Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015"

Transcript

1 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa Lezone 4: Martedì 24/2/2015 professor Danele Rtell 1/31?

2 Attualzzazone I fattor d attualzzazone conugat rspettvamente alle legg lneare ed esponenzale sono: ϕ L (t) = t, 2/31?

3 Attualzzazone I fattor d attualzzazone conugat rspettvamente alle legg lneare ed esponenzale sono: ϕ L (t) = t, ϕ E(t) = 1 (1 + ) t 2/31?

4 Attualzzazone I fattor d attualzzazone conugat rspettvamente alle legg lneare ed esponenzale sono: ϕ L (t) = t, ϕ E(t) = 1 (1 + ) t qund le legg d attualzzazone ne due regm sono a L (t; C) = C 1 + t, a E(t; C) = C (1 + ) t 2/31?

5 Valore attuale e forza d nteresse a(t; C) = C exp ( t 0 ) δ(s)ds 3/31?

6 Sconto Nel momento n cu calcolamo l valore attuale d un captale dsponble nel futuro nella pratca commercale s compe quella che vene comunemente chamata operazone d sconto. 4/31?

7 Sconto Nel momento n cu calcolamo l valore attuale d un captale dsponble nel futuro nella pratca commercale s compe quella che vene comunemente chamata operazone d sconto. Lo sconto S t è la somma che vene sottratta ad un captale C t esgble al tempo t > 0 se s vuole dsporne antcpatamente. 4/31?

8 Sconto Nel momento n cu calcolamo l valore attuale d un captale dsponble nel futuro nella pratca commercale s compe quella che vene comunemente chamata operazone d sconto. Lo sconto S t è la somma che vene sottratta ad un captale C t esgble al tempo t > 0 se s vuole dsporne antcpatamente. Se C a ndca l valore attuale, calcolato secondo un dato regme d captalzzazone, del captale C t dsponble al tempo t > 0 s ha la relazone C a = C t S t 4/31?

9 Sconto commercale S parla d sconto commercale se lo sconto è drettamente proporzonale al captale ed al tempo 5/31?

10 Sconto commercale S parla d sconto commercale se lo sconto è drettamente proporzonale al captale ed al tempo S c t = C t d t 5/31?

11 Sconto commercale S parla d sconto commercale se lo sconto è drettamente proporzonale al captale ed al tempo S c t = C t d t Ne vene che l valore attuale nello sconto commercale è dato dalla formula C c a = C t S c t = C t C t d t = C t (1 dt) 5/31?

12 Sconto razonale S parla d sconto razonale quando la somma scontata St r è tale che, se mpegata n regme semplce per l tempo t al tasso dà come montante l captale C t C t = S r t (1 + t) 6/31?

13 Sconto razonale S parla d sconto razonale quando la somma scontata St r è tale che, se mpegata n regme semplce per l tempo t al tasso dà come montante l captale C t C t = S r t (1 + t) = Sr t = C t 1 + t 6/31?

14 Sconto composto S parla d sconto composto quando la somma scontata St e è tale che, se mpegata n regme composto per l tempo t al tasso dà come montante l captale C t C t = S e t (1 + )t 7/31?

15 Sconto composto S parla d sconto composto quando la somma scontata St e è tale che, se mpegata n regme composto per l tempo t al tasso dà come montante l captale C t C t = S e t (1 + )t = S e t = C t (1 + ) t 7/31?

16 Rendte Il concetto d rendta ha nel calcolo fnanzaro la funzone d strumento d ndagne teorca nella valutazone d dverse stuazon fnanzare che s verfcano n stant temporal dvers. 8/31?

17 Rendte Il concetto d rendta ha nel calcolo fnanzaro la funzone d strumento d ndagne teorca nella valutazone d dverse stuazon fnanzare che s verfcano n stant temporal dvers. La comprensone d questa nozone è ndspensable quando ad una prestazone fnanzara fanno rscontro un certo numero d controprestazon, cascuna delle qual matura n stant dvers: rmborso d un prestto o valutazone d un nvestmento 8/31?

18 Defnzone Sa n N un ntero postvo. S dce rendta temporanea, un nseme fnto d captal Cs, dsponbl a temp ts, s = 1, 2..., n 0 C1 C2 C3 t1 t2 t3... Cs... ts Cn tn Fgure 1: Asse de temp R = (ts ; Cs ) 9/ L2 3M 33 22?

19 Defnzone. Sa assegnata la rendta R = (t s ; C s ) e sa f(t) un fattore d montante. La quanttà: V (R; t n ) = n k=1 C k f(t n t k ) prende l nome d montante della rendta R all stante fnale t n 10/31?

20 Montante n Regme composto V (R; t n ) = n C k (1 + ) t n t k k=1 11/31?

21 Montante n Regme semplce V (R; t n ) = n k=1 ) C k (1 + (t n t k ) 12/31?

22 Defnzone. Sa assegnata la rendta R = (t s ; C s ) e sa ϕ(t) un fattore d sconto. Il valore attuale della rendta R è: n V (R; 0) = C k ϕ(t k ) k=1 13/31?

23 Valore attuale n Regme composto V (R; 0) = n C k (1 + ) t k k=1 14/31?

24 Valore attuale n Regme semplce V (R; 0) = n C k (1 + t k ) 1 k=1 15/31?

25 Eserczo. Una rendta è costtuta da captal 800, 250, 1 500, qual sono dsponbl rspettvamente dopo un mese, quarantotto gorn, quattro mes, otto mes e dec gorn dall orgne della rendta. Determnare, n regme semplce, l montante ed l valore attuale al tasso annuo = 0, /31?

26 Eserczo. Una rendta è costtuta da captal 800, 250, 1 500, qual sono dsponbl rspettvamente dopo un mese, quarantotto gorn, quattro mes, otto mes e dec gorn dall orgne della rendta. Determnare, n regme semplce, l montante ed l valore attuale al tasso annuo = 0, 06. Soluzone {( ) 30 R = 360 ; 800, ( ) ; 250, ( ) ; 1 500, ( )} ; /31?

27 Eserczo. Determnare, n regme semplce, l montante ed l valore attuale al tasso annuo = 0, 06. Soluzone {( ) 30 R = 360 ; 800, {( ) 1 R = 12 ; 800, ( ) ; 250, ( ) 2 15 ; 250, ( ) ; 1 500, ), ( 1 3 ; ( )} ; )} ( ; /31?

28 Eserczo. Soluzone {( ) 1 R = 12 ; 800, V ( R; 25 ) 36 = [ = = 3 820, 25 ( ) 2 15 ; 250, ( ) 1 3 ; 1 500, ( )] ( )] [ [ [ ( )} ; ( )] + 15 ( )] 36 19/31?

29 Eserczo. Soluzone {( ) 1 R = 12 ; 800, V (R; 0) = = = 3 666, 62 ( ) 2 15 ; 250, ( ) 1 3 ; 1 500, ( )} ; /31?

30 Eserczo. Una rendta è costtuta da captal 800, 250, 1 500, qual sono dsponbl rspettvamente dopo un mese, quarantotto gorn, quattro mes, otto mes e dec gorn dall orgne della rendta. Determnare, n regme composto, l montante ed l valore attuale al tasso annuo = 0, 06. V ( R; 25 36) = 3 819, 21 V (R; 0) = 3 667, 75 21/31?

31 Eserczo. Una rendta è costtuta da captal 800, 250, 1 500, qual sono dsponbl rspettvamente dopo un mese, quarantotto gorn, quattro mes, otto mes e dec gorn dall orgne della rendta. Determnare, n regme composto, l montante ed l valore attuale al tasso annuo = 0, 06. V ( R; 36) 25 = 3 819, 21 V (R; 0) = 3 667, 75 NB 3 819, 21 = 3 667, 75 ( ) /31?

32 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 2. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. 22/31?

33 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 2. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. V (R, 0) = 3 (1 + ) (1 + ) 2 22/31?

34 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 2. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. V (R, 0) = 3 (1 + ) (1 + ) 2 v = (1 + ) 1 = 4v 2 + 3v 6 = 0 22/31?

35 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 2. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. V (R, 0) = 3 (1 + ) (1 + ) 2 da cu v = 1 8 v = (1 + ) 1 = 4v 2 + 3v 6 = 0 ( ) = 0, e = 1 = 0, v 22/31?

36 Il metodo d Newton Data una funzone f : [a, b] R con valor d segno opposto agl estrem d [a, b] se f è contnua esste almeno un elemento r ]a, b[ per cu f(r) = 0. Se ammettamo che f sa dervable con dervata d segno costante n ]a, b[ tale elemento r è unco. y O r x 23/31?

37 y O r x x 1 o x 24/31?

38 y O r x 2 x x 1 o x 25/31?

39 x 0 [a, b], tale che f(x 0 ) 0, x n = x n 1 f(x n 1), per ogn n N. f (x n 1 ) 26/31?

40 Teorema Sa f : [a, b] R una funzone d classe C 2, strettamente crescente e convessa e tale che f(a) < 0, f(b) > 0. Allora la successone: x 0 = b, x n+1 = x n f(x n) f (x n ), converge decrescendo all unco zero d f(x) n [a, b]. 27/31?

41 Metodo d Newton per trovare lo zero d f(v) = α 3 v 3 +α 2 v 2 +α 1 v A Conduce all terazone della funzone F (v) = v f(v) f (v) = v α 3v 3 + α 2 v 2 + α 1 v A 3α 3 v 2 + 2α 2 v + α 1 28/31?

42 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 3. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. 29/31?

43 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 3. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. V (R, 0) = 3 (1 + ) (1 + ) 3 29/31?

44 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 3. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. V (R, 0) = 3 (1 + ) (1 + ) 3 v = (1 + ) 1 = 4v 3 + 3v 6 = 0 29/31?

45 Eserczo Una rendta è costtuta da due termn: 3 all epoca t = 1 e 4 all epoca t = 3. Sapendo che l suo valore attuale è d 6 determnare, n regme esponenzale l tasso untaro d nteresse. V (R, 0) = 3 (1 + ) (1 + ) 3 v = (1 + ) 1 = 4v 3 + 3v 6 = 0 Iteranda d Newton F (v) = v 4v3 + 3v 6 12v /31?

46 Notare che posto f(v) = 4v 3 + 3v 6 è f(0) = 6 e f(1) = 1 30/31?

47 Notare che posto f(v) = 4v 3 + 3v 6 è f(0) = 6 e f(1) = 1 ongo v 0 = 0, 75 qund v 1 = F (v 0 ) = 0, 75 4 (0, 75) , (0, 75) = 0, /31?

48 Notare che posto f(v) = 4v 3 + 3v 6 è f(0) = 6 e f(1) = 1 ongo v 0 = 0, 75 qund v 1 = F (v 0 ) = 0, 75 4 (0, 75) , (0, 75) = 0, proseguendo v 2 = F (v 1 ) = 0, (0, ) , (0, ) /31?

49 Notare che posto f(v) = 4v 3 + 3v 6 è f(0) = 6 e f(1) = 1 ongo v 0 = 0, 75 qund v 1 = F (v 0 ) = 0, 75 4 (0, 75) , (0, 75) = 0, proseguendo v 2 = F (v 1 ) = 0, (0, ) , (0, ) dunque v 2 = 0, /31?

50 Notare che posto f(v) = 4v 3 + 3v 6 è f(0) = 6 e f(1) = 1 ongo v 0 = 0, 75 qund v 1 = F (v 0 ) = 0, 75 4 (0, 75) , (0, 75) = 0, proseguendo v 2 = F (v 1 ) = 0, (0, ) , (0, ) dunque v 2 = 0, proseguendo v 3 = F (v 2 ) = 0, /31?

51 Notare che posto f(v) = 4v 3 + 3v 6 è f(0) = 6 e f(1) = 1 ongo v 0 = 0, 75 qund v 1 = F (v 0 ) = 0, 75 4 (0, 75) , (0, 75) = 0, proseguendo v 2 = F (v 1 ) = 0, (0, ) , (0, ) dunque v 2 = 0, proseguendo v 3 = F (v 2 ) = 0, NB v 3 v 2 = 0, /31?

52 Se calcolo v 4 = F (v 3 ) rtrovo le stesse prme 6 cfre decmal d v 3 e se calcolo l polnomo f(v) = 4v 3 + 3v 6 n v 3 trovo 6, /31?

53 Se calcolo v 4 = F (v 3 ) rtrovo le stesse prme 6 cfre decmal d v 3 e se calcolo l polnomo f(v) = 4v 3 + 3v 6 n v 3 trovo 6, In effett la radce è ( v = ) /31?

54 Se calcolo v 4 = F (v 3 ) rtrovo le stesse prme 6 cfre decmal d v 3 e se calcolo l polnomo f(v) = 4v 3 + 3v 6 n v 3 trovo 6, In effett la radce è ( v = ) Non dmentchamoc del tasso che è = 1 v 1 = 0, /31?

55 Se calcolo v 4 = F (v 3 ) rtrovo le stesse prme 6 cfre decmal d v 3 e se calcolo l polnomo f(v) = 4v 3 + 3v 6 n v 3 trovo 6, In effett la radce è ( v = ) Non dmentchamoc del tasso che è = 1 v 1 = 0, ( ) 2/ /31?

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 1: 14 febbraio 2012

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 1: 14 febbraio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2011-2012 lezone 1: 14 febbrao 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/17? restazon e controprestazon Ad un stante t

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 15: 24 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 15: 24 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/18? enal per antcpata estnzone e tr La somma A

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 3 marzo 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 9: 3 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Eserczo Consderamo una rendta perodca d 2n termn

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 18: 18 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 18: 18 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Eserczo Il sgnor ancrazo Topazo decde

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 13: 17 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 13: 17 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/16? resa vsone della prma prova parzale Entro l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 8: 14 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Rendte nel contnuo Se s pensa alla rendta come

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 5: 28 febbraio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 5: 28 febbrao 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/20? Costtuzone d un captale S vuole costture

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 13: 10 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 13: 10 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 13: 10 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Errata 8. pagna 35 errata: er costture

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 11: 5 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 11: 5 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? 2/31? Formalzzamo: l debto resduo prospettvo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 16: 9 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 16: 9 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? 2/25? Caso partcolare, ma molto mportante α

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 16: 13 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 16: 13 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Eserczo Nell ammortamento d un prestto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 20: 16 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 20: 16 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Errata slde 14: 8 maggo 2012 Rendta perpetua

Dettagli

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni

Analisi Matematica Lezione 16 3 novembre 2014 Limiti di funzioni Dpartmento d Scenze Statstche Anals Matematca Lezone 6 3 novembre 204 Lmt d funzon prof. Danele Rtell danele.rtell@unbo.t /7? Eserczo 9 Determnare l ordne d nfntesmo e la parte prncpale dell nfntesmo rspetto

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 14: 18 aprile 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 14: 18 aprle 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Schema algebrco de fluss d cassa con v = (1

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 12: 6 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 12: 6 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Eserczo 3 000 vanno rmborsat n tre ann

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Informazioni sul corso Lunedì 17/2/2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Informazioni sul corso Lunedì 17/2/2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2011-2012 Informazon sul corso Lunedì 17/2/2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/17? Codce docente 030508 Codce corso

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 4 20 novembre 2008

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 4 20 novembre 2008 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 4 20 novembre 2008 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/10? A f B A B 2/10? A

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 10: 21 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 10: 21 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 10: 21 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? ε m = A δ m = A [ ] 1 α n a n m quota captale

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof.ssa Ragni Ferrara 08 giugno 2017 Matematca Fnanzara a.a. 206-7 Prof.ssa Ragn Ferrara 08 gugno 207 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi: lezione 17/10/2018 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercz: lezone 17/10/2018 Rendmento d un B.O.T. Eserczo 1. Un captale C vene chesto n prestto alla banca

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017

Cognome. Nome. matricola. Matematica Finanziaria a.a Prof. Ragni Ferrara 05 luglio 2017 Matematca Fnanzara aa 2016-17 Prof Ragn Ferrara 05 luglo 2017 Cognome Nome matrcola Frma e posta elettronca (solo per ch non s è regstrato sul sto) NOTA BENE: s accetta una sola correzone nel gruppo d

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 18 20 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Ottmzzazone 2/23?

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Analisi Class Successioni Lezione 6 2 ottobre 2014

Analisi Class Successioni Lezione 6 2 ottobre 2014 CLASS Bologna Anals Matematca @ Class Successon Lezone 6 2 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/17? Successon Una successone d numer real è una funzone a valor real l cu domno è l

Dettagli

Analisi Matematica Lezione novembre 2013

Analisi Matematica Lezione novembre 2013 Dpartmento d Scenze Statstche Anals Matematca Lezone 6 novembre 203 prof. Danele Rtell danele.rtell@unbo.t /2? Avvso Questa settmana tutte le lezon saranno d teora La prossma settmana lezon d teora lunedì

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 21: 25 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 21: 25 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? CCT/CCTEu S tratta d un ttolo a cedola

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Analisi Matenatica Lezione 1 23 settembre 2013

Analisi Matenatica Lezione 1 23 settembre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 1 23 settembre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/24? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del docente www.danelertell.name

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Modelli 1 lezione novembre 2011 Media e varianza Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 17 30 novembre 2011 Meda e varanza professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? Teorema er ogn funzone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5 Sommaro Sommaro 2 Introduzone 3 Captalzzazone semplce 4 Esercz sulla captalzzazone semplce 5 Prmo lvello 5 Secondo lvello 5 Sconto commercale 6 Esercz sullo sconto commercale 7 Sconto razonale 7 Esercz

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2018/19 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2018/19 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione 18 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2007-2008 lezone 18 professor Danele Rtell danele.rtell@unbo.t 1/11? Questo esempo nteressa la gestone delle scorte.

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 12 10 novembre 2011 Teorema d Lebesgue Vtal-Generazone d msure professor Danele Rtell www.unbo.t/docent/danele.rtell

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 15 23 novembre 211 Funzon Eulerane - robabltà professor Danele Rtell www.unbo.t/docent/danele.rtell 1/2? Cambo

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

3 Partizioni dell unità 6

3 Partizioni dell unità 6 Partzon dell untà Alessandro Ghg 29 ottobre 2014 Indce 1 Funzon lsce a supporto compatto 1 2 Rcoprment localmente fnt 5 3 Partzon dell untà 6 1 Funzon lsce a supporto compatto Lemma 1. Sano f C 1 (a, b)

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 18 1 dcembre 2011 Covaranza, Varabl aleatore congunte professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19?

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Ricerca operativa Lezione # 2 7 maggio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Rcerca operatva Lezone # 2 7 maggo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/14? n presenza d un attvtà produttva

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 21: 29 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 21: 29 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/35? Eserczo Dmostrare che l portafoglo d mnmo rscho

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Lezione 4. Politica Economica Avanzata

Lezione 4. Politica Economica Avanzata Lezone 4 Poltca Economca Avanzata Come msuramo la rendta d Conoscamo la def. Teorca. un mpresa? Dvdamo n base al valore medano tra mprese a bassa ed alta rendta. Che legame con la crescta della produttvtà

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Φ (C, t 1, t 1 ) = C Φ (C, t 1, t 2 ) < Φ (C, t 1, t 3 ) Φ (C, t 1, t 2 ) < Φ (C 2, t 1, t 2 )

Φ (C, t 1, t 1 ) = C Φ (C, t 1, t 2 ) < Φ (C, t 1, t 3 ) Φ (C, t 1, t 2 ) < Φ (C 2, t 1, t 2 ) Legg d captalzzazone C, t 1, t 2 M = Φ (C, t 1, t 2 ) I=M-C M=C+I Propretà mnme Φ (0, t 1, t 2 ) = 0 Φ (C, t 1, t 1 ) = C Φ (C, t 1, t 2 ) < Φ (C, t 1, t 3 ) Φ (C, t 1, t 2 ) < Φ (C 2, t 1, t 2 ) mpegando

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 0: Informazon sul corso 30 settembre 2008 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/13?

Dettagli

Sistemi Intelligenti Stimatori e sistemi lineari - III

Sistemi Intelligenti Stimatori e sistemi lineari - III Sstem Intellgent Stmator e sstem lnear - III Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@d.unm.t /6 http:\\borghese.d.unm.t\

Dettagli

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA

POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE A.A DOCENTE: PAOLO LISCA POLINOMIO MINIMO E FORMA CANONICA DI JORDAN NOTA AGGIUNTIVA PER IL CORSO DI GEOMETRIA ANALITICA E ALGEBRA LINEARE AA 2009-2010 DOCENTE: PAOLO LISCA 1 Polnomo mnmo Avvertenza: con V ndcheremo uno spazo

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

Lezione 3 Codifica della informazione (2)

Lezione 3 Codifica della informazione (2) Lezone Codfca della nformazone () Vttoro Scarano Archtettura Corso d Laurea n Informatca Unverstà degl Stud d Salerno Un rpasso Un quadro della stuazone: dove samo, dove stamo andando e perché Una rvstazone:

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Variabili casuali doppie

Variabili casuali doppie Varabl casual doe Una varable casuale doa (,) è una funzone defnta sullo sazo degl event che assoca ad ogn evento una coa d numer real (x,y) (x 1, y 1 ) S y 1 A B y (x, y ) (x 3, y 3 ) C y 3 x 1 x x 3

Dettagli

I metodi misti. Valutazione d impresa a.a Lezioni 18 e 19 aprile 2011

I metodi misti. Valutazione d impresa a.a Lezioni 18 e 19 aprile 2011 I metod mst Valutazone d mpresa a.a. 2010-2011 Lezon 18 e 19 aprle 2011 1 Il metodo msto n passato era l tpco metodo europeo per la stma del valore d captale economco consdera sa l elemento patrmonale

Dettagli

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi.

ANELLI E SOTTOANELLI. contrassegna gli esercizi (relativamente) più complessi. ESERCIZI SU ANELLI E SOTTOANELLI N.B.: l smbolo contrassegna gl esercz relatvamente pù compless. 1 Sa X un nseme, e sa PX l suo nseme delle part. Indcando con l operazone d dfferenza smmetrca tra element

Dettagli

INTRODUZIONE AL LABORATORIO PLS: LA MATEMATICA PER LE DECISIONI FINANZIARIE

INTRODUZIONE AL LABORATORIO PLS: LA MATEMATICA PER LE DECISIONI FINANZIARIE INTRODUZIONE AL LABORATORIO PLS: LA MATEMATIA PER LE DEISIONI FINANZIARIE Lvana Pcech Dpartento d Scenze econoche, azendal, ateatche e statstche Bruno de Fnett Unverstà d Treste Nel Laboratoro sono ntrodotte

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia

Approfondimento Capitolo 4. Definizioni esistono due tipi di grandezze in economia Poltca Economca E. Marchett 1 Approfondmento Captolo 4 efnzon esstono due tp d grandezze n economa Grandezze Flusso: una quanttà che s forma n un ntervallo d tempo (es.: reddto, rsparmo, nvestmento ) Grandezze

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

La teoria microeconomica del consumo

La teoria microeconomica del consumo Isttuzon d Economa Matematca La teora mcroeconomca del consumo Il problema del consumatore 2 a parte. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy)

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Limitazioni di ampiezza negli amplificatori reali

Limitazioni di ampiezza negli amplificatori reali Lmtazon d ampezza negl amplfcator real G. Martnes 1 Lnearzzazone della trans-caratterstca G. Martnes Anals a pccolo segnale e concetto d punto d lavoro IL RUMORE EGLI AMPLIFICATORI Defnzon S defnsce rumore

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

INDICE. Matrici e Determinanti. Scaricabile su: TEORIA. Definizione e tipologia di matrici. Operazioni tra matrici

INDICE. Matrici e Determinanti. Scaricabile su:   TEORIA. Definizione e tipologia di matrici. Operazioni tra matrici P r o f. Gu d of r a n c h n Anteprma Anteprma Anteprma www. l e z o n. j md o. c o m Scarcale su: http://lezon.jmdo.com/ Matrc e Determnant INDICE TEORIA Defnzone e tpologa d matrc Operazon tra matrc

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli