3 Partizioni dell unità 6

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3 Partizioni dell unità 6"

Transcript

1 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b) e g C 1 (b, c). Supponamo che esstano numer y 0, y 1 R tal che f() = 0 b b + (1) () = b b g () = y 1. + (2) Allora la funzone f() (a, b) F () = y 0 = b g() (b, c) (3) è d classe C 1 su (a, b) e la sua dervata è data da f () (a, b) F () = y 1 = b g () (b, c) (4) 1

2 Dmostrazone. La formula (1) dce che la funzone F è contnua su (a, b). Sappamo noltre che F è C 1 su (a, b) e su (b, c) e che la dervata F è v data dalla formula (4). Resta da provare che F è dervable anche n b e che la dervata F (b) = y 1. Segurà mmedatamente dalla (2) che F è contnua su tutto (a, c), coè che F C 1 (a, c). Per la defnzone d F applcando l teorema d de l Hôptal ottenamo: F () F (b) f() f(b) = = b b b b f () = y 1. b Analogamente s verfca che Dunque F () F (b) = y 1. b + b F () F (b) = y 1. b b Pertanto F è dervable n b e F (b) = y 1. Proposzone 2. Sa k N. Sano f C k (a, b) e g C k (b, c). Supponamo che esstano numer y 0, y 1,..., y k R tal che per = 0, 1,..., k s abba b D f() = b D g() = y. (5) + Allora la funzone defnta dalla formula (3) è d classe C k su (a, b). Dmostrazone. Il rsultato è noto per k = 0. Procedamo per nduzone su k 1. Per k = 1 è stato dmostrato nel lemma precedente. Procedamo per nduzone su k. Sa k > 1 e supponamo (potes nduttva) che l rsultato sa vero per ncollament d funzon C k 1. Sano f e g due funzon che soddsfano le potes della proposzone. Poché k > 1, esse soddsfano anche le potes del lemma precedente. Pertanto F C 1 (a, b). Per l potes nduttva applcata alle funzon f e g, la funzone f () (a, b) ϕ() = y 1 = b g () (b, c) è C k 1 su (a, c). Ma per la (4) ϕ = F. Dunque F C k 1 (a, c), ossa F C k (a, ). 2

3 Corollaro 3. Sano f C (a, b) e g C (b, c). Supponamo che per ogn N essta un numero y R tale che b D f() = b D g() = y. (6) + Allora la funzone defnta dalla formula (3) è d classe C su (a, b). Dmostrazone. Basta applcare la proposzone precedente per ogn k N. Teorema 4. Sa ϕ : R R la funzone defnta dalla formula { 0 0 F () = e 1/ > 0. Allora ϕ C (R). Dmostrazone. Sa f C ((, 0) la funzone dentcamente nulla e g C ((0, ) la funzone g() = e 1/. Dmostreremo che F è C applcando l corollaro precedente alle funzon f e g. È necessaro dmostrare che t delle dervate m-esme d f e d g per 0 esstono, sono fnt e concdono. Poché le dervate d f sono dentcamente nulle, è suffcente dmostrare che per ogn m N 0 Dm g() = 0. + Comncamo dmostrando che per ogn m N esste un polnomo p m (t) R[t] tale che ( ) 1 D m g() = p m e 1/. (7) Procedamo per nduzone su m. Se m = 0 la formula (7) è vera se s scegle l polnomo (costante) p 0 (t) = 1. Supponamo vera la formula (7) per m e calcolamo Ponamo ( 1 = p m [ D m+1 g() = D ) ] e 1/ ( 1 p m )( 1 ) 2 e 1/ p m ( 1 p m+1 (t) = t 2 p m(t) + t 2 p m (t). = ) e 1/ 2. 3

4 Allora p m+1 è ancora un polnomo e D m+1 g() = p m+1 ( 1 ) e 1/ 2. È così provata la (7). A questo punto possamo calcolare p m (y) 0 Dm g() = + y + e y = 0. È così provato che tutte le dervate d f e d g tendono a 0 per 0, dunque l corollaro precedente asscura che F C (R). Defnzone 5. Se X è uno spazo topologco e f : X R è una funzone, l supporto d f è l nseme supp(f) := { X : f() 0}. Corollaro 6. Esste una funzone monotona crescente f C (R) tale che f 1 (0) = (, 0] e f 1 (1) = [1, + ). Dmostrazone. Indchamo con F una qualunque funzone lsca su tutto l asse reale e tale che F () = 0 per < 0 ed F () > 0 per > 0. Il teorema precedente asscura l esstenza d tal funzon. Ponamo ψ() = F ()F (1 ). La funzone ψ è lsca su tutto R, è strettamente postva su (0, 1) e supp(ψ) = [0, 1]. Sa h() = 0 ψ(ξ)dξ. Allora h() = 0 per < 0, mentre per 1, h() = h(1) > 0. Inoltre h è crescente su R ed è strettamente crescente su [0, 1]. Qund 0 < < 1 0 < h() < h(1). La funzone ha le propretà desderate. f() = h() h(1) Corollaro 7. Esste una funzone η C (R n ) tale che η() = 1 se e solo se 1 e supp(η) = B(0, 2). Dmostrazone. Sa f la funzone costruta nel Corollaro precedente. Ponamo η() := f(2 ). La norma è una funzone lsca su R n \{0}, dunque η è lsca su R n \ {0}. Ma η() = 1. Per lo stesso motvo supp(η) = B(0, 2). Sccome η 1 su B(0, 1), η è lsca anche n 0. Dunque η ha le propretà desderate. 4

5 2 Rcoprment localmente fnt Questa sezone vene da [1, p. 187]. Proposzone 8. Ogn varetà dfferenzable ammette una base numerable formata da nsem relatvamente compatt. Dmostrazone. Sa B la famgla degl apert della forma ϕ 1 (B(, r)) dove (U, ϕ) è una carta su M e B(, r) ϕ(u). Quest apert sono relatvamente compatt perché ϕ 1 (B(, r)) = ϕ 1 (B(, r)). È facle verfcare che questa famgla d apert è una base della topologa d M. Sa po B una qualunque base numerable d M. Allora la famgla B formata dagl element d B che sono contenut n qualche elemento d B è ancora una base ed è numerable perché B B. Se V B, per defnzone esste un elemento V B tale che V V. Dunque V V. Qund V è compatto. B è la base cercata. Lemma 9. Su ogn varetà dfferenzable M esste una esaustone n compatt, ossa una successone d compatt K 1, K 2,... tal che K K +1 per ogn e K = M. Dmostrazone. Sa {P } la base costruta nel lemma precedente. Ponamo K 1 := P 1. Supponamo nduttvamente d avere costruto compatt K 1 K 2 K 2 K 3 K K. Sa r > 0 un numero tale che K P 1 P r. Ponamo K +1 := P 1 P r. Allora K K +1. Procedendo n questo modo ottenamo una successone d compatt che soddsfa per costruzone la prma rchesta. Poché P K, anche la seconda propretà è verfcata. Defnzone 10. Se A è un rcoprmento aperto d M, dcamo che un altro rcoprmento aperto B è un raffnamento d A se per ogn B B esste A A tale che A B. Defnzone 11. Una famgla F d sottonsem d M è localmente fnta se per ogn M esste un ntorno W d che nterseca solo un numero fnto d element d F. Lemma 12. Se A è un rcoprmento aperto d una varetà M, allora esste una successone d carte (U, ϕ ) d M tal che 1. {U } è un raffnamento numerable localmente fnto d A; 2. ϕ (U ) = B(0, 3); 5

6 3. gl apert V := ϕ 1 (B(0, 1)) rcoprono M. Dmostrazone. Sa {K } una esaustone n compatt. Ponamo K 1 = K 0 =. Per ogn = 0, 1, 2,... faccamo la seguente costruzone. Supponamo che A = {A α } α I. Per ogn α I e per ogn p ( K +2 K 1 ) A α sceglamo una carta (U p,α, ϕ p,α ) tale che 1. p U p,α ( K +2 K 1 ) A α ; 2. ϕ p,α (p) = 0; 3. ϕ p,α (U p,α ) = B(0, 3) Possamo sempre trovare una carta del genere. Basta sceglere una carta qualsas attorno a p, restrngere l domno, comporre con una traslazone e una dlatazone e qund restrngere d nuovo l domno. Ponamo V p,α := ϕ 1 p,α(b(0, 1)). Gl apert V p,α formano un rcoprmento d K +2 K 1. Sccome K +1 K è un compatto contenuto n K +2 K 1, possamo trovare degl apert V p1,α 1,..., V pn,α n che rcoprono K +1 K. Ponamo per semplctà V,k := V pk,α k, U,k := U pk,α k, ϕ,k := ϕ pk,α k. Rcaptolando, per ogn = 0, 1, 2,... abbamo trovato delle carte ϕ,k : U,k B(0, 3), k = 1,..., n, tal che U,k A α per un certo α I, U,k K +2 K 1. Inoltre gl apert V,k = ϕ 1,k (B(0, 1)) rcoprono K +1 K. Segue mmedatamente che M = (K +1 K ) =0 n =0 k=1 per cu {V,k } e {U,k } sono rcoprment apert d M. Inoltre sono raffnament d A. Resta da dmostrare che {U,k } è localmente fnto. Osservamo che U j,k K j. Infatt se j >, s ha K K j 1 dunque U j,k K ( K j+2 K j 1 ) K K K j 1 =. Dato M sceglamo tale che K. Allora gl apert U j,k con j > non ntersecano l ntorno K d. Qund gl apert che lo ntersecano sono n numero fnto. V,k 3 Partzon dell untà Teorema 13. Sa A = {A α } α I un rcoprmento aperto d M. Allora esste una successone d funzon {f } C (M) tal che 6

7 1. f 0; 2. supp(f ) è compatto; 3. la famgla {supp(f )} è localmente fnta; 4. per ogn c è un α I tale che supp(f ) A α ; 5. =1 f 1. Dmostrazone. Sceglamo (U, ϕ ) e V come nel Lemma 12. Sa η C (R n ) tale che η() = 1 se 1 e η() = 0 se 2. Defnsco g C (M) nel modo seguente: { η ( ϕ (p) ) se p U g (p) := 0 se p M \ ϕ 1 (B(0, 2)). Su U \ ϕ 1 (B(0, 2)) le due defnzon concdono, dunque g è ben defnta. D altronde è lsca sa su U che su M \ ϕ 1 (B(0, 2)), qund è lsca dappertutto. Evdentemente g 0. Il supporto d g è un chuso contenuto n ϕ 1 (B(0, 2)), dunque è compatto. Sccome supp(g ) U, la famgla {supp(g )} è localmente fnta, perché {U } è localmente fnto. Qund g := =1 g è una funzone lsca perché localmente è una somma fnta d funzon lsce. Sccome esste α tale che U A α, anche supp(g ) A α. Ora osservamo che M = V e g 1 su V. Qund g(p) > 0 per ogn p M. Ponamo f := g /g. Allora supp(f ) = supp(g ), qund tutte le propretà dmostrate contnuano a valere per le funzon {f }. Inoltre f = 1 g =1 g = 1. =1 Lemma 14. Sa X uno spazo topologco e sa E X un nseme con la seguente propretà: per ogn X esste un ntorno V tale che E V è chuso n V. Allora E è chuso. Dmostrazone. Sa Ē. Allora Ē V. Ma Ē V è la chusura d E V n V e E V è chuso n V. Pertanto Ē V = E V. Dunque E. Lemma 15. Sa X uno spazo topologco e sa {F } una famgla localmente fnta d sottonsem chus. Allora anche F := F è chuso. 7

8 Dmostrazone. Sa X e sa W un ntorno tale che I() := { : W F } sa fnto. Allora F W = F W, I() che è chuso n W perché è una unone fnta d chus. precedente F è chuso. Per l lemma Teorema 16. Sa A = {A α } α I un rcoprmento aperto d M. Allora esste una famgla d funzon {f α } α I C (M) tal che 1. f α 0; 2. la famgla {supp(f α )} è localmente fnta; 3. per ogn α I s ha supp(f α ) A α ; 4. α I f α 1. Dmostrazone. Sceglamo una successone d funzon {f } come nel Teorema 13. Per ogn N esste un α I tale che supp(f ) A α. Sceglamo un tale α e chamamolo τ(). In questo modo abbamo defnto una funzone τ : N I tale che per ogn N s ha supp(f ) A τ(). Ora ponamo f α := τ 1 (α) dove s ntende che f α = 0 se α τ(n). Le propretà (1) e (4) sono ovve. C restano da dmostrare le propretà (2) e (3). Sa p M e sa W un ntorno d p tale che supp(f ) W = se 0. Allora supp(f α ) W = se α τ({1, 2,..., 0 }). Dunque la famgla {supp(f α )} è localmente fnta. Infne osservamo che l nseme {p M : f α (p) 0} è contenuto nell nseme F := supp(f ). τ 1 (α) Questo nseme è una unone localmente fnta d chus, dunque è un chuso. Pertanto anche supp(f α ) F. Ma F A α. Cò dmostra la propretà (3). Una famgla d funzon come le {f } del Teorema 13 o una famgla d funzon come le {f α } del Teorema 16 è chamata una partzone dell untà subordnata al rcoprmento A. f, 8

9 Rferment bblografc [1] W. M. Boothby. An ntroducton to dfferentable manfolds and Remannan geometry, volume 120 of Pure and Appled Mathematcs. Academc Press Inc., Orlando, FL, second edton,

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Geometria (pseudo)-riemanniana

Geometria (pseudo)-riemanniana Chapter 3 Geometra (pseudo)-remannana [Dsegno della sfera con trangolo la cu somma degl angol = 90 + 90 + 90 = 270 6= 180] La geometra d erenzale è lo studo delle propretà geometrche d oggett che rassomglano

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2018/19 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

STRUTTURA DI INSIEMI DI MISURA NULLA

STRUTTURA DI INSIEMI DI MISURA NULLA UNIVERSITÀ DEGLI STUDI DI PADOVA Dpartmento d Matematca Pura ed Applcata Corso d Laurea Trennale n Matematca Tes d Laurea STRUTTURA DI INSIEMI DI MISURA NULLA Relatore: Prof. ROBERTO MONTI Laureando: ANDREA

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Analisi Class Successioni Lezione 6 2 ottobre 2014

Analisi Class Successioni Lezione 6 2 ottobre 2014 CLASS Bologna Anals Matematca @ Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17? Successon Una successone d numer real è una funzone a valor real l cu domno è l

Dettagli

Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Specialistica in Matematica A. A Tesi di Laurea Specialistica

Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Specialistica in Matematica A. A Tesi di Laurea Specialistica Unverstà degl Stud d Psa Facoltà d Scenze Matematche Fsche e Natural Corso d Laurea Specalstca n Matematca A. A. 2004-05 Tes d Laurea Specalstca Coppe d elfand Canddato Fabo Ferrar Ruffno Relatore Prof.

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI GIOVANNI GAIFFI, CORSO DI ALGEBRA 1 2010/2011 NOTA: FA PARTE DEL PROGRAMMA SOLO LA CONOSCENZA DELL ENUNCIATO DEL TEOREMA

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Strani spazi vettoriali

Strani spazi vettoriali Stran spaz vettoral Enrco Gregoro 19 novembre 2009 Consderamo l nseme S delle successon d numer compless; gl element d S saranno ndcat con smbol come a[ ]. Le parentes quadre servono per denotare gl element

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

LA GEOMETRIA DELLE FAMIGLIE DI DISTRIBUZIONI DI PROBABILITÀ ESPONENZIALI. Angela De Sanctis 1. INTRODUZIONE

LA GEOMETRIA DELLE FAMIGLIE DI DISTRIBUZIONI DI PROBABILITÀ ESPONENZIALI. Angela De Sanctis 1. INTRODUZIONE STATISTICA, anno LXII, n. 2, 2002 LA GEOMETRIA DELLE FAMIGLIE DI DISTRIBUZIONI DI PROBABILITÀ ESPONENZIALI Angela De Sancts 1. INTRODUZIONE La Statstca parametrca studa famgle parametrzzate d dstrbuzon

Dettagli

Analisi Matenatica Lezione 1 23 settembre 2013

Analisi Matenatica Lezione 1 23 settembre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 1 23 settembre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/24? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del docente www.danelertell.name

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

Stima dell errore di interpolazione usando funzione di base radiale

Stima dell errore di interpolazione usando funzione di base radiale Stma dell errore d nterpolazone usando funzone d base radale Antone Gloreux V prego, non estate a farm notare qualsas errore, sa n matematca che n talano = ) antone.c.gloreux@gmal.com Lo scopo d questo

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Sulla teoria di Z in L = {+,<}

Sulla teoria di Z in L = {+,<} Sulla teora d Z n L = {+,

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

IL TEOREMA DI BORSUK-ULAM E APPLICAZIONI. The Borsuk-Ulam Theorem and applications

IL TEOREMA DI BORSUK-ULAM E APPLICAZIONI. The Borsuk-Ulam Theorem and applications Scuola d Scenze Matematche Fsche e Natural Corso d Laurea n Matematca IL TEOREMA DI BORSUK-ULAM E APPLICAZIONI The Borsuk-Ulam Theorem and applcatons Canddata: Elena Zampol Relatore: Gorgo Ottavan Anno

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Programma. Esercz tpo svolt 3. Eserctazon

Dettagli

3-DIMENSIONAL MATCHING

3-DIMENSIONAL MATCHING 3-DIMENSIONAL MATCHING Vaccar Lorenzo 14 gennao 2004 Corso d Laurea specalstca n nformatca, Unverstà d Trento va Sommarve 14, 38050 Povo, Italy 40qc@krk.scence.untn.t Sommaro In questo documento dmostreremo

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercz d Probabltà e Statstca Samuel Rota Bulò 25 maggo 2007 Funzon d v.a., meda, varanza, moda, medana, quantl e quartl. Vettor aleator, denst condzonata, covaranza, correlazone. Eserczo 1 Sa Y ax + b

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 2

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 2 Espermento aleatoro : espermento l cu esto, non noto a pror, appartene ad un determnato nseme d est plausbl. Spazo degl est W : nseme d tutt possbl est d un espermento aleatoro. Spazo degl event : ogn

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

θ 2 i r 2 r La multifunzione f (z) = z z i

θ 2 i r 2 r La multifunzione f (z) = z z i 1-19 1.4 1.4.1. La multfunone f () = + 1 3 è l prodotto d 2 multfunon Z Z e W 3 W. È qund ragonevole supporre che Z =, coè = 1 e W =, coè = sano punt d dramaone d f. Con rfermento alla fgura a lato, e

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

NOTE SUL CALCOLO DI FOX

NOTE SUL CALCOLO DI FOX NOTE SUL CALCOLO DI FOX ROBERTO FRIGERIO 1. Il modulo d Alexander d una varetà Sa (M,x 0 ) uno spazo puntato connesso per arch, e ponamo G = π 1 (M,x 0 ). Supponamo anche che M sa semlocalmente semplcemente

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Dinamica dei sistemi particellari

Dinamica dei sistemi particellari Dnamca de sstem partcellar Marco Favrett Aprl 11, 2010 1 Cnematca Sa dato un sstema d rfermento nerzale (O, e ), = 1, 2, 3 e consderamo un sstema d punt materal (sstema partcellare) S = {(OP, m )}, = 1,,

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Lezione 20 Maggio 29

Lezione 20 Maggio 29 PSC: Progettazone d sstem d controllo III Trm 2007 Lezone 20 Maggo 29 Docente: Luca Schenato Stesor: Maran F, Marcon R, Marcassa A, Zanella F Fnora s sono sempre consderat sstem tempo-nvarant, ovvero descrtt

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Esercizi sui circuiti magnetici

Esercizi sui circuiti magnetici Esercz su crcut magnetc Eserczo a. Nel crcuto magnetco llustrato calcolare, trascurando la rluttanza del ferro, coeffcent d auto nduzone degl avvolgment e e l coeffcente d mutua nduzone tra due avvolgment

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 4 20 novembre 2008

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 4 20 novembre 2008 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 4 20 novembre 2008 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/10? A f B A B 2/10? A

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

Il traffico è un gioco?

Il traffico è un gioco? Il traffco è un goco? Gacomo Tomme Dpartmento d Matematca, Unverstà d Psa e-mal: tomme@dm.unp.t Introduzone Il ttolo potrebbe apparre provocatoro, ma n realtà è solo lo spunto per ntrodurre tem che voglamo

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2003/04, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 3/4, GEMMA PARMEGGIANI Unverstà degl Stud d Padova Dpartmento d Matematca Pura e Applcata va Belzon, 7 353 Padova. Eserctazon a grupp svolte. Esercz tpo

Dettagli

Analisi Class info sul corso Lezione 1 16 settembre 2015

Analisi Class info sul corso Lezione 1 16 settembre 2015 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 16 settembre 2015 professor Danele Rtell danele.rtell@unbo.t 1/30? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Approssimazione minimax

Approssimazione minimax Approssmazone mnmax 1 Il problema dell approssmazone lneare Data una f(x) appartenente allo spazo vettorale F delle funzon real d varable reale, s scegle n F un modello, coè un nseme d funzon φ (x), =

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 11: 5 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? 2/31? Formalzzamo: l debto resduo prospettvo

Dettagli

COMPLESSI E OMOLOGIA SIMPLICIALE

COMPLESSI E OMOLOGIA SIMPLICIALE CAPITOLO 4 COMPLESSI E OMOLOGIA SIMPLICIALE 1 Compless smplcal Nota In questo paragrafo dscutamo fondament della teora smplcale che storcamente è stata alla base dello svluppo de metod omologc e che rspeccha

Dettagli

Sorgenti Numeriche - Soluzioni

Sorgenti Numeriche - Soluzioni Sorgent umerche - Soluzon *) L anals delle frequenze con cu compaono le vare lettere n un documento n talano, comprendente 5975 caratter, ha fornto seguent dat: Lettera umero Frequenza relatva A 666. B

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Elementi di Algebra e Analisi Tensoriale

Elementi di Algebra e Analisi Tensoriale M. Moscon ppunt d Scenza delle Costruzon Gugno 000 Element d lgebra e nals ensorale M. Moscon Element d algebra e anals tensorale INDICE. lgebra vettorale e tensorale. Calcolo vettorale e tensorale. Identtà

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn s.t. c (, j) A x (, j) δ x + x ( ) u ( j, ) δ x j ( ) = b( ) N (, j) A s dce problema d flusso a costo mnmo. Assumamo

Dettagli

6.1- Sistemi punti, forze interne ed esterne

6.1- Sistemi punti, forze interne ed esterne 1 CAP 6 - SISTEMI DI PUNTI MATERIALI Parte I 1 Cap 6 - Sstem d punt materal Cap 6 - Sstem d punt materal Il punto materale è un astrazone alla quale poch cas s possono assmlare. La maggor parte degl oggett

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn c (, j) A x s.t. (, j) δ + x ( ) ( j, ) δ x j ( j) = b( ) N x u (, j) A s dce problema d flusso a costo mnmo.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale.

Esercizi 12/10/2007. oppure B 0. In modo del tutto analogo AB 0 se e solo se. oppure B 0 B 0. Studio del segno di una disequazione polinomiale. Esercz 2/0/2007 Dsequazo Sego d u prodotto. Voglamo studare l sego d u prodotto d due umer real. I altr term vedere qual soo le codzo affché due umer real A e B soddsfo AB 0. Ragoamo come segue: rcoducamo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 10: 6-7 Maggio Meccanismi con Pagamenti: Applicazioni e Limiti

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 10: 6-7 Maggio Meccanismi con Pagamenti: Applicazioni e Limiti trument della Teora de Goch per l Informatca A.A. 2009/0 Lecture 0: 6-7 Maggo 200 Meccansm con Pagament: Applcazon e Lmt ocente Paolo Penna Note redatte da: Paolo Penna Lezone precedente Funzon d scelta

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Simmetrie di problemi variazionali.

Simmetrie di problemi variazionali. Smmetre d problem varazonal. Appunt per l corso d Sstem Dnamc 2 tenuto presso l Dpartmento d Matematca, Unverstà d Mlano versone del gorno 23 Novembre 2018 Voglamo ora consderare smmetre d un problema

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli