ESERCIZI SULLE SUCCESSIONI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SULLE SUCCESSIONI"

Transcript

1 ESERCIZI SULLE SUCCESSIONI 8 marzo 2010

2 2 0.1 Esercizi sulle successioni di numeri reali Definizione 1 Una successione di numeri reali a n si dice convergente al limite l, e si scrive lim n a n = l se per ogni numero reale ε > 0 esiste un intero positivo N tale che, per ogni n > N si verifica la disuguaglianza a n l < ε. Una successione a n si dice convergente se esiste un numero reale l tale che lim n a n = l. Definizione 2 Sia a n una successione di numeri reali. Un numero reale x si dice punto di accumulazione di a n, se per ogni ε > 0, la disuguaglianza a n x < ε si verifica per infiniti indici della successione. L esercizio che segue ha lo scopo di chiarire un piccolo equivoco terminologico, dovuto al fatto che il termine punto di accumulazione si usa anche, per gli insiemi. Questo stesso esercizio serve anche a chiarire che quando si parla di successioni non si ha solo a mente l insieme {a n : n N}, ma anche e soprattutto la corrispondenza n a n il cui dominio di definizione è l insieme dei numeri naturali, ma la cui immagine potrebbe essere qualsiasi sottoinsieme non vuoto dei numeri reali. Esercizio 1 Osservare che un punto di accumulazione della successione a n potrebbe non essere un punto di accumulazione dell insieme {a n : n N}, secondo la Definizione 2.18 a pag. 30 del libro di Rudin. Infatti quest ultimo insieme, ad esempio, potrebbe essere finito e non avere punti di accumulazione. Un esempio concreto è la successione a n = ( 1) n che ha due punti di accumulazione. Il corrispondente insieme {a n : n N} = { 1, 1} consiste esattamente dei due punti di accumulazione della successione ed essendo finito non ha punti di accumulazione. Osservare anche che tutti i punti di accumulazione (secondo la Definizione 2.18 del libro di testo) dell insieme {a n : n N} sono anche punti di accumulazione della successione a n Esercizio 2 Dimostrare o confutare: 1. Se lim n a n = l, allora l è un punto di accumulazione di a n 2. Se l è un punto di accumulazione di a n allora lim n a n = l. 3. Se una successione di numeri reali è convergente, il suo limite è unico. 4. Una successione di numeri reali non può avere più di un punto di accumulazione Esercizio 3 Dare un esempio di:

3 0.1. ESERCIZI SULLE SUCCESSIONI DI NUMERI REALI 3 1. Una successione di numeri reali convergente 2. Una successione di numeri reali non convergente 3. Una successione di numeri reali che non ha nessuna sottosuccessione convergente 4. Una successione di numeri reali limitata superiormente, ma non inferiormente 5. Una successione di numeri reali limitata inferiormente ma non superiormente 6. Una successione di numeri reali limitata superiormente ed inferiormente 7. Una successione che non converge a zero, ma per la quale zero è un punto di accumulazione. 8. Una successione di numeri reali che non ha alcun punto di accumulazione 9. Una successione di numeri reali con esattamente due punti di accumulazione distinti 10. Una successione di numeri reali con esattamente tre punti di accumulazione distinti. 11. Una successione di numeri reali con infiniti punti di accumulazione distinti 12. Una successione di numeri reali i cui punti di accumulazione formano un insieme denso 13. Una successione di numeri reali i cui punti di accumulazione costituiscono l intero intervallo chiuso [0, 1]. 14. Una successione di numeri reali monotona non decrescente e limitata superiormente 15. Una successione di numeri reali non decrescente e non limitata superiormente. Esercizio 4 Dimostrare o confutare i seguenti enunciati.

4 4 1. Se una sucessione di numeri reali converge tutte le sue sottosuccessioni convergono allo stesso limite 2. Se una successione di numeri reali non converge allora tutte le sue sottosuccessioni non convergono 3. Se una successione di numeri reali ha un solo punto di accumulazione, allora converge 4. Se una successione di numeri reali ha più di un punto di accumulazione, allora non è convergente. 5. Se una successione di numeri reali non ha alcun punto di accumulazione, allora è convergente. 6. Se l è un punto di accumulazione della successione a n allora esiste una sottosuccessione di a n che converge ad l. 7. Ogni sottosuccessione convergente di a n converge ad un punto di accumulazione di a n. 8. Se una successione di numeri reali non ha alcun punto di accumulazione allora non è convergente. 9. Se una successione di numeri reali è di Cauchy, allora è limitata 10. Esiste una successione di Cauchy con esattamente due punti di accumulazione distinti. 11. Se una successione di numeri reali è limitata, allora è di Cauchy 12. Il prodotto di una successione limitata ed una successione che converge a zero, converge a zero. 13. Il prodotto di una successione limitata ed una successione convergente è convergente. 14. Ogni successione limitata ammette almeno un punto di accumulazione. Definizione 3 Un sottoinsieme E N dei numeri naturali si dice cofinito se è il complemento di un insieme finito (o vuoto). Esercizio 5 Dimostrare o confutare le seguenti affermazioni concernenti sottoinsiemi dei numeri naturali: 1. Ogni insieme cofinito è infinito

5 0.1. ESERCIZI SULLE SUCCESSIONI DI NUMERI REALI 5 2. Ogni insieme infinito è cofinito 3. L unione di due insiemi cofiniti è un insieme cofinito 4. L intersezione di due insiemi cofiniti è un insieme cofinito 5. L unione di due insiemi infiniti è un insieme infinito 6. L intersezione di due insiemi infiniti è un insieme infinito Esercizio 6 Dimostrare che lim n a n = l se e solo se per ogni ε > 0 esiste un sottoinsieme cofinito E N tale che la disuguaglianza a n l < ɛ si verifica per tutti gli elementi n E. Esercizio 7 Osservare che l è un punto di accumulazione di a n se e solo se per ogni ε > 0 esiste un sottoinsieme infinito E N tale che la disuguaglianza a n l < ε si verifica per tutti gli elementi n E. I precedenti due esercizi mostrano che la distinzione tra punti di accumulazione e limiti di una successione può essere basata sulla distinzione tra sottoinsiemi infiniti e sottoinsiemi cofiniti dei numeri naturali. Definizione 4 Se a n è una successione limitata superiormente, l estremo superiore della successione, indicato con sup n a n è il più piccolo numero reale che è un maggiorante di tutti i termini della successione. Se a n è limitata inferiormente, l estremo inferiore della successione, indicato con inf n a n è il più grande numero reale che è un minorante di tutti i termini della successsione. Osservare che l esistenza di sup n a n per le successioni limitate superiormente e di inf n a n per le successioni limitate inferiormente è assicurata dall assioma dell estremo superiore. Osservare che in questo caso l estremo superiore della successione a n è esattamente l estremo superiore dell insieme {a n : n N}, e analogamente l estremo inferiore della successione è l estremo inferiore dello stesso insieme. Esercizio 8 Dimostrare che sup n a n = inf n ( a n ). Esercizio 9 Dimostrare che se a n è una successione non decrescente e limitata superiormente allora lim n a n = sup n a n, e che se a n è una successione non crescente e limitata inferiormente allora lim n a n = inf n a n. Concludere che le successioni monotone e limitate sono sempre convergenti.

6 6 Esercizio 10. Sia a n una successione limitata superiormente ed inferiormente e sia b n = sup{a k : k n}. Dimostrare che b n è una successione non crescente e limitata inferiormente. Definizione 5 Sia a n una successione limitata superiormente ed inferiormente e sia b n la successione definita in relazione ad a n nell esercizio precedente. Il massimo limite della successione a n è definito come lim sup n a n = lim n b n. Esercizio 11 Sia a n una successione limitata superiormente e inferiormente e sia c n = inf{a k : k n}. Dimostrare che c n è una successione non decrescente e limitata superiormente. Utilizzare c n per definire il minimo limite della successione a n che si indica con lim inf n a n. Esercizio 12 Sia a n = 1/n. In relazione ad a n determinare le successioni b n e c n definite nella definizione e nell esercizio che precede e calcolare lim sup n a n e lim inf n a n. Esercizio 13 Dimostrare che se a n è una successione limitata superiormente ed inferiormente, allora lim sup n a n è il più grande dei suoi punti di accumulazione, e che, con le stesse ipotesi su a n, lim inf n a n è il più piccolo dei suoi punti di accumulazione. Esercizio 14 Dimostrare che una successione limitata (superiormente ed inferiormente) è convergente se e solo se lim sup n a n = lim inf n a n, ed il limite è il comune valore. Esercizio 15 Trovare il massimo e minimo limite delle seguenti successioni: a n = ( 1) n, a n = ( 1) n (1 1 ), a n n = ( 1) n n, a n+1 n = n+1, a n 2 n = n+1. n+3 Esercizio 16 Sia r n una numerazione dei numeri razionali contenuti nell intervallo [0, 1]. Calcolare il massimo e minimo limite della successione r n. Esercizio 17. Dimostrare che se a n è una successione limitata (superiormente e inferiormente), e E = {λ R : λ > a n, per un insieme cofinito di indici n}, allora lim sup n a n = inf E. Formulare e dimostrare un enunciato analogo per lim inf n a n. Esercizio 18 Dimostrare che un sottoinsieme U R è aperto se e solo per ogni successione a n che converge ad un elemento di U, esiste un intero positivo N tale che a n U, per ogni n N. Esercizio 19 Dimostrare che un sottoinsieme F R è chiuso se per ogni successione convergente e tale che a n F, risulta lim n a n F.

7 0.2. ESERCIZI SULLE SUCCESSIONI DI NUMERI COMPLESSI Esercizi sulle successioni di numeri complessi Definizione 6 Una successione di numeri complessi a n si dice convergente al limite l C, e si scrive lim n a n = l se per ogni numero reale ε > 0 esiste un intero positivo N tale che, per ogni n > N si verifica la disuguaglianza a n l < ε. Una successione a n si dice convergente se esiste un numero complesso l tale che lim n a n = l. Definizione 7 Sia a n una successione di numeri complessi. Un numero complesso z si dice punto di accumulazione di a n, se per ogni ε > 0, la disuguaglianza a n z < ε si verifica per infiniti indici della successione. Esercizio 20 Dimostrare o confutare: 1. Se lim n a n = l, allora l è un punto di accumulazione di a n 2. Se l è un punto di accumulazione di a n allora lim n a n = l. 3. Se una successione di numeri complessi è convergente, il suo limite è unico. 4. Una successione di numeri complessi non può avere più di un punto di accumulazione Esercizio 21 Dare un esempio di successioni di numeri complessi non contenute nella retta reale che soddisfano le proprietà seguenti: 1. Una successione di numeri complessi convergente 2. Una successione di numeri complessi non convergente 3. Una successione di numeri complessi che non ha nessuna sottosuccessione convergente 4. Una successione di numeri complessi limitata. 5. Una successione di numeri complessi non limitata. 6. Una successione di numeri complessi che non converge a zero, ma per la quale zero è un punto di accumulazione. 7. Una successione di numeri complessi che non ha alcun punto di accumulazione

8 8 8. Una successione di numeri complessi con esattamente due punti di accumulazione distinti 9. Una successione di numeri complessi con esattamente tre punti di accumulazione distinti. 10. Una successione di numeri complessi con infiniti punti di accumulazione distinti 11. Una successione di numeri complessi i cui punti di accumulazione formano un insieme denso in C 12. Una successione di numeri complessi i cui punti di accumulazione costituiscono l intero disco chiuso D = {z C : z 1}. Esercizio 22 Dimostrare che la successione di numeri complessi z n = e i2πnα con α R e 0 α 1 ha un numero finito di punti di accumulazione se e solo se α è razionale. Dimostrare che se α = 1/k, allora z n descrive le radici k-esime dell unità. Esercizio 23 Sia z C un numero complesso dimostrare che se z < 1 la successione z n converge a zero, se z > 1 la successione z n è illimitata. Discutere la convergenza ed i punti di accumulazione della successione z n nel caso in cui z = 1. Esercizio 24 Dimostrare o confutare i seguenti enunciati. 1. Se una sucessione di numeri complessi converge tutte le sue sottosuccessioni convergono allo stesso limite 2. Se una successione di numeri complessi non converge allora tutte le sue sottosuccessioni non convergono 3. Se una successione di numeri complessi ha un solo punto di accumulazione, allora converge 4. Se una successione di numeri complessi ha più di un punto di accumulazione, allora non è convergente. 5. Se una successione di numeri complessi non ha alcun punto di accumulazione, allora è convergente. 6. Se l è un punto di accumulazione della successione a n allora esiste una sottosuccessione di a n che converge ad l.

9 0.2. ESERCIZI SULLE SUCCESSIONI DI NUMERI COMPLESSI 9 7. Ogni sottosuccessione convergente di a n converge ad un punto di accumulazione di a n. 8. Se una successione di numeri complessi non ha alcun punto di accumulazione allora non è convergente. 9. Se una successione di numeri complessi è di Cauchy, allora è limitata 10. Esiste una successione di Cauchy con esattamente due punti di accumulazione distinti. 11. Se una successione di numeri complessi è limitata, allora è di Cauchy 12. Il prodotto di una successione di numeri complessi limitata ed una successione che converge a zero, converge a zero. 13. Il prodotto di una successione limitata ed una successione convergente è convergente. 14. Ogni successione limitata ammette almeno un punto di accumulazione. Esercizio 25 Quali delle questioni poste nel precedente esercizio possono essere riformulate e trovare risposta per successioni in uno spazio metrico? Esercizio 26 Sia z n una successione di numeri complessi. Dimostrare che se w è un punto di accumulazione di z n, allora w lim sup z n. Esercizio 27 Sia P n una successione di punti in uno spazio metrico. Dimostrare che lim n P n = P se e solo se per ogni ε > 0 esiste un sottoinsieme cofinito E N tale che la disuguaglianza d(p n, P ) < ε si verifica per tutti gli elementi n E. Esercizio 28 Osservare che in uno spazio metrico P è un punto di accumulazione di P n se e solo se per ogni ε > 0 esiste un sottoinsieme infinito E N tale che la disuguaglianza d(p n, P ) < ε si verifica per tutti gli elementi n E. I precedenti due esercizi mostrano che la distinzione tra punti di accumulazione e limiti di una successione in uno spazio metrico può essere basata sulla distinzione tra sottoinsiemi infiniti e sottoinsiemi cofiniti dei numeri naturali.

ESERCIZI DI ANALISI UNO

ESERCIZI DI ANALISI UNO ESERCIZI DI ANALISI UNO 4 marzo 2009 2 0.1 Esercizi sulle successioni di numeri reali Definizione 1 Una successione di numeri reali a n si dice convergente al limite l, e si scrive lim n a n = l se per

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

14 Spazi metrici completi

14 Spazi metrici completi 54 2006-apr-26 Geometria e Topologia I 14 Spazi metrici completi (14.1) Definizione. Una successione {x n } n in uno spazio metrico si dice di Cauchy se per ogni ɛ > 0 esiste un intero N = N(ɛ) per cui

Dettagli

Topologia della retta reale

Topologia della retta reale Topologia della retta reale R e i suoi sottoinsiemi Intervalli Si consideri l insieme dei numeri reali R. Siano a, b R. Si definisce intervallo ogni sottoinsieme di R costituito dai punti compresi tra

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. FABIO CIPRIANI 1. Completezza dell insieme dei numeri reali R. Nell insieme dei numeri reali R la condizione di Cauchy e necessaria e sufficiente per la convergenza

Dettagli

Il campo ordinato completo R dei numeri reali. Federico Lastaria. Analisi e Geometria 1. Il campo ordinato completo R 1/13

Il campo ordinato completo R dei numeri reali. Federico Lastaria. Analisi e Geometria 1. Il campo ordinato completo R 1/13 Il campo ordinato completo R dei numeri reali Federico Lastaria. Analisi e Geometria 1. Il campo ordinato completo R 1/13 Cosa significa campo? Significa che sono definite due operazioni: somma e prodotto,

Dettagli

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1

Topologia della retta reale. Concetto intuitivo di limite. Definizioni di limite. Teoremi sui limiti. Applicazioni. Angela Donatiello 1 Topologia della retta reale. Concetto intuitivo di ite. Definizioni di ite. Teoremi sui iti. Applicazioni. Angela Donatiello TOPOLOGIA DELLA RETTA REALE Esiste una corrispondenza biunivoca tra l insieme

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo sercizi del Corso di Istituzioni di Analisi Superiore, I modulo 1. sercizi su massimo e minimo limite 1. lim inf a n lim sup a n 2. Se a n b n per ogni n N, allora lim inf a n lim inf b n. Vale anche lim

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo.

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo. SPAZI COMPATTI D ora in poi tutti gli spazi topologici sono di Hausdorff. Definizione 1 Uno spazio topologico (X, τ) si dice sequenzialmente compatto, o compatto per successioni, se ogni successione di

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 02 - I Numeri Reali Anno Accademico 2013/2014 D. Provenzano, M.

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali.

L INSIEME DEI NUMERI REALI. DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali. PROF GIOVANNI IANNE L INSIEME DEI NUMERI REALI DEFINIZIONE DI INSIEME NUMERICO L insieme numerico è un insieme i cui elementi sono numeri reali DEFINIZIONE DI INTERVALLO L intervallo è un particolare insieme

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi

1 - Estremo superiore ed estremo inferiore di insiemi - Estremo superiore ed estremo inferiore di insiemi Prima di affrontare gli esercizi su estremo superiore ed inferiore, ricordiamo alcune definizioni ed alcuni teoremi che ci verranno utili. Definizione.

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

Alcuni esercizi di Analisi I (tratti da compiti ed esercitazioni in aula degli ultimi anni)

Alcuni esercizi di Analisi I (tratti da compiti ed esercitazioni in aula degli ultimi anni) Alcuni esercizi di Analisi I (tratti da compiti ed esercitazioni in aula degli ultimi anni) ) Risolvere la disequazione 2/ 3 < 4/ +. Numeri reali, insiemi, logica proposizionale 2) Trovare un numero M

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

Insiemi numerici: numeri reali

Insiemi numerici: numeri reali Insiemi numerici: numeri reali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri reali Analisi Matematica 1 1 / 29 R è un CAMPO R è dotato delle operazioni

Dettagli

Modulo o "valore assoluto"

Modulo o valore assoluto Modulo o "valore assoluto" Dato x R definiamo modulo o valore assoluto di x il numero reale positivo x se x 0 x = x se x < 0 Sfrag replacements Es. 5 è 5. 2.34 è 2.34 Dal punto di vista geometrico x rappresenta

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 1/10/2018.

Dettagli

Limiti di funzioni reali

Limiti di funzioni reali E-school di Arrigo Amadori Analisi I Limiti di funzioni reali 01 Introduzione. Abbiamo già introdotto il concetto di limite per quanto riguarda le successioni. Estenderemo in questo capitolo il concetto

Dettagli

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1 Numeri naturali, interi e razionali Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1. 1 A. per ogni x A, si ha x + 1 A Definizione 1.. Chiamo insieme

Dettagli

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione.

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - C. Vagnoni 1 Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati

Dettagli

Generalizzazioni del Teorema di Weierstrass

Generalizzazioni del Teorema di Weierstrass Capitolo 2 Generalizzazioni del Teorema di Weierstrass Il principale riferimento bibliografico per questa lezione è il testo di Checcucci, Tognoli, Vesentini [1]. Introduzione Supponiamo che X = R n. È

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (prima parte) 1. (a) Un numero complesso diverso da zero è invertibile. (b) Una successione illimitata superiormente

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Corso di Analisi A.A. 2016/2017 Argomenti delle lezioni

Corso di Analisi A.A. 2016/2017 Argomenti delle lezioni Corso di Analisi A.A. 206/207 Argomenti delle lezioni lezione. Mercoledí 5 ottobre. 2 ore. Contare e misurare. I numeri naturali. Proprietá dei numeri naturali: elemento minimo, successivo, non itatezza

Dettagli

1.5 Assioma di completezza

1.5 Assioma di completezza 1.5 Assioma di completezza Le proprietà 1-8 sin qui viste non sono prerogativa esclusiva di R, dato che sono ugualmente vere nell insieme dei numeri razionali Q. Ciò che davvero caratterizza R è la proprietà

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: primo foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: primo foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: primo foglio A. Figà Talamanca 3 ottobre 2010 2 0.1 Numeri reali Diamo per scontato che gli studenti conoscano i numeri razionali. Questi sono i numeri che

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

Argomento delle lezioni del corso di Analisi A.A

Argomento delle lezioni del corso di Analisi A.A Argomento delle lezioni del corso di Analisi A.A.2011-2012 30 gennaio 2012 Lezione 1-2 (5 ottobre 2011) Numeri naturali, interi, razionali. Definizione intuitiva dei reali attraverso la retta. Definizione

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 35 index Il concetto di limite 1 Il

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito.

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito. 1 COMPATTEZZA Sia X un sottoinsieme di R. Una famiglia A di sottoinsiemi aperti di R si dice ricoprimento aperto di X se X A, cioè se X è contenuto nell unione degli elementi di A. Una sottofamiglia di

Dettagli

Argomenti. Settimana 1.

Argomenti. Settimana 1. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - E. Battaglia 1 Date d esame: 23/1/219 aule P3-Lu3-Lu4 ore 14.3-17.3; 2/2/219 aule P3-Lu3-Lu4 ore 9.- 12.; 26/6/219 aule

Dettagli

Problemi di topologia metrica.

Problemi di topologia metrica. Problemi di topologia metrica. 1.) Sia X un insieme, munito di una distanza d : X X R +. Siano x 1 ;x ;x 3 ;x 4 quattro punti qualsiasi di X. Verificare che: d (x 1 ; x 4 ) d (x 1 ; x ) + d (x ; x 3 )

Dettagli

Matematica I. Francesco Bonsante e Giuseppe Da Prato

Matematica I. Francesco Bonsante e Giuseppe Da Prato Matematica I Francesco Bonsante e Giuseppe Da Prato 31 Maggio 2008 Contents 1 Numeri reali 1 1.1 Sottoinsiemi di Q......................... 1 1.1.1 Estremo superiore e estremo inferiore.......... 2 1.2

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

REALI ESERCIZI CON SOLUZIONI. 3. Verificare con la calcolatrice che la disuguaglianza triangolare è vera per i numeri

REALI ESERCIZI CON SOLUZIONI. 3. Verificare con la calcolatrice che la disuguaglianza triangolare è vera per i numeri REALI ESERCIZI CON SOLUZIONI. Calcolare il valore assoluto dei seguenti numeri: a. = h. 5 5 = 5 b. 5 5 = 5 c. 0 0 = 0 d. e. 7 = 7 = 7 f. 2, 57 2,57 = 2, 57 g., 6,6 =, 6 k. m. i. 5 5 = 5 j. 2 2 = 2 log

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Successioni Analisi Matematica 1 1 / 48 Definizione Una successione a valori reali è

Dettagli

Analisi Matematica. Alcune dimostrazioni e verifiche relative al capitolo Limiti di successioni numeriche e di funzioni

Analisi Matematica. Alcune dimostrazioni e verifiche relative al capitolo Limiti di successioni numeriche e di funzioni a.a. 204/205 Laurea triennale in Informatica Analisi Matematica Alcune dimostrazioni e verifiche relative al capitolo Limiti di successioni numeriche e di funzioni Avvertenza Per comodità degli studenti

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata.

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata. Analisi 2 Successioni numeriche -1- ÔÔÙÒØ Ô Ö Ð ÓÖ Ó Ò Ð ¾ º ËÙ ÓÒ ÒÙÑ Ö Proposizione (unicità del limite). Se {a n } è convergente, allora il limite è unico. Dimostrazione. Supponiamo che la tesi sia

Dettagli

1. Il concetto di limite ha una lunga storia. Qualche riferimento:

1. Il concetto di limite ha una lunga storia. Qualche riferimento: Matematica I, 03.10.2012 Limiti. 1. Il concetto di limite ha una lunga storia. Qualche riferimento: Archimede (III secolo AC; misure di lunghezze, aree, volumi) Newton, Leibniz (XVII secolo; cinematica,

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2006/07. Notazioni, richiami sulla teoria degli insiemi.

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2006/07. Notazioni, richiami sulla teoria degli insiemi. Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2006/07 Notazioni, richiami sulla teoria degli insiemi. Introduzione e richiami di alcune notazioni (simboli matematiche.

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

Facoltà di SCIENZE MATEMATICHE, FISICHE E NATURALI anno accademico 2009/10

Facoltà di SCIENZE MATEMATICHE, FISICHE E NATURALI anno accademico 2009/10 Attività didattica Facoltà di SCIENZE MATEMATICHE, FISICHE E NATURALI anno accademico 2009/10 ANALISI MATEMATICA I [MA0008] Periodo di svolgimento: Annualità Singola Docente titolare del corso: FREDDI

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

AM110 (analisi 1) Definizioni. Luigi Chierchia Università Roma Tre (aa 2017/18)

AM110 (analisi 1) Definizioni. Luigi Chierchia Università Roma Tre (aa 2017/18) AM110 (analisi 1) Definizioni Luigi Chierchia Università Roma Tre (aa 2017/18) 2 Università Roma Tre L. Chierchia Definizione 1 (i) Dati due insiemi non vuoti A e B una relazione R di A in B è un sottoinsieme

Dettagli

SPAZI TOPOLOGICI COMPATTI Note informali dalle lezioni

SPAZI TOPOLOGICI COMPATTI Note informali dalle lezioni SPAZI TOPOLOGICI COMPATTI Note informali dalle lezioni Sia X un insieme. Un ricoprimento di X è una famiglia U = {U j } j J di sottoinsiemi di X tali che X = j J U j. Un ricoprimento U = {U j } j J si

Dettagli

Gli insiemi. Definizioni: Sia X un insieme e siano A, B sottoinsiemi di X. Si definisce:

Gli insiemi. Definizioni: Sia X un insieme e siano A, B sottoinsiemi di X. Si definisce: Gli insiemi - Insieme Universo X e sottoinsiemi (cioè gli insiemi A contenuti in X); - Un insieme è finito se ha un numero finito di elementi): se gli elementi sono pochi, si elencano: A = {1, 2, 3, 4,

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

Serie Numeriche. Docente:Alessandra Cutrì

Serie Numeriche. Docente:Alessandra Cutrì Serie Numeriche Docente:Alessandra Cutrì Definizione di Serie Somma formale di un numero infinito di addendi. È un operazione che è in stretta relazione con quella di integrale improprio. data un successione

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona

Matematica per le scienze sociali Successioni e funzioni. Francesco Lagona Matematica per le scienze sociali Successioni e funzioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) / 8 Outline Successioni 2 Funzioni 3 Funzioni elementari 4 Limiti

Dettagli

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA ( ) f() = log (determinare il dominio D; calcolare i limiti per che tende agli estremi finiti o infiniti z 4 + (3 + 6i)z + 5 + i = 0. ( + 3 ) α α (log + log + ) d. y = e y, y() = α. TEMA ( ) f() =

Dettagli

Analisi Matematica II

Analisi Matematica II Corso di Laurea in Matematica Analisi Matematica II Esercizi sugli spazi metrici, normati, iti e continuità Versione del 27/0/206 Esercizi di base Esercizio. (Giusti 20. Dire se le seguenti funzioni sono

Dettagli

ESERCIZI ASSEGNATI IN CLASSE

ESERCIZI ASSEGNATI IN CLASSE ESERCIZI ASSEGNATI IN CLASSE INGEGNERIA PER L AMBIENTE E IL TERRITORIO A. A. 2009/2010 LUCA ROSSI 1. Prima settimana Esercizio 1.1. Dimostrare che, dati due insiemi A, B, si ha: (leggi di De Morgan) A

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi

Dettagli

I NUMERI. Si dice "radice quadrata" di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a.

I NUMERI. Si dice radice quadrata di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a. Questa dispensa rappresenta una breve introduzione ai numeri reali e alla loro Topologia, minimo necessario per affrontare serenamente lo studio dell ANALISI MATEMATICA. Inoltre non si ha la pretesa che

Dettagli

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 -

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - Esiste una corrispondenza biunivoca tra i numeri reali e i punti di una retta: Ad ogni punto P della retta

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

ESERCIZI DI ANALISI MATEMATICA. x2 4 1 x

ESERCIZI DI ANALISI MATEMATICA. x2 4 1 x ESERCIZI DI ANALISI MATEMATICA Disequazioni e proprietà degli insiemi - ese - Risolvere le seguenti disequazioni: ( + )( 2) < ( + 5)( 5) + 2 3 > 2 + 3 > + 3 2 < ( + )( ) > 2 ( 2)( + ) < 2 ( ) + 7 ( 7)

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano) Istituzioni di Matematiche 1 / 19 index 1 D.Bambusi, C.Turrini (Univ. Studi

Dettagli

2 ore Teorema dell unicità del limite, nel caso di limiti in R (con dim.). f(x) = +. Per b>1 di lim

2 ore Teorema dell unicità del limite, nel caso di limiti in R (con dim.). f(x) = +. Per b>1 di lim Lunedì 18 settembre, 2 ore. Numeri naturali. Principio di induzione. Teorema sulle dimostrazioni per induzione. Esempi di dimostrazione per induzione: dimostrazione della disuguaglianza di Bernoulli. Sommatorie

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Numeri reali, topologia e funzioni Matematica per le Applicazioni Economiche I A.A. 017/018 Esercizi con soluzioni Numeri reali, topologia e funzioni 1 Numeri reali Esercizio 1. Risolvere la disequazione x 6 4x 3 + 3 0. Soluzione. Poniamo

Dettagli

Universitá di Roma Tor Vergata

Universitá di Roma Tor Vergata Universitá di Roma Tor Vergata Prof. A. Porretta 1) Determinare l estremo superiore e l estremo inferiore dei seguenti insiemi, e dire se si tratta di massimi o minimi. A = { } x [ π, π] : sin x 1 ; A

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

COMPLEMENTI DI ANALISI: LIMITI E CONTINUITÀ INDICE

COMPLEMENTI DI ANALISI: LIMITI E CONTINUITÀ INDICE COMPLEMENTI DI ANALISI: LIMITI E CONTINUITÀ ROBERTO GIAMBÒ, FABIO GIANNONI, PAOLO PICCIONE INDICE 1. Principio di induzione e completezza dei numeri reali 1 1.1. Il principio di induzione 1 1.2. Completezza

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

Analisi Matematica 1 - Parte A Quaderno degli esercizi settimanali. Roberto Monti. Matematica Anno Accademico Versione del 15 ottobre 2018

Analisi Matematica 1 - Parte A Quaderno degli esercizi settimanali. Roberto Monti. Matematica Anno Accademico Versione del 15 ottobre 2018 Analisi Matematica 1 - Parte A Quaderno degli esercizi settimanali Roberto Monti Matematica Anno Accademico 2018-19 Versione del 15 ottobre 2018 Indice Introduzione 5 Settimana 1. Insiemi, cardinalità,

Dettagli

Soluzione esercizi 28 ottobre 2011

Soluzione esercizi 28 ottobre 2011 ANALISI Soluzione esercizi 8 ottobre 0 4.. Esercizio. Siano α e β due numeri reali tali che la loro somma e la loro differenza siano razionali: provare che allora essi sono entrambi razionali. Il teorema

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

Integrali doppi impropri per funzioni positive

Integrali doppi impropri per funzioni positive Integrali doppi impropri per funzioni positive Integrali doppi impropri su domini limitati Siano R 2 un insieme quadrabile (o misurabile) secondo Jordan e f(x, y) una funzione positiva a valori reali definita

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Sottoinsiemi di Numeri Reali

Sottoinsiemi di Numeri Reali INTERVALLI LIMITATI a,b R Sottoinsiemi di Numeri Reali intervallo chiuso [a,b] = { R : a b} intervallo aperto (a,b) = { R : a < < b} intervallo chiuso a sinistra e aperto a destra [a,b) = { R : a < b}

Dettagli