5 6 n log = log log Quindi n deve essee almeno 4: i codici devono essee fomati da almeno 6 caattei ( lettee seguite da almeno 4 cife). La base di un solido, nel piano Oxy, è il cechio avente come cento l'oigine e aggio. Le sezioni del solido pependicolai all'asse delle x sono quadati. Calcolae il volume del solido. La ciconfeenza di cento O e aggio ha equazione: x + y = 9, da cui y = 9 x Q6 / 6
4 La sezione quadata ha lato y, essendo y l odinata de geneico punto della ciconfeenza del semipiano y. Il quadato ha quindi aea: A = (y) = 4y = 4(9 x ) = A(x) Il volume del solido è dato da: b V = A(x)dx a = A(x)dx = 8(7 9) = 44 u = V = 4(9 x ) dx Q7 = 8 (9 x ) dx = 8 [9x x ] = Tovae l'equazione del piano tangente alla supeficie sfeica avente come cento l'oigine e aggio, nel suo punto di coodinate (,,z), con z negativa. La sfea ha equazione: x + y + z = 4; ponendo x= e y= otteniamo z = ± Il punto di tangenza è quindi: T = (,, ). Il piano pependicolae alla sfea in T ha come nomale la etta OT, quindi ha paameti diettoi: a = =, b = =, c = =. Quindi l equazione del piano è: a(x x T ) + b(y y T ) + c(z z T ) = x + y (z + ) = quindi: x + y z 4 = Calcolae il seguente integale indefinito Q8 (acsin(x) + accos (x)) dx e appesentae gaficamente la funzione pimitiva passante pe il punto ( π ; ). 4/ 6
5 Notiamo che: acsin(x) + accos(x) = π (*) Quindi: (acsin(x) + accos (x)) dx = π x + k La pimitiva passante pe il punto ( ; ) è quella pe cui: π π π + k = da cui k =. Quindi la pimitiva ichiesta ha equazione: y = π x + che appesenta una etta: Ossevazione Pe dimostae la elazione (*) si può pocedee nel seguente modo: poniamo a = acsin(x) da cui x = sin(a) e b = accos(x) da cui x = cos (b) Siccome x = cos(b) = sin ( π b), acsin(x) = π b, a = π b, a + b = π, petanto: acsin(x) + accos(x) = π. Q9 Calcolae il seguente integale impopio + x ln (x) dx Notiamo che la funzione di equazione y = x ln (x) è continua nell intevallo [; + ); quindi: 5/ 6
6 I = + x ln (x) dx = Calcoliamo l integale indefinito: b lim b + x ln (x) dx x ln (x) dx = (ln(x)) x dx = (ln(x)) + c = ln(x) + c I = lim [ b b + ln(x) ] = lim [ b + ln(b) + ln() ] = + ln() = ln() Q In una stazione feoviaia, fa le 8 e le del mattino, aivano in media ogni minuti due teni. Deteminae la pobabilità che in minuti: a) non aivi alcun teno; b) ne aivi uno solo; c) ne aivino al massimo quatto. Si tatta di una distibuzione di pobabilità di Poisson: p = λx e λ x! dove λ =, quindi: p = x e. x! a) x=: p() = e! b) x=: p() = e! = e.5 =.5 % = e.7 = 7. % c) p() + p() + p() + p() + p(4) = e! + e! + e! + e! + 4 e 4! = e + e + e + 4 e + e = e ( ) = = 94.7 % e = Con la collaboazione di Angela Santamaia, Simona Scolei e Stefano Scolei 6/ 6
REALTÀ E MODELLI SCHEDA DI LAVORO
REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato
REALTÀ E MODELLI SCHEDA DI LAVORO
REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo
La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA
La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi
Problema n. 1: CURVA NORD
Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,
C8. Teoremi di Euclide e di Pitagora
8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo
3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).
Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
Investimento. 1 Scelte individuali. Micoreconomia classica
Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste
Il criterio media varianza. Ordinamenti totali e parziali
Il citeio media vaianza Il citeio media vaianza è un alto esemio di odinamento aziale ta lotteie definito da a M b se la lotteia b domina la lotteia a se ha media sueioe e vaianza infeioe a b eσ a σ b
Disequazioni. 21.1 Intervalli sulla retta reale
Disequazioni 1 11 Intevalli sulla etta eale Definizione 11 Dati due numei eali a e b, con a < b, si chiamano intevalli, i seguenti sottoinsiemi di R: a, b) = {x R/a < x < b} intevallo limitato apeto, a
I appello - 26 Gennaio 2007
Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)
Grandezze cinematiche angolari (1)
Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza
EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.
EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema
Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di
Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva
Massimi e minimi vincolati
Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:
La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.
FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
Limiti e continuità delle funzioni reali a variabile reale
Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti
durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr
4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo
Corso di Matematica per CTF Appello 15/12/2010
Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A
LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula
Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R
Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.
f(x) = x3 2x 2x 2 4x x 2 x 3 2x 2x 2 4x =, lim lim 2x 2 4x = +. lim Per ricavare gli asintoti obliqui, essendo lim
Esercizi 0//04 - Analisi I - Ingegneria Edile Architettura Esercizio. Studiare la seguente funzione e disegnarne il graco. Soluzione: f(x) = x3 x x 4x La funzione è denita dove il denominatore risulta
a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:
ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire
CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM
CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo
SIMULAZIONE TEST ESAME - 1
SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI
CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni
CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI
CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);
Elementi di topologia della retta
Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme
Esercizi sugli integrali impropri
Esercizi sugli integrali impropri Esercizio. Studiare 2 x4 dx. Svolgimento: è un integrale improprio, in quanto f(x) =, x (, 2] ha una singolarità in : x4 lim x + x4 = +. Osserviamo che f è positiva, quindi
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
21. Studio del grafico di una funzione: esercizi
1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012
Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione
Prova di recupero del debito formativo di matematica 02/11/09 A
Prova di recupero del debito formativo di matematica 02/11/09 A Barrare la risposta esatta. Per ogni quesito, la risposta esatta è unica. Ogni risposta esatta vale un punto, ogni risposta errata comporta
Problema n. 1: CURVA NORD
Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,
LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.
7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,
VALORI PERIODICI O RENDITE
VALORI PERIODICI O RENDITE LE RENDITE SONO VALORI PERIODICI CHE SI RIPETONO AD INTERVALLI REGOLARI DI TEMPO POSSONO ESSERE: ATTIVE: I I PRODOTTI DI DI UNA AZIENDA IL IL CANONE DI DI AFFITTO GLI STIPENDI
SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014
SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0
2 FUNZIONI REALI DI VARIABILE REALE
2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento
ORDINAMENTO 2014 QUESITO 1
www.matefilia.it ORDINAMENTO 2014 QUESITO 1 Per il teorema dei seni risulta: = da cui sen α = Quindi α = arcsen ( ) che porta alle due soluzioni: α 41,810 41 49 α 138 11 QUESITO 2 I poliedri regolari (solidi
Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.
Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco
Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.
D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due
la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.
1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero
INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.
INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014
Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,
FAST FOURIER TRASFORM-FFT
A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come
b) Il luogo degli estremanti in forma cartesiana è:
Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere
COGNOME e NOME: FIRMA: MATRICOLA:
Anno Accademico 04/ 05 Corsi di Analisi Matematica I Proff. A. Villani, R. Cirmi e F. Faraci) Prova d Esame del giorno 6 febbraio 05 Prima prova scritta compito A) Non sono consentiti formulari, appunti,
Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica
Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;
a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1
LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza
CAPITOLO 10 La domanda aggregata I: il modello IS-LM
CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,
Premessa: Nella traccia non è specificato cosa accade se si effettuano per esempio 2,3 minuti di conversazione.
Esame di stato 5 - Proposta di risoluzione del problema Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per
Matematica e Statistica
Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie
Composizione di funzioni analitiche e loro dominio Es_1) In relazione alle funzioni reali di variabile reale 1 2
Composizione di unzioni analitiche e loro dominio Es_) In relazione alle unzioni reali di variabile reale ( ), ( ) 3, h( ) 4 risolvere i seuenti quesiti Classiicare le unzioni e determinare i rispettivi
.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1
Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è
Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.
Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione 19: campi vettoriali e formule di Gauss-Green nel piano.
1 Serie di Taylor di una funzione
Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita
Esponenziali elogaritmi
Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.
Soluzione del tema d esame di matematica, A.S. 2005/2006
Soluzione del tema d esame di matematica, A.S. 2005/2006 Niccolò Desenzani Sun-ra J.N. Mosconi 22 giugno 2006 Problema. Indicando con A e B i lati del rettangolo, il perimetro è 2A + 2B = λ mentre l area
3. Quale affermazione è falsa?
1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,
Calcolo differenziale Test di autovalutazione
Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia
Esame di Analisi Matematica prova scritta del 23 settembre 2013
Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
MODULO O VALORE ASSOLUTO
Modulo o valore assoluto F. Bonaldi C. Enrico 1 MODULO O VALORE ASSOLUTO Questo concetto risulta spesso di difficile comprensione. Per capirlo, occorre applicare rigorosamente la definizione di modulo.
CORSO DI LAUREA IN INGEGNERIA.
CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
Funzioni e loro invertibilità
Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
SUCCESSIONI NUMERICHE
SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.
Elenco Ordinato per Materia Chimica
( [B,25404] Perché le ossa degli uccelli sono pneumatiche, cioè ripiene di aria? C (A) per consentire i movimenti angolari (B) per immagazzinare come riserva di ossigeno X(C) per essere più leggere onde
RETTE, PIANI, SFERE, CIRCONFERENZE
RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,
Matematica generale CTF
Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione
Fisica Generale A. Gravitazione universale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico 2015 2016. Maurizio Piccinini
A.A. 015 016 Mauizio Piccinini Fisica Geneale A Gavitazione univesale Scuola di Ineneia e Achitettua UNIBO Cesena Anno Accademico 015 016 A.A. 015 016 Mauizio Piccinini Gavitazione Univesale 1500 10 0
SOLUZIONI D = (-1,+ ).
SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni
I appello - 24 Marzo 2006
Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione
32. Significato geometrico della derivata. 32. Significato geometrico della derivata.
32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata
15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...
15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura
Esercizio 1. Date le rette
Date le ette Eseciio y : : y a) Scivee le equaioni paametiche delle ette e. b) Dopo ave veificato che le ette ed sono sghembe, tovae l equaione di un piano σ contenente e paallelo a. c) Deteminae le equaioni
EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s
STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al
L area S compresa fra l arco e la corda AB si ottiene come differenza fra l area del settore circolare e l area del triangolo: x 2 1 2
EAME DI TATO DI LICEO CIENTIFICO essione Odinaia 009 CORO DI ORDINAMENTO Poblema È assegnato il settoe cicolae AOB di aggio e ampiezza x ( e x sono misuati, ispettivamente, in meti e adianti) i povi che
