Analisi Class Successioni Lezione 6 2 ottobre 2014

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Class Successioni Lezione 6 2 ottobre 2014"

Transcript

1 CLASS Bologna Anals Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17?

2 Successon Una successone d numer real è una funzone a valor real l cu domno è l nseme N de numer natural 2/17?

3 Successon Una successone d numer real è una funzone a valor real l cu domno è l nseme N de numer natural a : N R 2/17?

4 Successon Una successone d numer real è una funzone a valor real l cu domno è l nseme N de numer natural a : N R S usa descrvere questa partcolare funzone con la notazone (a n ) n N o, semplcemente (a n ) 2/17?

5 Successon Una successone d numer real è una funzone a valor real l cu domno è l nseme N de numer natural a : N R S usa descrvere questa partcolare funzone con la notazone (a n ) n N o, semplcemente (a n ) Il termne n esmo della successone è l mmagne dell ntero n N. 2/17?

6 Successon Una successone d numer real è una funzone a valor real l cu domno è l nseme N de numer natural a : N R S usa descrvere questa partcolare funzone con la notazone (a n ) n N o, semplcemente (a n ) Il termne n esmo della successone è l mmagne dell ntero n N. Invece d rappresentare tale termne medante l usuale notazone a(n) s scrve a n 2/17?

7 Successon Una successone d numer real è una funzone a valor real l cu domno è l nseme N de numer natural a : N R S usa descrvere questa partcolare funzone con la notazone (a n ) n N o, semplcemente (a n ) Il termne n esmo della successone è l mmagne dell ntero n N. Invece d rappresentare tale termne medante l usuale notazone a(n) s scrve a n Dremo che a n è l termne n-esmo della successone (a n ) 2/17?

8 Termnologa Una successone (a n ) è detta stazonara (o costante) se esste k R tale che a n = k per ogn n N. 3/17?

9 Termnologa Una successone (a n ) è detta stazonara (o costante) se esste k R tale che a n = k per ogn n N. Una successone (a n ) è detta crescente se, per ogn n N s ha che a n a n+1. 3/17?

10 Termnologa Una successone (a n ) è detta stazonara (o costante) se esste k R tale che a n = k per ogn n N. Una successone (a n ) è detta crescente se, per ogn n N s ha che a n a n+1. Una successone (a n ) è detta decrescente se, per ogn n N s ha che a n a n+1. 3/17?

11 Termnologa Una successone (a n ) è detta stazonara (o costante) se esste k R tale che a n = k per ogn n N. Una successone (a n ) è detta crescente se, per ogn n N s ha che a n a n+1. Una successone (a n ) è detta decrescente se, per ogn n N s ha che a n a n+1. Una successone (a n ) è detta crescente strettamente se, per ogn n N s ha che a n < a n+1. 3/17?

12 Termnologa Una successone (a n ) è detta decrescente strettamente se, per ogn n N s ha che a n > a n+1. 4/17?

13 Termnologa Una successone (a n ) è detta decrescente strettamente se, per ogn n N s ha che a n > a n+1. Una successone (a n ) è detta lmtata nferormente se esste un reale α tale che, per ogn n N s ha che α a n. 4/17?

14 Termnologa Una successone (a n ) è detta decrescente strettamente se, per ogn n N s ha che a n > a n+1. Una successone (a n ) è detta lmtata nferormente se esste un reale α tale che, per ogn n N s ha che α a n. Una successone (a n ) è detta lmtata superormente se esste un reale ω tale che, per ogn n N s ha che a n ω. 4/17?

15 Termnologa Una successone (a n ) è detta decrescente strettamente se, per ogn n N s ha che a n > a n+1. Una successone (a n ) è detta lmtata nferormente se esste un reale α tale che, per ogn n N s ha che α a n. Una successone (a n ) è detta lmtata superormente se esste un reale ω tale che, per ogn n N s ha che a n ω. Una successone (a n ) è detta lmtata se essa è, sa lmtata nferormente, sa lmtata superormente. 4/17?

16 Esemp a n = 4 per ogn n N è una successone stazonara; 5/17?

17 Esemp a n = 4 per ogn n N è una successone stazonara; a n = n è una successone crescente strettamente e lmtata; n + 1 5/17?

18 Esemp a n = 4 per ogn n N è una successone stazonara; a n = n è una successone crescente strettamente e lmtata; n + 1 a n = 1 n è una successone decrescente strettamente e lmtata; 5/17?

19 Esemp a n = 4 per ogn n N è una successone stazonara; a n = n è una successone crescente strettamente e lmtata; n + 1 a n = 1 n è una successone decrescente strettamente e lmtata; a n = n 2 è una successone crescente strettamente e lmtata nferormente; 5/17?

20 Esemp a n = 4 per ogn n N è una successone stazonara; a n = n è una successone crescente strettamente e lmtata; n + 1 a n = 1 n è una successone decrescente strettamente e lmtata; a n = n 2 è una successone crescente strettamente e lmtata nferormente; a n = cos n è una successone lmtata; 5/17?

21 Esemp a n = 4 per ogn n N è una successone stazonara; a n = n è una successone crescente strettamente e lmtata; n + 1 a n = 1 n è una successone decrescente strettamente e lmtata; a n = n 2 è una successone crescente strettamente e lmtata nferormente; a n = cos n è una successone lmtata; a n = ( 1) n n è una successone non lmtata. 5/17?

22 Defnzone Dcamo che (a n ) converge a a per n, se per ogn ε > 0 esste un ndce n ε N tale che per ogn n N, n n ε s ha: a n a < ε (L) 6/17?

23 Fgure 1: a n = n n + 1 7/17?

24 Teorema Se (a n ) è una successone convergente, l suo lmte è unco. 8/17?

25 Teorema Se (a n ) è una successone convergente, l suo lmte è unco. Dmostrazone. Supponamo, per assurdo, che esstano a, b con a b tal che a n a e a n b. Allora s ha, usando la dsuguaglanza trangolare a b = a a n + a n b a a n + a n b ( ) 8/17?

26 Teorema Se (a n ) è una successone convergente, l suo lmte è unco. Dmostrazone. Supponamo, per assurdo, che esstano a, b con a b tal che a n a e a n b. Allora s ha, usando la dsuguaglanza trangolare a b = a a n + a n b a a n + a n b ( ) a b (a n ) converge, dunque preso ε = per defnzone esste n ε N 2 tale per cu per ogn n N, n > n ε s ha a n a < a b, a n b < 2 a b 2 8/17?

27 tornando ad ( ) trovamo: a b < che è una contraddzone. a b 2 + a b 2 = a b 9/17?

28 Teorema Se la successone (a n ) converge a a allora la successone ( a n ) converge a a. 10/17?

29 Teorema Se la successone (a n ) converge a a allora la successone ( a n ) converge a a. Teorema Ogn successone convergente è lmtata. 10/17?

30 Teorema della permanenza del segno Se (a n ) è una successone convergente con lmte a > 0 allora esste un ndce n 0 N tale che per ogn n N, n > n 0 resce a n > 0. 11/17?

31 Teorema della permanenza del segno Se (a n ) è una successone convergente con lmte a > 0 allora esste un ndce n 0 N tale che per ogn n N, n > n 0 resce a n > 0. er potes a n a > 0. reso ε = a/2 esste n 0 N tale che per ogn n N, n > n 0 a n a < a 2 a a 2 < a n < a + a 2 a 2 < a n < 3a 2 Ma essendo per potes a > 0 la tes è dmostrata. 11/17?

32 Successon nfntesme Se la successone convergente (a n ) ha lmte zero, dremo che la successone è nfntesma. Dalla defnzone d lmte segue che la successone (a n ) è nfntesma se e solo se per ogn ε > 0 esste n ε N tale che se n N, n > n ε rsulta a n < ε. Inoltre (a n ) è nfntesma se e solo se ( a n ) è nfntesma. 12/17?

33 Osservazone Se (a n ) è una successone nfntesma e non negatva allora per ogn α > 0 la successone (a α n) è nfntesma. 13/17?

34 Defnzone Sano (a n ), (b n ) due successon. Dremo che (b n ) domna (a n ) se esste n 0 N tale che per ogn n N, n > n 0 s ha a n b n 14/17?

35 Defnzone Sano (a n ), (b n ) due successon. Dremo che (b n ) domna (a n ) se esste n 0 N tale che per ogn n N, n > n 0 s ha a n b n Teorema Se (b n ) domna (a n ) e (b n ) è nfntesma, anche (a n ) è nfntesma. 14/17?

36 Defnzone Sano (a n ), (b n ) due successon. Dremo che (b n ) domna (a n ) se esste n 0 N tale che per ogn n N, n > n 0 s ha a n b n Teorema Se (b n ) domna (a n ) e (b n ) è nfntesma, anche (a n ) è nfntesma. Ad esempo la successone a n = n è domnata da b 2 n = n. 14/17?

37 Teorema Sano (a n ) e (b n ) due successon nfntesme allora () (a n + b n ) è nfntesma () se λ R allora (λa n ) è nfntesma () (a n b n ) è nfntesma 15/17?

38 Teorema Le seguent successon sono nfntesme: () ( ) 1 n α con α > 0 () (r n ) con r < 1 () (n α r n ) con α > 0 e r < 1 ( ) c n (v) n! ( ) n α (v) n! con c R con α > 0 16/17?

39 Teorema Se allora lm a n = a, n lm b n = b, n () lm n (a n + b n ) = a + b () lm n (λa n ) = λa per ogn λ R () lm n (a n b n ) = ab a n (v) lm = a n b n b posto che sa b 0 17/17?

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P

1. Il Teorema Ergodico per le catene di Markov * Definizione Una catena di Markov discreta con spazio degli stati E; si dice regolare se, detta P = (P . Il Teorema Ergodco er le catene d Markov * Defnzone Una catena d Markov dscreta con sazo degl stat E; s dce regolare se, detta P = (P ) la matrce delle robablt a d transzone assocata, esstono un ntero

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 8: 14 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Rendte nel contnuo Se s pensa alla rendta come

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Analisi Matenatica Lezione 1 23 settembre 2013

Analisi Matenatica Lezione 1 23 settembre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 1 23 settembre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/24? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del docente www.danelertell.name

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Flusso a costo minimo

Flusso a costo minimo Flusso a costo mnmo Consderamo un grafo G=(N, A), con capactà u sugl arch. Il problema: mn s.t. c (, j) A x (, j) δ x + x ( ) u ( j, ) δ x j ( ) = b( ) N (, j) A s dce problema d flusso a costo mnmo. Assumamo

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 5: 28 febbrao 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/20? Costtuzone d un captale S vuole costture

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati La Stablta La stabltà alla Lyapunov de sstem Semplce Asntotca Esponenzale Locale Globale La stabltà de sstem lnearzzat Stabltà nput-output (BIBO) Rsposta mpulsva (ved Marro par..3, ved Vtell-Petternella

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 13: 17 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/16? resa vsone della prma prova parzale Entro l

Dettagli

Sulla teoria di Z in L = {+,<}

Sulla teoria di Z in L = {+,<} Sulla teora d Z n L = {+,

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Analisi Class info sul corso Lezione 1 16 settembre 2015

Analisi Class info sul corso Lezione 1 16 settembre 2015 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 16 settembre 2015 professor Danele Rtell danele.rtell@unbo.t 1/30? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 21: 25 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? CCT/CCTEu S tratta d un ttolo a cedola

Dettagli

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CASSINO FACOLTA DI INGEGNERIA UNIVERSITA DEGI STUDI DI CASSINO FACOTA DI INGEGNERIA ANTONIO RUSSO, ANGEO EOPARDI ANAISI DE ERRORE CONNESSO A APPROSSIMAZIONE DEE UNGHEZZE E DEE CEERITA NE METODO DI INTEGRAZIONE DEE CARATTERISTICHE (MOC)

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 15 23 novembre 211 Funzon Eulerane - robabltà professor Danele Rtell www.unbo.t/docent/danele.rtell 1/2? Cambo

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI Equlbro e stabltà d sstem dnamc Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI TC Crter d stabltà per sstem dnamc LTI TC Stabltà nterna d sstem dnamc

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

La teoria microeconomica del consumo

La teoria microeconomica del consumo Isttuzon d Economa Matematca La teora mcroeconomca del consumo Il problema del consumatore 2 a parte. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy)

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Rcerca operatva Lezone # 2 7 maggo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/14? n presenza d un attvtà produttva

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI

APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI APPUNTI SUL TEOREMA DI CLASSIFICAZIONE DEI GRUPPI ABELIANI FINITAMENTE GENERATI GIOVANNI GAIFFI, CORSO DI ALGEBRA 1 2010/2011 NOTA: FA PARTE DEL PROGRAMMA SOLO LA CONOSCENZA DELL ENUNCIATO DEL TEOREMA

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 12: 6 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Eserczo 3 000 vanno rmborsat n tre ann

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

ANALISI STATISTICA DELLE INCERTEZZE CASUALI

ANALISI STATISTICA DELLE INCERTEZZE CASUALI AALISI STATISTICA DELLE ICERTEZZE CASUALI Consderamo l caso della msura d una grandezza fsca che sa affetta da error casual. Per ottenere maggor nformazone sul valore vero della grandezza rpetamo pù volte

Dettagli

Metodi iterativi per sistemi di equazioni lineari algebriche

Metodi iterativi per sistemi di equazioni lineari algebriche Captolo 17 Metod teratv per sstem d equazon lnear algebrche 171 Generaltà su metod teratv S fornsce la defnzone d convergnza per vettor e matrc Convergenza d vettor Una successone d vettor d n component

Dettagli

03/03/2012. Campus di Arcavacata Università della Calabria

03/03/2012. Campus di Arcavacata Università della Calabria Campus d Arcavacata Unverstà della Calabra Corso d statstca RENDE a.a 0-00 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 Concentrazone Un altro aspetto d un nseme d dat che s aggunge alla meda e alla varabltà è costtuto

Dettagli

IL GRUPPO SIMMETRICO S n

IL GRUPPO SIMMETRICO S n EMILIO ZAPPA MATRICOLA UNIVERSITA DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA ANNO ACCADEMICO 00/00 TESINA PER IL LABORATORIO DI COMBINATORICA IL GRUPPO SIMMETRICO S n IL GIOCO DEL Sa A un nseme fnto

Dettagli

Elementi di Algebra e Analisi Tensoriale

Elementi di Algebra e Analisi Tensoriale M. Moscon ppunt d Scenza delle Costruzon Gugno 000 Element d lgebra e nals ensorale M. Moscon Element d algebra e anals tensorale INDICE. lgebra vettorale e tensorale. Calcolo vettorale e tensorale. Identtà

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 15: 24 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/18? enal per antcpata estnzone e tr La somma A

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

ESERCIZI DI ANALISI UNO

ESERCIZI DI ANALISI UNO ESERCIZI DI ANALISI UNO 4 marzo 2009 2 0.1 Esercizi sulle successioni di numeri reali Definizione 1 Una successione di numeri reali a n si dice convergente al limite l, e si scrive lim n a n = l se per

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell matematc per la gestone del magazzno Lezone # 5 24 novembre 2008 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/14?

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

OPERAZIONI E INSIEMI NUMERICI

OPERAZIONI E INSIEMI NUMERICI OPERAZIONI E INSIEMI NUMERICI Per rcordare H Un'operazone bnara n un nseme non vuoto A eá una legge ce ad ogn coppa d element a,b A assoca un elemento c A. Gl element a e b s camano operand o termn dell'operazone,

Dettagli

x(t) x[n] x q [n] x q [n] Campionamento Quantizzazione Codifica

x(t) x[n] x q [n] x q [n] Campionamento Quantizzazione Codifica 1. a conversone analogco dgtale (A/D) a conversone A/D è una operazone che permette d rappresentare un segnale analogco, coè contnuo nel domno del tempo e delle ampezze, medante una seuenza d campon numerc.

Dettagli

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali.

FRAME 1.1. Definizione Diciamo variabile aleatoria una funzione definita sullo spazio campionario di un esperimento a valori reali. FRAME 0.1. Contents 1. Varabl aleatore 1 1.1. Introduzone 1 1.2. Varabl aleatore dscrete 2 1.3. Valore atteso (Meda) e Varanza 3 1.4. Varabl aleatore bnomal e d Posson 4 1.1. Introduzone. 1. Varabl aleatore

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

Approssimazione minimax

Approssimazione minimax Approssmazone mnmax 1 Il problema dell approssmazone lneare Data una f(x) appartenente allo spazo vettorale F delle funzon real d varable reale, s scegle n F un modello, coè un nseme d funzon φ (x), =

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

IL TEOREMA DI BORSUK-ULAM E APPLICAZIONI. The Borsuk-Ulam Theorem and applications

IL TEOREMA DI BORSUK-ULAM E APPLICAZIONI. The Borsuk-Ulam Theorem and applications Scuola d Scenze Matematche Fsche e Natural Corso d Laurea n Matematca IL TEOREMA DI BORSUK-ULAM E APPLICAZIONI The Borsuk-Ulam Theorem and applcatons Canddata: Elena Zampol Relatore: Gorgo Ottavan Anno

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

Il campo ordinato completo R dei numeri reali. Federico Lastaria. Analisi e Geometria 1. Il campo ordinato completo R 1/13

Il campo ordinato completo R dei numeri reali. Federico Lastaria. Analisi e Geometria 1. Il campo ordinato completo R 1/13 Il campo ordinato completo R dei numeri reali Federico Lastaria. Analisi e Geometria 1. Il campo ordinato completo R 1/13 Cosa significa campo? Significa che sono definite due operazioni: somma e prodotto,

Dettagli

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006

Università di Verona Prof. S. De Marchi Verona, 6 febbraio 2006 LABORATORIO DI CALCOLO NUMERICO : Gruppo A Autovalor d matrc: II Unverstà d Verona Prof. S. De March Verona, 6 febbrao 2006 Data una matrce quadrata A n n, a coeffcent real, cu autovalor possono essere

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0 INTERPOLAZIONE EDIANTE CURVE SPLINE Defnzone del problema Sovente, nelle applcazon grafche (CAD Computer Aed Desgn), s ha la necesstà d traccare, dat alcun punt, una lnea che l raccord e che sa suffcentemente

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 2

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 2 Espermento aleatoro : espermento l cu esto, non noto a pror, appartene ad un determnato nseme d est plausbl. Spazo degl est W : nseme d tutt possbl est d un espermento aleatoro. Spazo degl event : ogn

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 03-4, lez.9) Matematca Computazonale, Ottmzzazone,

Dettagli

MODELLI MULTISTATO. Introduzione ai modelli multistato. Esempio di modello multistato per descrivere la progressione di una malattia

MODELLI MULTISTATO. Introduzione ai modelli multistato. Esempio di modello multistato per descrivere la progressione di una malattia MODELLI MULTISTATO Introuzone a moell multstato Esempo moello multstato per escrvere la progressone una malatta I moell multstato Un moello multstato per l asscurazone malatta Introuzone a moell multstato

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria.

Il procedimento può essere pensato come una ricerca in un insieme ordinato, il peso incognito può essere cercato con il metodo della ricerca binaria. SCELTA OTTIMALE DEL PROCEDIMENTO PER PESARE Il procedmento può essere pensato come una rcerca n un nseme ordnato, l peso ncognto può essere cercato con l metodo della rcerca bnara. PESI CAMPIONE IN BASE

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

ESERCIZI SULLE SUCCESSIONI

ESERCIZI SULLE SUCCESSIONI ESERCIZI SULLE SUCCESSIONI 8 marzo 2010 2 0.1 Esercizi sulle successioni di numeri reali Definizione 1 Una successione di numeri reali a n si dice convergente al limite l, e si scrive lim n a n = l se

Dettagli