Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013"

Transcript

1 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa lezone 3: 27 febbrao 2013 professor Danele Rtell 1/26?

2 S può dmostrare che 1. se 0 < t < 1 allora 1 + t > (1 + ) t 2. se t > 1 allora 1 + t < (1 + ) t 2/26?

3 3/26?

4 Dmostramo che se 0 < t < 1 allora 1 + t > (1 + ) t 4/26?

5 Dmostramo che se 0 < t < 1 allora 1 + t > (1 + ) t Rcordo la formula d Taylor con l resto d Lagrange: fssato > 0 esste 0 < ξ < tale che: f() = f(0) + f (0) f (ξ) 2. 4/26?

6 Dmostramo che se 0 < t < 1 allora 1 + t > (1 + ) t Rcordo la formula d Taylor con l resto d Lagrange: fssato > 0 esste 0 < ξ < tale che: f() = f(0) + f (0) f (ξ) 2. Nel nostro caso partcolare f() = (1 + ) t qund (1 + ) t = 1 + t t (t 1) (1 + ξ)t /26?

7 Dmostramo che se 0 < t < 1 allora 1 + t > (1 + ) t Rcordo la formula d Taylor con l resto d Lagrange: fssato > 0 esste 0 < ξ < tale che: f() = f(0) + f (0) f (ξ) 2. Nel nostro caso partcolare f() = (1 + ) t qund (1 + ) t = 1 + t t (t 1) (1 + ξ)t 2 2. Ora 0 < t < 1 = t (t 1) (1 + ξ) t 2 2 < 0, qund: (1 + ) t = 1 + t + t (t 1) (1 + ξ) t 2 2 < 1 + t 4/26?

8 Captalzzazone msta S usa l regme composto per l numero ntero d ann e l regme semplce per la parte rmanente. ( ) m(t, C) = C (1 + ) [t] 1 + (t [t]) [t] := max {n N : n t} è la parte ntera d t 5/26?

9 Eserczo. Il captale d ha dato, al tasso annuo = 0, 025 l montante d Determnare l tempo d captalzzazone n regme msto. 6/26?

10 Eserczo. Il captale d ha dato, al tasso annuo = 0, 025 l montante d Determnare l tempo d captalzzazone n regme msto. Questa volta è meno banale delle due precedent. 1. er trovare l numero ntero d ann rsolvamo come fossmo n regme composto = (1 + 0, 025) t t ln 1, 025 = ln t = 21, /26?

11 2. Saputo che l numero ntero d ann è 21 dalla formula d captalzzazone n regme msto, rcordato che l numero {t} = t [t] (parte frazonara d t) è compreso fra 0 e 1 abbamo: = 5 000(1, 025) 21 (1 + 0, 025 {t}) {t} = 0, /26?

12 2. Saputo che l numero ntero d ann è 21 dalla formula d captalzzazone n regme msto, rcordato che l numero {t} = t [t] (parte frazonara d t) è compreso fra 0 e 1 abbamo: = 5 000(1, 025) 21 (1 + 0, 025 {t}) {t} = 0, coè {t} = 360 0, = gorn coè 5 mes e 25 gorn Rsposta 21 ann, 5 mes, 25 gorn 8/26?

13 Lqudazone degl nteress n regme semplce Se s nveste un captale C al termne del prmo anno d mpego del captale è dsponble l montante C (1 + ) 9/26?

14 Lqudazone degl nteress n regme semplce Se s nveste un captale C al termne del prmo anno d mpego del captale è dsponble l montante C (1 + ) Al termne del secondo anno la captalzzazone darà l montante C (1 + ) 2 9/26?

15 Lqudazone degl nteress n regme semplce Se s nveste un captale C al termne del prmo anno d mpego del captale è dsponble l montante C (1 + ) Al termne del secondo anno la captalzzazone darà l montante C (1 + ) 2 In generale dopo n ann, ragonando nduttvamente, l montante è: C (1 + ) n. 9/26?

16 Captalzzazone frazonata: regme composto Confronto fra captalzzazon annual e captalzzazon n frazon d anno mensl bmestral trmestral quadrmestral semestral 10/26?

17 rspetto a 2 2 = (1 + ) 1/2 1 resa una frazone d anno, ad esempo l semestre, s mpone l uguaglanza fra montant alla fne del prmo anno 1 + = (1 + 2 ) 2. l ndce 2 c rcorda l numero de semestr n un anno. Se s vuole convertre n semestrale un tasso annuo basta rsolvere 11/26?

18 Analogamente l tasso quadrmestrale equvalente 3 è defnto da: 1 + = (1 + 3 ) 3, n quanto suddvdamo l anno n tre quadrmestr. tasso trmestrale: tasso bmestrale: tasso mensle: 1 + = (1 + 4 ) = (1 + 6 ) = ( ) 12 12/26?

19 In generale se s dvde l perodo d captalzzazone n p N sottoperod la relazone d equvalenza è: 1 + = (1 + p ) p, da cu: p = (1 + ) 1 p 1. 13/26?

20 Captalzzazone frazonata: regme semplce Confronto fra captalzzazon annual e captalzzazon n frazon d anno a) mensl b) bmestral c) trmestral d) quadrmestral e) semestral 1 + = 1 + j p p, p = 12, 6, 3, 4, 2 = j p = p 14/26?

21 Tass nomnal convertbl Tasso nomnale convertble p ( N) volte Nel regme composto anzché utlzzare l tasso p s utlzza l tasso provenente dal regme semplce j p Tale tasso produce captalzzazon maggor del tasso annuo equvalente, nfatt: (1 + j p ) p 1 > p j p =. 15/26?

22 Dsuguaglanza d Bernoull Sa x 1 un numero reale. Allora per ogn n N s ha che: (1 + x) n 1 + n x 16/26?

23 Sgnfcato fnanzaro d e Quærtur, s credtor alqus pecunam suam fœnor exponat, ea lege, ut snguls moments pars proportonals usuræ annuæ sort annumeretur; quantum ps fnto anno debeatur? Se un credtore versa denaro con maturazone d nteresse, nell potes n cu n ogn sngolo momento l nteresse maturato captalzz proporzonalmente al tasso annuo, quale sarà l rsultato alla fne dell anno? roblema posto da Gacomo Bernoull attorno al /26?

24 Supponamo d aver depostat 1 e che gl nteress sano captalzzat n volte all anno al tasso x. Dopo l prmo perodo d tempo l saldo è b 1 = ( 1 + x ). n 18/26?

25 Supponamo d aver depostat 1 e che gl nteress sano captalzzat n volte all anno al tasso x. Dopo l prmo perodo d tempo l saldo è b 1 = ( 1 + x ). n Dopo l secondo perodo b 2 = ( 1 + x ) b 1 = n ( 1 + x n) 2. 18/26?

26 Supponamo d aver depostat 1 e che gl nteress sano captalzzat n volte all anno al tasso x. Dopo l prmo perodo d tempo l saldo è b 1 = ( 1 + x ). n Dopo l secondo perodo b 2 = ( 1 + x ) b 1 = n ( 1 + x n) 2. Dopo n perod b n = ( 1 + x n) n. 18/26?

27 Captalzzazone stantanea sgnfca mandare n : lm b n = lm (1 + x n n n ) n 19/26?

28 Captalzzazone stantanea sgnfca mandare n : ma se scrvamo: lm b n = lm (1 + x n n n ) n ( 1 + x ) [ n ( = 1 + x ] n/x x n n) 19/26?

29 Captalzzazone stantanea sgnfca mandare n : ma se scrvamo: lm b n = lm (1 + x n n n ) n ( 1 + x ) [ n ( = 1 + x ] n/x x n n) vedamo che: lm b n = lm (1 + x ) n = e x n n n 19/26?

30 Forza stantanea d nteresse Consderamo la generca legge d captalzzazone n una varable m(t, C) = Cf(t). Calcolamo l nteresse per untà d captale fra gl stant t + h e t Cf(t + h) Cf(t) Cf(t) Il rapporto non dpende dal captale nzale C. = f(t + h) f(t). (1) f(t) 20/26?

31 Dvdendo la frazone n (1) per la lunghezza dell ntervallo d tempo h > 0 abbamo l nteresse per untà d captale medo nell ntervallo [t, t + h] : f(t + h) f(t) f(t) 1 h = f(t + h) f(t) h 1 f(t). (1b) 21/26?

32 Dvdendo la frazone n (1) per la lunghezza dell ntervallo d tempo h > 0 abbamo l nteresse per untà d captale medo nell ntervallo [t, t + h] : f(t + h) f(t) f(t) 1 h = f(t + h) f(t) h 1 f(t). (1b) assando al lmte per h 0 + n (1b) ottenamo l nteresse per untà d captale stantaneo al tempo t f(t + h) f(t) lm h 0 + h 1 f(t) = f (t) f(t) (1c) 21/26?

33 La funzone δ(t) vene chamata dervata logartmca della funzone f(t), n quanto: δ(t) = f (t) f(t) = d dt ln f(t). 22/26?

34 La funzone δ(t) vene chamata dervata logartmca della funzone f(t), n quanto: δ(t) = f (t) f(t) = d dt ln f(t). Dal punto d vsta fnanzaro, trattandos dell nteresse per untà d captale stantaneo, s parla d forza stantanea d nteresse 22/26?

35 La peculartà del regme composto è che la forza stantanea d nteresse è costante nel tempo, nfatt se f(t) = (1 + ) t è evdente che: δ(t) = f (t) f(t) = (1 + )t ln(1 + ) (1 + ) t = ln(1 + ). 23/26?

36 La peculartà del regme composto è che la forza stantanea d nteresse è costante nel tempo, nfatt se f(t) = (1 + ) t è evdente che: δ(t) = f (t) f(t) = (1 + )t ln(1 + ) (1 + ) t = ln(1 + ). Mentre nel regme semplce, f(t) = 1 + t s vede che: δ(t) = f (t) f(t) = 1 + t. 23/26?

37 Equazon dfferenzal del prmo ordne Una equazone dfferenzale del prmo ordne ha la forma y (t) = f (t, y(t)) (2) S generalzza l problema della rcerca della prmtva y (t) = f(t) 24/26?

38 Equazon dfferenzal del prmo ordne Una equazone dfferenzale del prmo ordne ha la forma y (t) = f (t, y(t)) (2) S generalzza l problema della rcerca della prmtva y (t) = f(t) Il legame con quanto stamo studando sta nel fatto che se conoscamo la forza d nteresse = δ(t) voglamo rsalre al fattore d captalzzazone rsolvendo l equazone dfferenzale f (t) = δ(t)f(t) 24/26?

39 Equazon separabl y (t) = a(t) b (y(t)) y(t 0 ) = y 0 (S) le funzon a(t) e b(y), defnte sugl ntervall I a e I b tal che t 0 I a e y 0 I b sono contnue. È necessaro supporre che b(y) non s annull per ogn y I b. 25/26?

40 Teorema La funzone y(t) defnta, mplctamente, dalla relazone: y y 0 dz b(z) = t è l unca soluzone dell equazone (S) x 0 a(s) ds (R) 26/26?

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 18: 18 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Eserczo Il sgnor ancrazo Topazo decde

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 5: 28 febbrao 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/20? Costtuzone d un captale S vuole costture

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 1: 14 febbraio 2012

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 1: 14 febbraio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2011-2012 lezone 1: 14 febbrao 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/17? restazon e controprestazon Ad un stante t

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 13: 17 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/16? resa vsone della prma prova parzale Entro l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 8: 14 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Rendte nel contnuo Se s pensa alla rendta come

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 12: 6 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Eserczo 3 000 vanno rmborsat n tre ann

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 13: 10 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 13: 10 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 13: 10 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Errata 8. pagna 35 errata: er costture

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 14: 18 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Schema algebrco de fluss d cassa con v = (1

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 11: 5 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? 2/31? Formalzzamo: l debto resduo prospettvo

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017 Matematca Fnanzara a.a. 206-7 Prof.ssa Ragn Ferrara 08 gugno 207 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Informazioni sul corso Lunedì 17/2/2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Informazioni sul corso Lunedì 17/2/2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2011-2012 Informazon sul corso Lunedì 17/2/2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/17? Codce docente 030508 Codce corso

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 10: 21 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 10: 21 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 10: 21 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? ε m = A δ m = A [ ] 1 α n a n m quota captale

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 15: 24 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/18? enal per antcpata estnzone e tr La somma A

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017 Matematca Fnanzara aa 2016-17 Prof Ragn Ferrara 05 luglo 2017 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Rcerca operatva Lezone # 2 7 maggo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/14? n presenza d un attvtà produttva

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 21: 25 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? CCT/CCTEu S tratta d un ttolo a cedola

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2018/19 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5 Sommaro Sommaro 2 Introduzone 3 Captalzzazone semplce 4 Esercz sulla captalzzazone semplce 5 Prmo lvello 5 Secondo lvello 5 Sconto commercale 6 Esercz sullo sconto commercale 7 Sconto razonale 7 Esercz

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 4 20 novembre 2008

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 4 20 novembre 2008 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 4 20 novembre 2008 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/10? A f B A B 2/10? A

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 18 20 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Ottmzzazone 2/23?

Dettagli

Analisi Matenatica Lezione 1 23 settembre 2013

Analisi Matenatica Lezione 1 23 settembre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 1 23 settembre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/24? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del docente www.danelertell.name

Dettagli

Analisi Class Successioni Lezione 6 2 ottobre 2014

Analisi Class Successioni Lezione 6 2 ottobre 2014 CLASS Bologna Anals Matematca @ Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17? Successon Una successone d numer real è una funzone a valor real l cu domno è l

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Principio di massima verosimiglianza

Principio di massima verosimiglianza Prncpo d massma verosmglana Sa data una grandea d cu s conosce la unone denstà d probabltà ; che dpende da un nseme de parametr ndcat con d valore sconoscuto. S vuole determnare la mglor stma de parametr.

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 19: 23 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 19: 23 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 19: 23 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/30? Teora del ortafoglo Ogn ttolo a ha un valore

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell matematc per la gestone del magazzno Lezone # 5 24 novembre 2008 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/14?

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Lezione 3 Codifica della informazione (2)

Lezione 3 Codifica della informazione (2) Lezone Codfca della nformazone () Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Un rpasso Un quadro della stuazone: dove samo, dove stamo andando e perché Una rvstazone:

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercitazione 1 del corso di Statistica 2

Esercitazione 1 del corso di Statistica 2 Eserctazone del corso d Statstca rof. Domenco Vstocco Dott.ssa aola Costantn 8 Aprle 008 Eserczo n. S consder un campone d 00 student d cu s conoscono le seguent probabltà dstnt secondo l sesso (Mmascho,

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione.

Misure indipendenti della stessa grandezza, ciascuna con una diversa precisione. Msure ndpendent della stessa grandezza, cascuna con una dversa precsone. Consderamo d avere due msure o n generale della stessa grandezza, ndpendent, caratterzzate da funzone denstà d probabltà d Gauss.

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

La sincronizzazione. (Libro) Trasmissione dell Informazione

La sincronizzazione. (Libro) Trasmissione dell Informazione La sncronzzazone (Lbro) Problem d sncronzzazone La trasmssone e la dverstà tra gl OL del trasmetttore e del rcevtore ntroducono (anche n assenza d fadng) un errore d d frequenza, d fase e d camponamento

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Sulla teoria di Z in L = {+,<}

Sulla teoria di Z in L = {+,<} Sulla teora d Z n L = {+,

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli