Predizione stocastica di un campo di deformazioni. Ludovico Biagi, Politecnico di Milano 7 dicembre 2010

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Predizione stocastica di un campo di deformazioni. Ludovico Biagi, Politecnico di Milano 7 dicembre 2010"

Transcript

1 Predizione stocastica di un campo di deformazioni Ludovico Biagi, Politecnico di Milano 7 dicembre 2010

2 La deformazione Le reti geodetiche Le serie temporali di coordinate I modelli nel tempo di singola stazione Velocità e spostamenti di singola stazione I moti comuni di una rete: la traslazione I moti comuni di una rete: traslazione e rotazione Il campo degli spostamenti Interpolazione spaziale e estrapolazione tridimensionale La deformazione in 2D Approssimazione infinitesimale

3 Analisi completa mediante decomposizioni I parametri invarianti: taglio e dilatazioni, autovalori e autovettori rappresentazione grafica, relazioni fondamentali

4 La deformazione di un solido Horizontal deformation on ellipsoidal surface t t Actual deformation is 3-dimensional

5 Le reti geodetiche: alla scala globale International GNSS Service: 400 Stazioni Permanenti

6

7

8 Le reti geodetiche: alla scala locale Un esempio di rete locale; vettori di spostamento 2005 di una sottorete della rete permanente giapponese: 1400 SP

9 Le reti geodetiche: alla scala (molto) locale controllo frane, controllo strutture,... La rete non permanente in Umbria e Marche per il monitoraggio postsismico dell evento del punti misurati in campagne periodiche dal 1999.

10 Le reti geodetiche: alla scala (molto) locale controllo frane, controllo strutture,...

11 Dalle misure alle coordinate di singola epoca Il rilievo di una rete geodetica fornisce osservazioni relative a una singola epoca 2 y1() t σ11() t σ12() t... σ1m () t 2 y2() t σ21() t σ22() t... σ2m () t 2 y() t =, C() t = = σ 0 () t Q () t ym () t σm1() t σm2() t... σmm() t Si vogliono determinare le coordinate dei punti della rete: N( Pi, t) ϕ( Pi, t) X( Pi, t) N( Pi, t) x ( Pt i, ) [ hpt ( i, )],, EPt ( i, ) λ( Pt i, ) YPt (, ) i EPt ( i, ) hpt ( i, ) hpt ( i, ) ZPt ( i, )

12 La compensazione ai Minimi Quadrati delle osservazioni fornisce le coordinate e le covarianze dei punti della rete x( P, t), x( P, t),... x( P, t) 1 2 N x i () t Cx ( 1( t), x1( t)),... Cx ( 1( t), x2( t)), Cx ( 2( t), x2( t)),... C() t = Cx ( 1( t), x3( t)), Cx ( 2( t), x3( t)), Cx ( 3( t), x3( t)),...,... Cx ( 1( t), xn( t)), Cx ( 2( t), xn( t)), Cx ( 2( t), xn( t)),..., Cx ( N( t), xn( t)) { C } ij t C() t = () i, j= 1,..., N T, C ( t) = C ( t) ij ji

13 Le serie temporali di coordinate: il caso continuo

14 Le serie temporali di coordinate: le campagne discrete nel tempo

15 Le quantità stimabili dalle serie temporali 1. Spostamenti di singoli punti, eventuale stima di discontinuità. 2. Moti non deformativi di rete, ovvero stime di spostamenti comuni a un insieme di punti. 3. Deformazioni

16 I modelli nel tempo di singola stazione I dati in ingresso: serie temporali di coordinate di tutti i punti monitorati di una rete: x ( t ), x ( t ),..., x ( t ), x ( t ),..., x ( t ) N N T Covarianze delle stime di rete per ogni epoca: Cxx ( t 1 1 i) Cxx ( t 1 2 i)... Cxx ( t ) 1 N i T C ( t ) ( )... ( ) 1 2 i t 2 2 i t 2 N i ( t1),..., ( tt), ( ti) xx Cxx Cxx C xx Cxx Cxx = T T Cx ( t ) ( )... ( ) Nx1 i Cx t Nx2 i Cx t NxN i Usualmente le serie dei punti vengono analizzate singolarmente.

17 I modelli nel tempo di singola stazione Nel caso continuo i prodotti di elaborazione sono la stima di modelli descrittivi del moto del singolo punto: x () t = f( a,) t i i ove, tipicamente: f è una funzione scelta a priori, a è un vettore di parametri da stimare per ogni punto. i a i tipicamente viene stimato mediante Minimi Quadrati: aˆ i ; oltre ad aˆ i MQ forniscono le stime della covarianza: C. i aa

18 Analisi del caso continuo: approccio completo 1. Confronto (funzioni di decisione) fra differenti modelli descrittivi e adozione del modello che massimizza la funzione di decisione: d( f ( t), C ) d( f ( t), C )? j jj k kk 2. Identificazione di discontinuità nel tempo x f = (), t t t' 1 () t, Pi f2(), t t > t' f f, 1 2

19 In pratica: Interpolazione lineare Si adotta il modello lineare: x () t = x + tv i 0i i Mediante MQ si stimano coordinate iniziali, velocità e relative covarianze x, v, C, C, C 0 v. 0i i 0 0 vv i i i i i i Interpolazione lineare

20

21 Le discontinuità Serie di una SP giapponese interessata da terremoto La singola interpolazione lineare non ha senso: il modello è clamorosamente sbagliato.

22 Esistono anche discontinuità strumentali... (cambio di antenna in Como nella GPSW 1352)

23 ...e discontinuità dovute al cambio di sistema di riferimento. (passaggio da ITRF2000 a ITRF2005 nella GPSW 1399)

24 Le discontinuità In caso di dubbi di discontinuità ad un'epoca si introduce e si stima il modello t ' x i () t x0i + tvi, t t' = x1i + ( t t') v1 i = x0i + t' v1 i + δxi + ( t t') vi + ( t t') δvi, t > t' Si può poi sottoporre a verifica di significatività δx, δv i i

25 IL + discontinuità

26 Modelli più completi: IL + presenza di fenomeni periodici

27 I modelli nel tempo di singola stazione Nel caso discreto nel tempo, si stimano gli spostamenti fra campagne successive: δx ( t, t ) = x ( t ) x ( t ) i j k i k i j Si stimano anche le covarianze degli spostamenti (HP: epoche indipendenti) C C C δ = x x + x x jk k k j j Nota: anche nel caso continuo, dal modello nel tempo si possono stimare spostamenti fra due epoche qualsivoglia.

28 I moti non deformativi di una rete Definiti i modelli di singola stazione, per una rete di punti si possono stimare i moti non deformativi. casi 1D, 2D e 3D: concettualmente il problema è identico, formalmente bisogna scindere i diversi casi. Definiamo x() t x x 1 () t () t 2 =... xn () t

29 Una deformazione di un solido è un cambio di forma: alterazione degli angoli reciproci fra i vertici della rete. Horizontal deformation on ellipsoidal surface t t Actual deformation is 3-dimensional Convenzionalmente anche cambio del volume della rete.

30 Un banale esempio 2D di deformazione

31 Analiticamente un moto di rete è non deformativo quando: Caso 1D (altimetria), si ha una traslazione nel tempo comune a tutti i punti h1() t h + h() t =... h( t) = h0 + h( t) i h () t h + h() t N 0N

32 Casi 2D & 3D, si ha una rototraslazione nel tempo comune a tutti i punti R() t t() t x1() t = t() t + R() t x01 0 R() t... 0 t() t... x( t) = x xn () t = t() t + R() t x0n R( t) t( t) ove (caso 3D, vedi dispense Monitoraggio geodetico) tx() t rx() t t() t = ty() t, R() t = R( r()), t r = ry() t tz() t rz() t

33 Quindi, prima dell analisi di deformazione è opportuno stimare e analizzare i moti non deformativi della rete. L analisi dei risultati verifica di significatività dei moti di rete stimati: ht ( ) 0?, t( t) 0?, r( t) 0? eventuale stima di modelli descrittivi dei moti di rete, eventuale verifica di significatività dei parametri dei modelli descrittivi.

34 Original displacements Tisserand displacements

35 L analisi di deformazione fra due epoche Dati gli spostamenti e le relative covarianze per ogni punto δx1 1 2 δx δx 1 2 C C C δ ( t, t ), ( t, t ),..., (, );,,..., N t t δ1δ1 δ1δ2 δ N N Si cerca una funzione modello che descriva spazialmente gli spostamenti al meglio nelle coordinate xi in ogni punto P i della rete, ovvero δx ( t, t ) u( x, t, t ) δx ( t, t ), i = 1,2,..., N i i 1 2

36 Primo excursus di due: da 3D a 2D Horizontal deformation on ellipsoidal surface t t Actual deformation is 3-dimensional

37 t t But we can observe only on 2-dimensional earth surface! t t Interpolation Extrapolation Why not 3D deformation? 3D deformation: interpolation and extrapolation. Extrapolation from surface geodetic data is not reliable if no additional geophysical data are available.

38 Secondo excursus di due Interpolazione esatta: dato un insieme di osservazioni si stima una funzione che passa per esse. Interpolazione con filtraggio: dato un insieme di osservazioni si stima una funzione che le "approssima"

39 Dato il modello degli spostamenti intercorsi fra due epoche ux (,, t t ) 1 2 se ne può stimare lo Jacobiano ( ) Jx (, t1, t2) = du x ( t1, t2) dx ovvero Jx (, t, t ) 1 2 ( δx1( t1, t2)) ( δx1( t1, t2)) x1 x 2 = ( δx2( t1, t2)) ( δx2( t1, t2)) x1 x 2

40 Alcune corrispondenze La funzione degli spostamenti x( t ) x( t ) = δx( x, t, t ) u ( x, t, t ) La posizione alla seconda epoca, come funzione della posizione alla prima epoca x( t ) = x( t ) + δx( t, t ) x( t ) + u( x, t, t ) = f( x, t, t )

41 Semplificazione simbolica u( xt,, t) u( x), f( xt,, t) f( x) Relazione fra gli Jacobiani Fx ( ) = dfx ( )/ dx Fx ( ) = I+ dux ( )/ dx= I+ Jx) (

42 Tensore di Cauchy delle deformazioni T T C= F F = U ΛU cos( θ ) sin( θ ) T T U = R( θ ) =, = = sin( θ) cos( θ) U U UU I Λ 2 λ1 0 = 2 0 λ2 Approssimazione infinitesimale classica T T T T T C= F F = ( I+ J) ( I+ J) = ( I+ J J+ J + J) ( I+ J + J)

43 Il più semplice esempio 2D: campo locale lineare Siano date sue epoche t1, t2 localmente si adotta il modello lineare degli spostamenti in Est e Nord δ E( ENt,, 1, t2) = a00( t1, t2) + a10( t1, t2) Et ( 1) + a01( t1, t2) Nt ( 1), δ N( E, N, t, t ) = b ( t, t ) + b ( t, t ) E( t ) + b ( t, t ) N( t ) E( E, N, t ) = E( t ) + a ( t, t ) + a ( t, t ) E( t ) + a ( t, t ) N( t ) N( E, N, t ) = N( t ) + b ( t, t ) + b ( t, t ) E( t ) + b ( t, t ) N( t )

44 omettiamo gli indici di epoca ux ( ) δ EEN (, ) a00 a10 a01 E = δ N( E, N) = + b b b N a a Jx ( ) = b10 b 01 EEN (, ) E a00 a10 a01 E fx ( ) = N( E, N) = N + + b 00 b10 b 01 N, 1 0 a10 a01 Fx ( ) = b10 b 01

45 Prime generalità: decomposizioni semplici Fx = Ix

46 Fx = R( θ ) x, θ = 30

47 2 0 Fx = Λx, Λ = 0 0.5

48 Fx 1 γ = Γx, Γ =, γ =

49 Una deformazione completa e le sue interpretazioni: autovalori e rotazioni oppure shear, scala e rotazioni.

50 Autovalori e rotazioni Fx = R( θ ) x, θ = 30

51 2 0 Fx = ΛR( θ ) x, Λ = 0 0.5

52 Fx = R( ϕ) ΛR( θ) x, ϕ = 20

53 Fx = R( φ) x, φ = 33.43

54 Fx = ΓR(), φ x γ = 1.5

55 Fx = R( φ) ΓR( φ) x

56 Fx = sr( φ ) ΓR( φ) x, s= 1

57 Fx = sr( ψ) R( φ) ΓR( φ) x, ψ = 26.87

58 Derivazione finale dei parametri di deformazione λ λ 2 2 C11 + C22 C11 C = + + C C11 + C22 C11 C = + C12 tan 2θ = P C12 ( C C ), s = λ λ 1 2 C + C λ + γ λ λ = = = λ s λλ 1 2 λ1λ 2

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Corso di Laurea Magistrale in Ingegneria per l Ambiente e il Territorio A.A. 2012-2013 Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Trasformazioni di coordinate TRASFORMAZIONE DI COORDINATE ALL'INTERNO

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

CORSO DI FORMAZIONE Principi base della Tecnica Interferometrica

CORSO DI FORMAZIONE Principi base della Tecnica Interferometrica Ministero dell Ambiente e della Tutela del Territorio e del Mare Direzione Generale per la Difesa del Suolo Fornitura di Dati, Sistemi e Servizi per la Realizzazione del Sistema Informativo del Piano Straordinario

Dettagli

Lo scopo del posizionamento

Lo scopo del posizionamento Lo scopo del posizionamento Stimare posizioni di punti con le osservazioni disponibili: il problema è intrinsecamente deficiente di rango per stimare posizioni è necessario vincolare i gradi di libertà

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 03 settembre 2012

DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 03 settembre 2012 DINAMICA DI SISTEMI AEROSPAZIAI Tema d esame 3 settembre 1 / Esercizio 1. Il meccanismo in figura presenta due aste / B identiche AB e CD di lunghezza e massa trascurabile. e F due aste sono incernierate

Dettagli

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un

Dettagli

2. Si Discretizzano i carichi in CARICHI CONCENTRATI in modo da riprodurre gli andamenti delle azioni interne. Si opera in pi passi: 2a.

2. Si Discretizzano i carichi in CARICHI CONCENTRATI in modo da riprodurre gli andamenti delle azioni interne. Si opera in pi passi: 2a. 1 Prove Statiche Permettono la verifica del comportamento elastico struttura allo scopo di validare il modello numerico Le prove prevedono: 1. Struttura completa (full-scale) Sottostruttura (Es. solo centina,

Dettagli

IL GPS sistema di satelliti segmento di terra segnali elettromagnetici ricevitori

IL GPS sistema di satelliti segmento di terra segnali elettromagnetici ricevitori IL GPS Il GPS Global Positioning System è costituito da un sistema di satelliti orbitanti all altezza di circa 20.000 km, controllati da un segmento di terra che ne determina con precisione le orbite.

Dettagli

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009

Metodi numerici per equazioni differenziali ordinarie. Calcolo Numerico a.a. 2008/2009 Metodi numerici per equazioni differenziali ordinarie Calcolo Numerico a.a. 2008/2009 ODE nei problemi dell ingegneria 1 Le leggi fondamentali della fisica, della meccanica, dell elettricità e della termodinamica

Dettagli

Università della Calabria

Università della Calabria Università della Calabria FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Civile CORSO DI IDROLOGIA N.O. Prof. Pasquale Versace SCHEDA DIDATTICA N 3 CURVE DI PROBABILITÀ PLUVIOMETRICA A.A. 00- CURVE

Dettagli

Domande frequenti durante esame orale

Domande frequenti durante esame orale Domande frequenti durante esame orale Meccanica dei Continui - Meccanica Razionale Marco Modugno Dipartimento di Matematica Applicata, Università di Firenze Via S. Marta 3, 50139 Firenze email: marco.modugno@unifi.it

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Richiami di statistica e loro applicazione al trattamento di osservazioni topografiche e geodetiche

Richiami di statistica e loro applicazione al trattamento di osservazioni topografiche e geodetiche Richiami di statistica e loro applicazione al trattamento di osservazioni topografiche e geodetiche Ludovico Biagi Politecnico di Milano, DIIAR ludovico.biagi@polimi.it (materiale didattico preparato in

Dettagli

Telerilevamento e GIS Prof. Ing. Giuseppe Mussumeci

Telerilevamento e GIS Prof. Ing. Giuseppe Mussumeci Corso di Laurea Magistrale in Ingegneria per l Ambiente e il Territorio A.A. 2013-2014 Telerilevamento e GIS Prof. Ing. Giuseppe Mussumeci Rete Dinamica Nazionale International Earth Rotation and Reference

Dettagli

Indice. Prefazione. 3 Capitolo 1 Gli schemi generali del rilievo topografico e i sistemi di riferimento

Indice. Prefazione. 3 Capitolo 1 Gli schemi generali del rilievo topografico e i sistemi di riferimento Indice IX Prefazione 3 Capitolo 1 Gli schemi generali del rilievo topografico e i sistemi di riferimento 3 1.1 Lo schema generale del rilevamento Topografico 5 1.1.1 Lo schema del rilevamento topografico

Dettagli

Milano, XX mese 20XX Il monitoraggio locale mediante strumentazione GNSS a basso costo

Milano, XX mese 20XX Il monitoraggio locale mediante strumentazione GNSS a basso costo 61 Convegno Nazionale SIFET 8-1 Giugno 216, Lecce Milano, XX mese 2XX Il monitoraggio locale mediante strumentazione GNSS a basso costo L. Biagi, F. C. Grec, M. Negretti DICA - Polo Territoriale di Como

Dettagli

Appendice 2: TEORIA LINEARE della DEFORMAZIONE. ( ),

Appendice 2: TEORIA LINEARE della DEFORMAZIONE. ( ), Capitolo I Cinematica Appendice 2: TEORIA LINEARE della DEFORMAZIONE. Sia C la regione tridimensionale dello spazio occupata da una corpo B nella sua assegnata forma di riferimento. Si assuma che la sostanza

Dettagli

Operazioni elementari sui sistemi di erenziali

Operazioni elementari sui sistemi di erenziali Capitolo 3 Operazioni elementari sui sistemi di erenziali 3.1 Derivate lungo le soluzioni Uno strumento fondamentale nello studio delle proprietà di un sistema differenziale è la derivata di opportune

Dettagli

L integrazione di GPS con altri strumenti topografici

L integrazione di GPS con altri strumenti topografici Scuola Regionale Servizi GPS di posizionamento per il territorio o e il catasto 16 Febbraio 2006 L integrazione di GPS con altri strumenti topografici Ing.. Marco Scaioni Politecnico di Milano D.I.I.A.R.

Dettagli

ANALISI DELLE SERIE STORICHE

ANALISI DELLE SERIE STORICHE ANALISI DELLE SERIE STORICHE De Iaco S. s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di

Dettagli

RIDUZIONE DELLE DISTANZE

RIDUZIONE DELLE DISTANZE RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,

Dettagli

APPENDICE 2.1.A1 LA TRASFORMAZIONE FRA COORDINATE RETE E COORDINATE UTENTE PER LA REGIONE LOMBARDIA

APPENDICE 2.1.A1 LA TRASFORMAZIONE FRA COORDINATE RETE E COORDINATE UTENTE PER LA REGIONE LOMBARDIA PRIN004: I Servizi di posizionamento satellitare per l e-grnment APPENDICE..A LA TRASFORMAZIONE FRA COORDINATE RETE E COORDINATE UTENTE PER LA REGIONE LOMBARDIA Ludovico Biagi, Stefano Caldera, Maria Grazia

Dettagli

PROBLEMI DI PROBABILITÀ 2

PROBLEMI DI PROBABILITÀ 2 PROBLEMI DI PROBABILITÀ 2. Si sceglie a caso un numero X nell intervallo (0, ). (a) Qual è la probabilità che la usa prima cifra decimale sia? (b) Qual è la probabilità che la seconda cifra decimale sia

Dettagli

x1 + 1 x T p. x 2

x1 + 1 x T p. x 2 Geometria e Algebra Trasformazioni del piano Soluzioni Siano p e q i Trovare le formule per la traslazione T p ii Calcolare T p T p iii Calcolare T p T p iv Calcolare T q T p T p T q Sol i Si ha ii iii

Dettagli

Fondamenti di Algebra Lineare e Geometria

Fondamenti di Algebra Lineare e Geometria Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Primo Appello - 6 giugno 24 TEMA A Risolvere i seguenti esercizi motivando adeguatamente ogni risposta.

Dettagli

Incertezza di Misura: Concetti di Base

Incertezza di Misura: Concetti di Base Incertezza di Misura: Concetti di Base Roberto Ottoboni Dipartimento di Elettrotecnica Politecnico di Milano 1 Il concetto di misura Nella sua accezione più comune si è sempre inteso come misura di una

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2013/2014 www.mat.uniroma2.it/~caramell/did 1314/ps.htm 04/03/2014 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Computazione per l interazione naturale: Richiami di algebra lineare

Computazione per l interazione naturale: Richiami di algebra lineare Computazione per l interazione naturale: Richiami di algebra lineare Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Monitoraggio di reti permanenti GNSS: schema di azione, procedure implementate e loro applicazione a un caso di studio

Monitoraggio di reti permanenti GNSS: schema di azione, procedure implementate e loro applicazione a un caso di studio Monitoraggio di reti permanenti GNSS: schema di azione, procedure implementate e loro applicazione a un caso di studio L. Biagi, S. Caldera, C. Porporato, M. Roggero, M. G. Visconti Convegno nazionale

Dettagli

Esercizi di preparazione alla PFB

Esercizi di preparazione alla PFB Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercizi di preparazione alla PFB A.A. 0-03 - Docenti: A. Bruno e G. Gentile Tutori: Sara Lamboglia e Maria Chiara Timpone Parte : Analisi

Dettagli

Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da

Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da Il Continuo Deformabile Continuo Deformabile: Deformabile cambia forma per effetto dello spostamento dei suoi punti; Continuo gli spostamenti dei punti sono descritti da funzioni continue e differenziabili:

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 31 agosto 2011 Testo e soluzioni Esame di Calcolo Numerico per Informatica A.A. 21/11 Proff. S. De Marchi e M. R. Russo 31 agosto 211 Testo e soluzioni L esame consiste di 4 domande aperte e 1 esercizi a risposta multipla. Per gli esercizi

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Una nota sulle sessioni con più ricevitori

Una nota sulle sessioni con più ricevitori Una nota sulle sessioni con più ricevitori L elaborazione di una sessione GPS su ricevitori fornisce la stima della base congiungente i punti; una sessione con n ricevitori permette la costruzione (e la

Dettagli

n=1 c n <. Data la seguente serie di trigonometrica + sin cn 1 cos 2 c2 n sin 2nx, n 2a + 3

n=1 c n <. Data la seguente serie di trigonometrica + sin cn 1 cos 2 c2 n sin 2nx, n 2a + 3 Facoltà di Scienze MM. FF. e NN. A.A. 013/014 I Esercitazione 30 Aprile 014 Esercizio 1. Dato il problema di Cauchy x = 3 + cos 3 x, x(0) = 0, studiare esistenza e unicità locale e globale. Provare che

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011

PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011 PROVA SCRITTA DI GEOMETRIA 2 MATEMATICA, 20/09/2011 In questo elenco, la presenza di esercizi relativi ai singoli argomenti non è correlata alla loro rilevanza, né alla ricorrenza nella prova scritta.

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI MECCANICA RAZIONALE A.A CORSO DI LAUREA IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI MECCANICA RAZIONALE A.A CORSO DI LAUREA IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI MECCANICA RAZIONALE A.A. 2019-2020 CORSO DI LAUREA IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA VIA

Dettagli

Interpolazione composita di Lagrange

Interpolazione composita di Lagrange Interpolazione composita di Lagrange Dividiamo l itervallo [a, b] in N sottointervalli I j = [x j 1, x j ], j = 1,..., N. Sia h j = x j x j 1 e h = max 1 j N h j. Su ciascun intervallo I j usiamo interpolazione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Esercizi di Algebra Lineare Superfici rigate

Esercizi di Algebra Lineare Superfici rigate Esercizi di Algebra Lineare Superfici rigate Anna M. Bigatti 29 ottobre 2012 Definizione 1. Una superficie rigata è una superficie tale che per ogni suo punto passa una retta interamente contenuta nella

Dettagli

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari.

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari. Interpolazione Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari 17 Aprile 2009 Francesca Mazzia (Univ. Bari) Interpolazione 17/04/2006 1 / 37 Interpolazione

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Approssimazione di dati e funzioni Approssimazione ai minimi quadrati Docente Vittoria Bruni Email:

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

y = y(x) d n y dx n 1.1 dx dy 1.2 y = f( y x ), y + p(x)y = q(x) y(x) =Ce x dx1 p(x 1 ),

y = y(x) d n y dx n 1.1 dx dy 1.2 y = f( y x ), y + p(x)y = q(x) y(x) =Ce x dx1 p(x 1 ), I : I x y = y(x) x y y = dy dx,y = d2 y dx,,y (n) = 2 n F (x, y, y,,y (n) )=0 n d n y dx n : y (n) = f(x, y, y,,y (n ) ) : n n : : y = y(x). y = dy = X(x) Y (y), dx dx dy X(x) :x Y (y) :y y dȳ Y (ȳ) =

Dettagli

NOTE DI MATEMATICA APPLICATA ALL ECONOMIA

NOTE DI MATEMATICA APPLICATA ALL ECONOMIA NOTE DI MATEMATICA APPLICATA ALL ECONOMIA «[ ] lo scopo dell analisi infinitesimale è quello di fare acquisire strumenti di calcolo atti alla ricerca ottimale di funzioni vincolate, soprattutto di natura

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Esame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 014/15 Seconda prova in itinere. Giugno 015 Cognome: Nome N matr. o cod. persona: Domande a risposta aperta (rispondere

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2016/17

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2016/17 REGISTRO DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2016/17 Cognome e Nome: BISI FULVIO Qualifica: PROFESSORE ASSOCIATO MAT/07 DIPARTIMENTO DI MATEMATICA Insegnamento (6 CFU su un totale di 6+3

Dettagli

EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI

EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI EFFETTO DEL RESTO DI TAYLOR NELLE PICCOLE OSCILLAZIONI 1. Piccole oscillazioni Si consideri un sistema meccanico conservativo di energia potenziale U : R n R, M R(t) = U (R(t)), (1.1) R dove M è la matrice

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica ANALISI NUMERICA TEMA B (Prof. A. M. Perdon) Ancona, giugno 006 PARTE

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calibrazione intrinseca Spesso risulta utile calibrare la sola componente intrinseca di un sistema di visione (matrice K), e non si dispone di oggetti di forma

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Controlli del territorio e tecnologie spaziali

Controlli del territorio e tecnologie spaziali SERVIZI INTEGRATI PER LA RIQUALIFICAZIONE DEL TERRITORIO E PER L EDILIZIA: COME OPERARE IN FILIERA IMPRENDITORIALE PER PROMUOVERE LA COMPETITIVITÀ E L INTERNAZIONALIZZAZIONE Convegno OICE Confindustria

Dettagli

trasformazioni omogenee

trasformazioni omogenee Moti rigidi idi generali e trasformazioni omogenee Robotica I Marco Gabiccini AA A.A. 2009/2010 LS Ing. Meccanica ed Automazione Trasformazioni rigide generali Rotazione fra due sistemi di riferimento

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

Esercitazione del 6 Dicembre 2011

Esercitazione del 6 Dicembre 2011 Facoltà di Ingegneria dell Università degli Studi di Firenze CdS in Ingegneria per l Ambiente, le Risorse ed il Territorio Complementi di Analisi Matematica A.A. 11/1 Esercitazione del 6 Dicembre 11 Attenzione:

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Equilibrio e stabilità di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna di sistemi dinamici Stabilità interna di sistemi dinamici LTI Criteri di stabilità per sistemi dinamici

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sull Approssimazione di dati e funzioni Esempio 1 Nella tavola seguente è riportata la popolazione (in migliaia) dell

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A: Spazi vettoriali e sottospazi Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Provare che l

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduzione al METODO DEGLI ELEMENTI FINITI Osservazioni sui metodi variazionali approssimati classici Le funzioni approssimanti devono: Soddisfare i requisiti di continuità Essere linearmente indipendenti

Dettagli

Approssimazione di dati e funzioni

Approssimazione di dati e funzioni Approssimazione di dati e funzioni Richiamiamo i principali metodi di approssimazione polinomiale di un insieme di dati (x i, y i ), i = 0,..., n. Le ordinate y i possono essere i valori assunti nei nodi

Dettagli

Es.1 Es.2 Es.3 Es.4 Totale. Analisi e Geometria 2 Docente: 17 Luglio 2014

Es.1 Es.2 Es.3 Es.4 Totale. Analisi e Geometria 2 Docente: 17 Luglio 2014 Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 2 Docente: 17 Luglio 214 Cognome: Nome: Matricola: Ogni risposta deve essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il

Dettagli

Appunti, parte 9 - Trasformazioni di coordinate. Fotogrammetria Topografia e Tecniche Cartografiche

Appunti, parte 9 - Trasformazioni di coordinate. Fotogrammetria Topografia e Tecniche Cartografiche Vittorio Casella Appunti, parte 9 - Trasformazioni di coordinate Fotogrammetria Topografia e Tecniche Cartografiche Anno Accademico 2001-2002 Dipartimento di Ingegneria Edile e del Territorio Università

Dettagli

Corso di Identificazione dei Modelli e Analisi dei Dati

Corso di Identificazione dei Modelli e Analisi dei Dati Corso di Identificazione dei Modelli e Analisi dei Dati Prof. Sergio Bittanti Esercitazione di Laboratorio A.A. 2010-11 Sistemi dinamici lineari a tempo discreto 1. Si consideri il sistema dinamico a tempo

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Preparazione al primo compito in itinere. (a) Mostrare che l insieme B = {b, b, b 3 }, formato dai vettori b = (,, ), b = (,, ) e b 3 =

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

LA GEOMATICA PER IL CONTROLLO DEL TERRITORIO. A. Albertella (DICA Sezione di Geodesia e Geomatica)

LA GEOMATICA PER IL CONTROLLO DEL TERRITORIO. A. Albertella (DICA Sezione di Geodesia e Geomatica) LA GEOMATICA PER IL CONTROLLO DEL TERRITORIO A. Albertella (DICA Sezione di Geodesia e Geomatica) Cosa è la GEOMATICA? 2 GEOMATICA per il controllo del territorio 3 Conoscere il territorio significa anche

Dettagli

Contributi geomatici al progetto MEP (Map for Easy Paths)

Contributi geomatici al progetto MEP (Map for Easy Paths) XIX Conferenza ASITA 29-30 Settembre - 1 ottobre 2015 Politecnico di Milano Polo di Lecco Como Campus Laboratorio di Geomatica Contributi geomatici al progetto MEP (Map for Easy Paths) L. Biagi, M. Negretti,

Dettagli

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3)

Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Matematica Analisi Numerica (1 mod., 6 crediti, 48 ore, a.a. 2014-2015, lez.3) 1 Analisi Numerica 1 mod. a.a. 2014-2015, Lezione n.3

Dettagli

Antonella Abbà APPUNTI DI MECCANICA RAZIONALE

Antonella Abbà APPUNTI DI MECCANICA RAZIONALE Antonella Abbà APPUNTI DI MECCANICA RAZIONALE 1 Chapter 1 Cinematica 1.1 Invarianza rispetto alle rotazioni Siano dati due sistemi di riferimento cartesiani ortogonali X 1,X 2,X 3 e x 1,x 2,x 3 con la

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Metodi per la riduzione della dimensionalità. Strumenti quantitativi per la gestione

Metodi per la riduzione della dimensionalità. Strumenti quantitativi per la gestione Metodi per la riduzione della dimensionalità Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/6c_pca.html#(1) 1/25 Introduzione Gli approcci

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2015/2016 www.mat.uniroma2.it/~caramell/did 1516/ps.htm 01/03/2016 - Lezioni 1, 2 [Caramellino] Breve introduzione al corso. Fenomeni

Dettagli

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione

SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a ) Homework assignment #2 Testo e Soluzione SEGNALI E SISTEMI Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 00-005) Homework assignment # Testo e Soluzione Esercizio Si consideri l equazione differenziale ordinaria, lineare a coefficienti costanti

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

Algebra Lineare Autovalori

Algebra Lineare Autovalori Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: sberrone@calvino.polito.it sandra.pieraccini@polito.it

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica. Prof.ssa Laura Pezza (A.A.

Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica. Prof.ssa Laura Pezza (A.A. Calcolo Numerico Laurea di base in Ingegneria Elettronica e Ingegneria delle Comunicazioni e Clinica Prof.ssa Laura Pezza (A.A. 2018-2019) VIII Lezione del 14.03.2019 http://www.dmmm.uniroma1.it/ laura.pezza

Dettagli

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento Cinematica Velocità Riferimento Euleriano e Lagrangiano Accelerazione Elementi caratteristici del moto Tipi di movimento Testo di riferimento Citrini-Noseda par. 3.1 par. 3.2 par 3.3 fino a linee di fumo

Dettagli

I minimi quadrati e loro applicazione alla compensazione geodetica. Ludovico Biagi Politecnico di Milano, DIIAR

I minimi quadrati e loro applicazione alla compensazione geodetica. Ludovico Biagi Politecnico di Milano, DIIAR I minimi quadrati e loro applicazione alla compensazione geodetica Ludovico Biagi Politecnico di Milano, DIIAR ludovico.biagi@polimi.it Premesse definizione euristica di distribuzione, formalizzazione

Dettagli