Sistemi lineari: Esercizi svolti
|
|
|
- Virgilio Grimaldi
- 9 anni fa
- Visualizzazioni
Transcript
1 Sistemi lineari: Esercizi svolti Risolvere i seguenti sistemi di primo grado utilizzando per ciascuno tutte e tre le tecniche conosciute (sostituzione, riduzione e confronto): x = 7 + 5y 2(3y 2x) = 3(2x + 3y) 0 ) 2) y = 5 + x 3) x y + = [ 4 (x + ) 2 (y 2) 2] + 3 = ( x ( y) x y) Esercizio x = 7 + 5y y = 5 + x Per prima cosa, riportiamo il sistema nella sua forma canonica (o normale): x 5y = 7 x + y = 5. Metodo di sostituzione Decidiamo di esplicitare la x nella prima equazione e lasciare inalterata la seconda: x = 5y 7 () x + y = 5 A questo punto, operiamo la vera e propria sostituzione: (5y 7) + y = 5 5y y = 5 5y + y = 5 7
2 4y = 2 che va sostituito nella prima equazione della (): x = = 5 7 = 2 x = 2.2 Metodo del confronto A partire dalla forma canonica, decidiamo di esplicitare la x in entrambe le equazioni: x = 5y 7 x = y + 5 x = 5y 7 x = y 5 A questo punto, è possibile operare il vero e proprio confronto: (2) 5y 7 = y 5 5y y = 7 5 4y = 2 che va sostituito (indifferentemente!) in una delle due equazioni della (2): x = 3 5 = 2 x = 2
3 .3 Metodo di riduzione A partire dalla forma canonica, eseguiamo la somma delle due equazioni: x 5y = 7 x + y = 5 4y = 2 Sempre a partire dalla forma canonica, cerchiamo di eliminare la y: 5 x 5y = 7 x + y = 5 x 5y = 7 5x + 5y = 25 Ed eseguiamo la somma delle due equazioni: x 5y = 7 5x + 5y = 25 4x = 8 x = 2 x = 2 2 Esercizio 2(3y 2x) = 3(2x + 3y) 0 Prima di tutto, portiamo il sistema nella sua forma canonica: 6y 4x = 6x 9y 0 4x + 6x + 6y + 9y = 0 2x + 5y = 0
4 2. Metodo di sostituzione Conviene esplicitare la y nella seconda equazione e lasciare inalterata la prima: 2x + 5y = 0 y = 2x + 6 2x + 5y = 0 y = 2x 6 A questo punto, operiamo la vera e propria sostituzione: (3) 2x + 5(2x 6) = 0 2x + 30x 90 = 0 32x = x = 80 x = = 5 2 che va sostituito nella seconda equazione della (3): y = = 5 6 = x = 5 2 y = 2.2 Metodo del confronto A partire dalla forma canonica, decidiamo di esplicitare la x in entrambe le equazioni: 2x + 5y = 0 2x = 5y 0 2x = y + 6 x = 5y 5 2 x = 2 y + 3 (4) A questo punto, è possibile operare il vero e proprio confronto: 5 2 y 5 = 2 y + 3
5 5 2 y 2 y = x = 8 8y = 8 y = che va sostituito in una delle due equazioni della (4): x = 2 ( ) + 3 = = = 5 2 x = 5 2 y = 2.3 Metodo di riduzione A partire dalla forma canonica, eseguiamo la differenza delle due equazioni: 2x + 5y = 0 6y = 6 y = Sempre a partire dalla forma canonica, cerchiamo di eliminare la y: 5 2x + 5y = 0 2x + 5y = 0 30x 5y = 90 Ed eseguiamo la somma delle due equazioni: 2x + 5y = 0 30x 5y = 90 32x = 80 x = 5 2 x = 5 2 y =
6 3 Esercizio x y + = [ 4 (x + ) 2 (y 2) 2] + 3 = ( x ( y) x y) Come sempre, trasformiamo il sistema nella sua forma normale: x y = [x2 + 2x + (y 2 4y + 4)] = 4 x2 4 y2 2 x 2 y = 2 4 [x2 + 2x + y 2 + 4y 4] = 4 x2 4 y2 2 x 2 y = 2 4 [x2 + 2x y 2 + 4y 3] = 4 x2 4 y2 2 x 2 y = 2 4 x2 + x 2 4 y2 + y = x2 4 y2 2 x 2 y = 2 x + y = Ora, il sistema è pronto per essere risolto con le tre tecniche conosciute. Tuttavia, si invita il lettore una volta ottenuti i risultati richiesti a leggere le osservazioni in coda alla risoluzione. 3. Metodo di sostituzione Conviene esplicitare la y nella seconda equazione e lasciare inalterata la prima: x y = (5) y = x A questo punto, operiamo la vera e propria sostituzione: 2 x ( 2 2 x 3 ) = x + 4 x = 2
7 x = x = 7 che va sostituito nella seconda equazione della (5): y = ( 2 7 ) = = 7 9 = = 6 y = Metodo del confronto A partire dalla forma canonica, decidiamo di esplicitare la x in entrambe le equazioni: x y = x + y = x = 2 y 2 2 x = y 3 4 x = y x = 2y 3 2 A questo punto, è possibile operare il vero e proprio confronto: (6) y = 2y 3 2 y + 2y = 3 2 3y = 2 y = 6 che va sostituito in una delle due equazioni della (6): x = 6 = 7 6
8 y = Metodo di riduzione A partire dalla forma canonica, eseguiamo la differenza delle due equazioni: x y = x + y = y y = y = y = y = 6 Sempre a partire dalla forma canonica, cerchiamo di eliminare la y: 2 x y = x + y = 3 4 x y = x + y = Ed eseguiamo la somma delle due equazioni: x y = x + y = x + x = x = x = 7 y = 6
9 3.4 Osservazione È importante notare come risolvere quest ultimo esercizio a partire dalla sua forma canonica così come si è ricavato, è puro masochismo matematico. Infatti, dire: 2 x 2 y = 2 equivale a: 2 x + y = 3 4 x y = 2x + 4y = 3 ottenuto semplicemente moltiplicando tutta la prima equazione per 2 e la seconda per 4. È indubbio che quest ultimo sistema risulta più semplice da risolvere, se non altro per i coefficienti di partenza. Pertanto, il lettore è invitato a meditare sulla necessità di svolgere altri esercizi per acquisire quell esperienza indispensabile per affrontare questo argomento con maggior consapevolezza e maturità, cercando la strada che di volta in volta appare più congeniale.
Sistemi di 1 grado in due incognite
Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con
LEZIONE DI MATEMATICA PROF : GIOVANNI IANNE. I sistemi di equazioni di I grado
LEZIONE DI MATEMATICA PROF : GIOVANNI IANNE I sistemi di equazioni di I grado Diamo la seguente definizione: Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse incognite, di
Esercizi sulle Disequazioni
Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale
Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo
Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente
Anno 2. Risoluzione di sistemi di primo grado in due incognite
Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione
Equazioni di primo grado
Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il
Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,
Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine
Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese
Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere
DISEQUAZIONI DI SECONDO GRADO
DISEQUAZIONI DI SECONDO GRADO Esercizio - -8 - - - - - - Esercizio L equazione non ha soluzioni e quindi la parabola non interseca l asse delle ascisse - - - - - Pertanto la parabola, avendo la concavità
1 Definizione di sistema lineare omogeneo.
Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a
LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque
I sistemi lineari Prof. Walter Pugliese
I sistemi lineari Prof. Walter Pugliese Le equazioni lineari in due incognite Un equazione nelle incognite x e y del tipo #$ + &' = ) dove *,,, - sono numeri reali è un equazione lineare in due incognite
TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE
FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:
Le equazioni lineari
Perchè bisogna saper risolvere delle equazioni? Perché le equazioni servono a risolvere dei problemi! Le equazioni lineari Un problema è una proposizione che richiede di determinare i valori di alcune
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Note sull algoritmo di Gauss
Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni
Programma di Maria Gabriella Cannas
Programma di Maria Gabriella Cannas Disciplina: matematica Libri di testo: Sasso Nuova Matematica a colori Algebra 2 Petrini Sasso Nuova Matematica a colori Geometria Petrini Ore settimanali: 5 Classe:
Sistemi di equazioni di secondo grado
1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
EQUAZIONI DI II GRADO
RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------
EQUAZIONI E DISEQUAZIONI LOGARITMICHE. Prof.ssa Maddalena Dominijanni
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Definizione e proprietà dei logaritmi Il logaritmo in base a, con a > 0 e a, del numero b è l esponente da attribuire alla base a per ottenere il numero b. x x log
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b
Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione
LE EQUAZIONI Conoscenze
LE EQUAZIONI Conoscenze 1. Completa. a. L identità è una... fra due... che è sempre..., qualunque sia... b. L equazione è una... fra due... che è... solo per... c. Due equazioni si dicono equivalenti se...
Equazioni di primo grado ad un incognita
Equazioni di primo grado ad un incognita Identità Si dice IDENTITÀ un uguaglianza fra due espressioni letterali che è verificata per ogni valore attribuito alle lettere. 2 = 2 è un identità =3 2 3=2 3
Chi non risolve esercizi non impara la matematica.
5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi
ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?
A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento
EQUAZIONI DI PRIMO GRADO
Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono
B6. Sistemi di primo grado
B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è
Equazioni di secondo grado
Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono
Def. Un equazione è un uguaglianza tra due espressioni algebriche che contengono una o più incognite dette variabili.
Def. Un equazione è un uguaglianza tra due espressioni algebriche che contengono una o più incognite dette variabili. Noi ci occuperemo delle equazioni di primo grado a una sola variabile Guarda nell esempio
Dr. Erasmo Modica
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI PRIMO GRADO Dr. Erasmo Modica [email protected] IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza
DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni
DISEQUAZIONI DI PRIMO GRADO Disuguaglianze Due espressioni numeriche, di diverso valore, separate da un segno di disuguaglianza, formano una disuguaglianza numerica Esempi di disuguaglianze 6 6 Simboli
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento
Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione
ESERCIZI IN PIÙ I NUMERI COMPLESSI
ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè
Identità ed equazioni
Matematica e-learning - Identità ed equazioni Prof. [email protected] A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al
Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.
1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x
...UN PÒ DI DEFINIZIONI DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x
...UN PÒ DI DEFINIZIONI IL VALORE ATTRIBUITO ALL INCOGNITA CHE RENDE VERA L UGUAGLIANZA SI CHIAMA SOLUZIONE DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x 3 5
Equazione irrazionale
Equazione irrazionale In matematica, un'equazione irrazionale in una incognita è un'equazione algebrica in cui l'incognita compare all'interno del radicando di uno o più radicali. Ad esempio: Non sono
Equazioni Polinomiali II Parabola
Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:
Sistema di due equazioni di primo grado in due incognite
Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore
Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI
Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI Affrontare un problema richiede spesso l'uso di alcuni strumenti algebrici: fra essi vi sono i sistemi di equazioni. Infatti,
www.lezionidimatematica.net
Esercizio n.7 Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza: [( ) 3 x ] : [ x ]; [(3 3 ) 9 : 3 ] : [3 8 x 3 ]; {[(
Disequazioni di II grado
Disequazioni di II grado Scomposizione di un trinomio di 2 grado La scomposizione del trinomio di 2 grado ax 2 + bx + c dipende dal discriminante. Se questo è positivo esistono radici reali e distinte
Vettori nel Piano e nello Spazio
Vettori nel Piano e nello Spazio Caratteristiche di un vettore Componenti di un vettore e Vettore applicato all origine Vettore definito da due punti Operazioni unarie sul vettore Lunghezza di un vettore
Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte
Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine
MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI
MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI
1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari
Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore
Ing. Alessandro Pochì
Dispense di Matematica La funzione aritmica e la funzione esponenziale Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate.0 Italia Ing. Alessandro
Esercizi svolti sugli integrali
Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos
Le equazioni di I grado
Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere
+2 3 = = =3 + =3 + =8 =15. Sistemi lineari. nelle stesse due incognite. + = + = = = Esempi + =5. Il sistema è determinato
Sistemi di equazioni SISTEMI LINEARI Un sistema di equazioni è un insieme di equazioni per le quali si cercano eventuali soluzioni comuni. +=7 =1 Ognuna delle due equazioni ha infinite soluzioni. La coppia
Esercizi sulle equazioni logaritmiche
Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log
RISOLUZIONE DI SISTEMI LINEARI
RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione
Esercitazione per la prova di recupero del debito formativo
LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
I sistemi di equazioni di primo grado
I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo
La circonferenza nel piano cartesiano
La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione
Equazioni frazionarie e letterali
Equazioni frazionarie e letterali 17 17.1 Equazioni di grado superiore al primo riducibili al primo grado Nel capitolo 15 abbiamo affrontato le equazioni di primo grado. Adesso consideriamo le equazioni
I.I.S. Marcello Malpighi Sede San Giovanni in Persiceto PIANO DI LAVORO Indirizzo: Commerciale
S. Giov. in Persiceto I.I.S. Marcello Malpighi Sede San Giovanni in Persiceto PIANO DI LAVORO Indirizzo: Commerciale Anno scolastico 2017-2018 Classi 2 A e B Matematica 1. Situazione di partenza 1.1 Elenco
MATEMATICA LA PARABOLA GSCATULLO
MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto
Le equazioni e i sistemi di primo grado
Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle
