3-DIMENSIONAL MATCHING

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3-DIMENSIONAL MATCHING"

Transcript

1 3-DIMENSIONAL MATCHING Vaccar Lorenzo 14 gennao 2004 Corso d Laurea specalstca n nformatca, Unverstà d Trento va Sommarve 14, Povo, Italy 40qc@krk.scence.untn.t Sommaro In questo documento dmostreremo che l problema del 3-DM appartene all nseme de problem NP-complet. La rduzone [2] è da 3-SAT ed è basata sulla tecnca del Component desgn. Keywords: 3-SATISFIABILITY, 3-SAT, 3-DIMENSIONAL MATCHING, 3-DM, problem NP, problem NP-complet. 1 Introduzone Consderamo l seguente problema de matrmon : dat n uomn celb e n donne nubl ed una lsta d coppe mascho-femmna che vorrebbero vcendevolmente sposars, è possble combnare n matrmon n modo da accoppare ogn ndvduo evtando però la polgama? E stato dmostrato che tale problema può essere rsolto n tempo polnomale ed attualmente l algortmo che detene l record sul runnng tme asntotco è stato proposto n [1]. Estendamo ora la domanda al caso n cu s abbano tre dfferent sess, e ogn trpla corrsponda ad un matrmono a tre desderable da tutt e tre partecpant. In questo caso evtare la polgama sgnfca evtare che due trple dfferent condvdano una persona d uno de tre sess. Nel problema del 3-DM gl nsem W, X, Y corrspondono a tre dfferent sess, e ogn trpla n M W X Y corrsponde ad un matrmono a tre desderable da tutt e tre partecpant. Tradzonalst e bacchetton saranno felc d sapere che n questo caso, contraramente a quanto detto per matrmon a due, l problema del 3-DM è NP-completo e molto probablmente non può essere rsolto n tempo polnomale. Prma d dare la defnzone formale del problema 3-DM ntroducamo l sgnfcato d alcun termn che useremo frequentemente nel proseguo del documento. Defnzone 1.1 (Matchng). Dato un grafo G = (V, E), un matchng è un sottonseme d arch E E, tale che non esstono due arch d E ncdent nel medesmo nodo d V. 1

2 Defnzone 1.2 (Nodo coperto). Con rfermento ad un grafo G = (V, E) e ad un matchng M, dremo che un nodo d V è coperto (da M) se appartene ad un arco n M, altrment dremo che l nodo è esposto. Defnzone 1.3 (Perfect matchng). Un matchng d G = (V, E), che copra tutt nod d V, è detto perfect matchng Fgura 1: Un esempo d matchng (arch pù evdent) e d nodo esposto (nodo 3). In Fgura 1 damo un esempo degl oggett defnt n 1.1 e n 1.2. Il matchng (arch pù evdent) copre tutt nod del grafo tranne l nodo 3, che è esposto. Le nozon d matchng, nodo coperto ed esposto, e perfect matchng s estendono n modo naturale agl pergraf. Un pergrafo è una coppa (V, H), dove V è un nseme fnto d nod e H è una famgla d sottonsem d V dett perarch. Nel caso n cu ogn perarco d H abba cardnaltà due, l pergrafo è un grafo. Fgura 2: L pergrafo delle rghe e delle colonne d una matrce ha due perfect matchng dstnt. La Fgura 2 mostra un esempo d pergrafo n cu ogn rga e ogn colonna rappresenta un perarco. In tale pergrafo possamo ndvduare due perfect matchng dstnt: l prmo relatvo alle rghe, l secondo relatvo alle colonne. Possamo ora dare la defnzone d 3-DM. Defnzone 1.4 (3-DM). ISTANZA: 2

3 Un nseme M W X Y, dove W, X, Y sono nsem dsgunt avent lo stesso numero q d element. DOMANDA: M contene un perfect matchng, coè un sottonseme M M tale che M = q e nessun elemento d W X Y appartene a due dverse trple n M? 2 3-DM è NP-completo In termn formal, dmostreremo l seguente: Teorema DM è NP-completo. Dmostrazone. Lo schema tpo per una dmostrazone d NP-completezza, come prevsto n [2], prevede quattro pass prncpal: 1. s dmostra che Π appartene a NP; 2. s selezona un problema Π che è noto essere NP-completo; 3. s costrusce una trasformazone f da Π a Π; 4. s prova che f è una trasformazone polnomale. 1. Per dmostrare che 3-DM appartene a NP possamo utlzzare un algortmo non determnstco che genera un sottonseme d q = W = X = Y trple da M e che controlla n tempo lneare se un elemento non sa condvso da due o pù trple. 2. Per la seconda fase della dmostrazone selezonamo l problema NP-completo 3-SAT [2]. Il problema è una versone rstretta d SAT nel quale le stanze hanno esattamente tre letteral n ogn clausola. La sua semplce struttura lo rende uno de problem pù utlzzat per dmostrare altr rsultat d NP-completezza. Defnzone 2.1 (3-SAT). ISTANZA: Una collezone C = {c 1, c 2,..., c m } d clausole su un nseme fnto U d varabl tale che c = 3 per 1 m. DOMANDA: Esste un assegnamento d vertà per U che soddsfa tutte le clausole n C? 3. e 4. Costruamo ora una trasformazone f da 3-SAT a 3-DM. Sano U = {u 1, u 2,..., u n } l nseme d varabl e C = {c 1, c 2,..., c m } l nseme d clausole d un arbtrara stanza d 3-SAT. Partendo da U, C costruremo un stanza d 3-DM composta da tre nsem dsgunt W, X, Y con dentca cardnaltà e da un nseme M W X Y, e dmostreremo che M contene un perfect matchng M se e solo se U, C è soddsfacble. Antcpamo subto che, nell stanza d 3-DM a cu perverremo, avremo che W = {u [j], u [j] : 1 n, 1 j m}, da cu possamo calcolare mmedatamente l valore d q = W = 2mn. Secondo la tecnca denomnata Component Desgn, descrveremo nel seguto tre tpologe d component: Truth settng and fan-out, Satsfacton testng e Garbage collecton. 3

4 Per cascuna varable u U ntroducamo una componente T d tpo Truth settng and fan-out. La struttura d T dpende dal numero totale m d clausole n C. Le Fgure 3 e 4 mostrano la componente per m = 4. b [1] a [2] a [1] b [4] T b [2] a [3] a [4] b [3] Fgura 3: La componente Truth settng and fan-out T nel caso d m = 4. Ogn componente Truth settng and fan-out è composta da element ntern a [j] X e b [j] Y, 1 j m, che non appartengono ad altre trple, e da element estern u [j], u [j] W, 1 j m, che possono appartenere anche ad altre trple. Suddvdamo le trple d questa componente n due nsem: T t T f = {(u [j], a [j], b [j]) : 1 j m} = {(u [j], a [j + 1], b [j]) : 1 j m} {(u [m], a [1], b [m]) : 1 j m}. Consderato che nessuno degl element ntern {(a [j], b [j]) : 1 j m} può apparre nelle trple al d fuor d T = T t T f, ogn perfect matchng M dovrà ncludere esattamente m trple da T : o tutte le trple n T t f o tutte le trple n T. Dunque, nelle nostre ntenzon, un perfect matchng M M specfca un assegnamento d vertà per U, con la varable u vera se e solo se M T = T t. Per ogn clausola c j C, ntroducamo ora una componente Satsfacton testng C j. Ogn componente d questo tpo contene solo due element ntern, s x [j] X e s y [j] Y, e tre element estern, pres dal sottonseme W j = {u [j], u [j] : 1 n} d W, determnat da qual tre letteral sono present nella clausola c j. La componente è data dal seguente nseme d tre trple: {(u [j], s x [j], s y [j]) : l letterale u appare n c j } {(u [j], s x [j], s y [j]) : u appare n c j }. Per costruzone, per ogn C j, un qualsas perfect matchng M M deve contenere esattamente una trpla d C j che s occup d coprre gl element ntern s x [j] ed s y [j] d C j. Questo è possble solo se almeno un letterale d c j non appartene alle trple n T M selezonate dalle component Truth settng and fan out d cu s è detto prma. In questo modo, le component Truth settng and fan out forzano l valore d vertà d una varable u, e la componente Satsfacton testng selezona un occorrenza d una varable che fa sì 4

5 u =true u =false b [1] a [1] b [1] a [2] a [1] b [4] a [2] T t b [4] a [4] T f b [2] a [3] b [3] b [2] a [3] a [4] b [3] Fgura 4: La selezone d tutt gl nsem d T t (gl nsem ombreggat), oppure d tutt gl nsem d T f (gl nsem trasparent), lasca rspettvamente scoperte tutte le u [j] o tutte le u [j]. che la rspettva clausola sa soddsfatta. Prma d ntrodurre la terza componente eseguamo alcun contegg (v. Tabella 2): abbamo gà detto che q = W = 2mn. Le due component vste fno ad ora permettono d comporre solo una parte del perfect matchng M che, rcordamo, deve essere composto precsamente da q trple; n partcolare, la componente Truth settng and fan out selezona da M esattamente mn trple, e la componente Satsfacton testng ne selezona m. Ne consegue che l numero delle trple mancant per completare l perfect matchng è: 2mn mn m = m(2n n 1) = m(n 1). Per consentre le trple mancant ntroducamo una componente G detta Garbage collecton. La componente Garbage collecton convolge element ntern g x [k] X e g y [k] Y, 1 k m(n 1), e tutt gl element d W n qualtà d element estern. Defnamo G come l seguente nseme d trple: G = {(u [j], g x [k], g y [k]), (u [j], g x [k], g y [k]) : 1 k m(n 1), 1 n, 1 j m}. Ogn coppa g x [k], g y [k] consente ora d coprre un nodo u [j] o u [j] d W che non appare nelle trple n M G. Dunque la struttura d G asscura che possano essere sempre copert restant m(n 1) element d W selezonando appropratamente M G. La componente G gode nfatt della seguente propretà: Propretà 1. Ogn matchng n G copre al pù m(n 1) nod d W. Sa W un qualsas sottonseme d W con W = m(n 1). Allora esste un matchng n G che copre W. L nseme G garantsce pertanto che, se un matchng n M G soddsfa vncol mpost dalle component Truth settng and fan-out e Satsfacton testng, allora tale sottonseme può essere esteso ad un perfect matchng M M. Rassumendo abbamo: W = {(u [j], u [j] : 1 n, 1 j m} 5

6 X = A S X G X dove A = {a [j] : 1 n, 1 j m} S X = {s x [j] : 1 j m} G X = {g x [j] : 1 j m(n 1)} Y = B S Y G Y dove B = {b [j] : 1 n, 1 j m} S Y = {s y [j] : 1 j m} G Y = {g y [j] : 1 j m(n 1)}. Abbamo noltre defnto l nseme M come: ( n ) m M = T =1 j=1 C j G. Nella Tabella 1 possamo notare la composzone degl nsem W, X, Y nel caso d m = 2 e n = 4. W X Y u 1 [1] a 1 [1] b 1 [1] u 1 [1] a 1 [2] b 1 [2] u 1 [2] a 2 [1] b 2 [1] u 1 [2] a 2 [2] b 2 [2] u 2 [1] a 3 [1] b 3 [1] u 2 [1] a 3 [2] b 3 [2] u 2 [2] a 4 [1] b 4 [1] u 2 [2] a 4 [2] b 4 [2] u 3 [1] s x [1] s y [1] u 3 [1] s x [2] s y [2] u 3 [2] g x [1] g y [1] u 3 [2] g x [2] g y [2] u 4 [1] g x [3] g y [3] u 4 [1] g x [4] g y [4] u 4 [2] g x [5] g y [5] u 4 [2] g x [6] g y [6] Tabella 1: Gl nsem W, X, Y nel caso d m = 2 e n = 4. S not come ogn trpla n M sa effettvamente un elemento d W X Y e pertanto M sa da consderars come un stanza d 3-DM. Inoltre, M contene solo 2mn+3m+2m 2 n(n 1) trple la cu defnzone n termn dell stanza d 3-SAT che s ntende rappresentare è dretta. Se ne deduce che M può essere costruto n tempo polnomale partendo da U, C. Per completare la nostra dmostrazone d NP-completezza resta solo da dmostrare che M ammette un perfect matchng M se e solo se U, C è soddsfacble. A questo scopo predsponamo seguent due lemm. 6

7 Lemma 2.2. Se l stanza U, C d 3-SAT è soddsfacble, allora M ammette un perfect matchng. Dmostrazone. Sa t : U {T, F } un assegnamento d vertà che soddsfa C. Costruamo l perfect matchng M M nel modo seguente: per ogn clausola c j C, sa z j {u, u : 1 n} c j un letterale posto a vero da t (ne esste almeno uno, vsto che t soddsfa c j ). Ora ponamo: M = T t t(u )=T t(u )=F T f m {(z j [j], s x [j], s y [j])} G. dove G è un matchng d m(n 1) trple d G che nclude tutte le g x [k], g y [k], ed nod u [j], u [j] non ancora copert n W. L esstenza d un tale G è garantta dalla Propretà 1. Ne consegue che M è un perfect matchng. Lemma 2.3. Sa M un perfect matchng d M, allora U, C è soddsfacble. Dmostrazone. Abbamo vsto che, per ogn u U, M nclude esattamente m trple da T : o tutte le trple n T t o tutte le trple n T f. Possamo pertanto defnre l truth assgnment t : U {T, F } n cu t(u ) = T se e solo se M T = T t. Mostreremo ora che t è un truth assgnment che soddsfa C. Consderamo pertanto la generca clausola c j C. S not che, per coprre gl element prvat della componente d tpo Satsfacton testng C j, almeno una trpla d C j deve essere contenuta n M. Tale trpla coprrà un letterale d c j che non appartene a nessuna trpla n M T. Dato che t(u ) = T se e solo se M T = T t, l truth assgnment t soddsfa la clausola c j. Ne consegue che tutte le clausole c j C, 1 j m, sono soddsfatte dal truth assgnment t. Qund U, C è soddsfacble. j=1 Sgnfcato Enumerazone Numero d varabl n U, C n Numero d clausole U, C m Componente Truth settng and fan out : trple n M 2mn Componente Truth settng and fan out : trple n M mn Componente Satsfacton testng : trple n M 3m Componente Satsfacton testng : trple n M m Componente Garbage collecton : trple n M 2m 2 n(n 1) Componente Garbage collecton : trple n M m(n 1) Dmensone del perfect matchng: M = q = W = X = Y 2mn Dmensone M 2mn + 3m + 2m 2 n(n 1) Tabella 2: Tabella rassuntva d rfermento. Rferment bblografc [1] HOPCROFT, J. E., AND R. M. KARP, An n 5 /2 algorthm for maxmum matchngs n bpartte graphs, SIAM J. Comput., 2, (1973). [2] MICHAEL R. GARY / DAVID S. JOHNSON, Computers and Intractablty, W. H. Freeman And Company, San Francsco. (1979). 7

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

sda 2006/6/1 9:59 page 317 #333

sda 2006/6/1 9:59 page 317 #333 sda 2006/6/1 9:59 page 317 #333 Captolo 9 NP-completezza SOMMARIO In questo captolo fnale rprendamo n esame le class d complesstà ntrodotte nel prmo captolo, dandone una defnzone formale basata sul concetto

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott.

Lezione n 18. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott.ssa Gentili Dott. Lezon d Rcerca Operatva Corso d Laurea n Informatca Unverstà d Salerno Lezone n 18 - Teora de graf: defnzon d base - Problema del flusso a costo mnmo Prof. Cerull Dott.ssa Gentl Dott. Carrabs Teora de

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON

3 CAMPIONAMENTO DI BERNOULLI E DI POISSON 3 CAMPIOAMETO DI ROULLI E DI POISSO 3. ITRODUZIOE In questo captolo esamneremo due schem d camponamento che dversamente dal camponamento casuale semplce non producono campon d dmensone fssa ma varable.

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Scrivere programmi corretti

Scrivere programmi corretti Scrvere programm corrett L esempo della rcerca bnara o dcotomca J. Bentley, Programmng Pearls, Addson Welsey. 1 Schema processo produzone funzone teratva Algortmo n pseudo-codce Indvduazone nvarante Codfca

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Analisi Matenatica Lezione 1 23 settembre 2013

Analisi Matenatica Lezione 1 23 settembre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 1 23 settembre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/24? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del docente www.danelertell.name

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio

Algoritmo di Carlier- Pinson per problemi di Job Shop Scheduling: un esempio Formulazone e Notazon Algortmo d Carler- Pnson er roblem d Job Sho Schedulng: un esemo Notazon o C M ( o r, q -esma oerazone del ob Temo d rocessamento d o Macchna che deve rocessare o Clque (nseme d oerazon

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008

Intelligenza Artificiale II. Ragionamento probabilistico Rappresentazione. Marco Piastra. Intelligenza Artificiale II - AA 2007/2008 Intellgenza rtfcale II Ragonamento probablstco Rappresentazone Marco astra Ragonamento probablstco: rappresentazone - arte Mond possbl sottonsem event artzon e varabl aleatore robabltà Margnalzzazone Condzonal

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Ragionamento probabilistico: rappresentazione

Ragionamento probabilistico: rappresentazione Intellgenza Artfcale II Ragonamento probablstco: rappresentazone Marco astra Intellgenza Artfcale II - A.A. - Rappresentazone robablstca ] Ragonamento probablstco: rappresentazone Mond possbl sottonsem

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Struttura delle ret logstche Sstem produttv multstado Struttura logstca

Dettagli

Algoritmi basati sulla tecnica Divide et Impera

Algoritmi basati sulla tecnica Divide et Impera Qucksort Algortm basat sulla tecnca Dvde et Impera In questo corso: Rcerca bnara Mergesort (ordnamento) Qucksort (ordnamento) Moltplcazone d nter Moltplcazone d matrc (non n programma) NOTA: nonostante

Dettagli

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1

Università di Cassino Corso di Statistica 1 Esercitazione del 17/10/2006 Dott. Alfonso Piscitelli. Esercizio 1 Unverstà d Cassno Corso d Statstca Eserctazone del 7/0/006 Dott. Alfonso Psctell Eserczo Il seguente data set rporta la rlevazone d alcun caratter su un collettvo d 0 soggett. Soggetto Sesso Età Reddto

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Anna Nobl 1 Defnzone e grad d lbertà S consder un corpo d massa totale M formato da N partcelle cascuna d massa m, = 1,..., N. Il corpo s dce rgdo se le dstanze mutue tra tutte le partcelle che lo compongono

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Programma. Esercz tpo svolt 3. Eserctazon

Dettagli

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI GIOVANNI GAIFFI, CORSO DI ALGEBRA 1 2010/2011 NOTA: FA PARTE DEL PROGRAMMA SOLO LA CONOSCENZA DELL ENUNCIATO DEL TEOREMA

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor

Algoritmi e Strutture di Dati (3 a Ed.) Ricerca tabù. Alan Bertossi, Alberto Montresor Algortm e Strutture d Dat (3 a Ed.) Rcerca tabù Alan Bertoss, Alberto Montresor La tecnca della rcerca locale passa attraverso una sequenza S 0, S 1,..., S m d soluzon, fno ad arrestars su un ottmo locale

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA ELEMENTI DI STATISTICA POPOLAZIONE STATISTICA E CAMPIONE CASUALE S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..)

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

Economia del turismo

Economia del turismo Unverstà degl Stud d Caglar Facoltà d Economa Corso d Laurea n Economa e Gest. de Serv. Turstc A.A. 2013-2014 Economa del tursmo Prof.ssa Carla Massdda Sezone 5 ANALISI MICROECONOMICA DEL TURISMO Argoment

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

1.2 Calcolo combinatorio Principi basilari Disposizioni con ripetizione

1.2 Calcolo combinatorio Principi basilari Disposizioni con ripetizione .2 Calcolo combnatoro 2.2 Calcolo combnatoro Rcordamo dallesempo.3 che uno spazo d probabltà dscreto (W, P) s dce unforme se W è un nseme fnto e s ha P(A)= A W, per ogn A W. Pertanto, l calcolo della probabltà

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

Modello del Gruppo d Acquisto

Modello del Gruppo d Acquisto InVMall - Intellgent Vrtual Mall Modello del Gruppo d Acqusto Survey L attvtà svolta per la realzzazone dell attvtà B7 Defnzone del Gruppo d Acqusto e de Relatv Algortm d Inferenza, prevsta dal captolato

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

Algoritmi euristici: III Ricerca Locale

Algoritmi euristici: III Ricerca Locale Algortm eurstc: III Rcerca Locale Danele Vgo D.E.I.S. - Unverstà d Bologna dvgo@des.unbo.t rev. 1.0 - dcembre 2003 Algortm d Rcerca Locale partono da una soluzone (ammssble) cercano teratvamente d mglorarla

Dettagli

Logica e computazione

Logica e computazione Logca e computazone Oggett d studo della logca l ragonamento DEDUTTIVO la nozone d INFERENZA la nozone d DIMOSTRAZIONE Il punto d partenza della logca formale è la nozone tradzonale della logca, l ragonamento:

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin)

Considerazioni teoriche su nuove osservazioni ottiche 1 della teoria della relatività. M. v. Laue (Berlin) Consderazon teorche su nuove osservazon ottche 1 della teora della relatvtà. M. v. Laue (Berln) 1. Il calcolo della deflessone della luce da parte del sole s fonda sulla legge che la propagazone della

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Carla Seatzu, 18 Marzo 2008

Carla Seatzu, 18 Marzo 2008 8. Ret d Code Carla Seatzu, 8 Marzo 008 Nella maggor parte de process produttv rsulta troppo restrttvo consderare una sola rsorsa. Esempo: lea tandem arrv µ µ v partenze V sono dverse stazon cu una parte

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 9--) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli