EQUAZIONI E PROBLEMI: GUIDA D'USO
|
|
|
- Agnese Mele
- 9 anni fa
- Visualizzazioni
Transcript
1 P.1\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 EQUAZIONI E PROBLEMI: GUIDA D'USO EQUAZIONI LINEARI INTERE: PROCEDURA RISOLUTIVA Per risolvere le equazioni numeriche intere, si può seguire il seguente elenco di operazioni: 1- Si svolgono le eventuali operazioni algebriche e, nel caso che siano presenti dei denominatori numerici, questi ultimi vengono eliminati moltiplicando i due membri dell'equazione per il loro minimo comune multiplo (mcd=mcm dei denominatori). 2- Si trasportano tutte le lettere (monomi che contengono l'incognita) al primo membro mentre tutti i termini che non contengono l'incognita (come i numeri o eventualmente 1altre lettere nel caso delle equazioni letterali)al secondo membro, cambiando il segno per la regola del trasporto. Il risultato di questi trasporti è quello di ottenere un numero al secondo membro e nel primo membro l'incognita. Si hanno tre casi possibili: A) Equazione determinata, con una sola soluzione quando è del tipo a*x=b con a 0, b 0, x=b/a. B) Equazione impossibile quando è del tipo 0*x=b con nessuna soluzione reale, S=Φ. C) Εquazione indeterminata quando è del tipo 0*x=0, con infinite soluzioni di numeri reali, S=R. ANNULLAMENTO DEL PRODOTTO. Ricordiamo la regola di annullamento del prodotto: quando in un prodotto uno o più numeri sono uguali a zero il risultato è pure uguale a zero. Pertanto, quando una equazione si presenta con un membro in forma di prodotto di fattori contenenti l'incognita, per trovare le soluzioni basta porre a zero ciascuno di essi risolvendone la rispettiva equazione. Esempio di applicazione dell'annullamento del prodotto: (2x-5)*(4x+3)*(x+2)=02x+5=0, x1=-5/2; 4x+3=0, x2=-3/4; x+2=0, x3=-2
2 P.2\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 EQUAZIONI NUMERICHE FRATTE. Equazioni che hanno l incognita presente almeno in un denominatore. La risoluzione delle equazioni fratte prevede alcuni passaggi tipici: 1-Scomporre in fattori i denominatori quando possibile. 2-Determinare le CE (condizioni di esistenza) risolvendo le disuguaglianze a zero di ciascun denominatore, con il risultato di scartare dalle soluzioni proprio quei particolari valori dell'incognita che li annullerebbero. 3-Portare a denominatore comune (mcd) i due membri della equazione e di seguito moltiplicare per tale denominatore comune. 4-Risolvere l'equazione intera ottenuta al punto 3) 5-Scartare eventuali soluzioni incompatibili con le CE e verificare che le soluzioni compatibili soddisfino l'equazione di partenza mediante sostituzione.
3 P.3\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 PROBLEMI NUMERICI. Possibile definizione di problema numerico: situazione per la quale è richiesta la determinazione o il calcolo di alcuni valori numerici relativi a dati incogniti. Quando il valore incognito da calcolare è uno solo, in genere corrispondente alla x, può essere determinato risolvendo una equazione di primo grado, il problema si dice di tipo numerico di primo grado. Nonostante il fatto che i tipi di problemi siano molti in quanto riconducibili a contesti di varia natura (numerico, geometrico, economico, statistico, ecc..), la strategia generale deve comportare il passaggio attraverso alcune fasi generali: 1) ANALISI DEL TESTO E VALUTAZIONE DEL TIPO DI PROBLEMA. Si tratta di una parte fondamentale del percorso risolutivo in questo passaggio si deve comprendere: -la natura ed il contesto del problema; -i dati che vengono forniti nel testo; -richieste del problema, in particolare i dati incogniti che devono venire calcolati; -dominio delle incognite, ovvero gli intervalli di numeri entro i quali ci si aspetta che la soluzione numerica sia compresa nel campo di accettabilità (ad esempio i valori positivi di x se si tratta di misure di segmenti). 2) COSTRUZIONE DEL MODELLO MATEMATICO. Questa è la tappa centrale di tutto il percorso e si può pensare che riguardi alcuni obiettivi di fondo: a) determinazione delle relazioni (in genere equazioni o disequazioni) che esistono fra i dati contenuti nel testo del problema; b) relazioni (equazioni o disequazioni) che includono l incognita da determinare. c) eventuale scelta della strategia risolutiva per il calcolo dei dati richiesti quando ve ne sia più di una.
4 P.4\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio ) RISOLUZIONE DEL MODELLO MATEMATICO. La risoluzione di equazioni, disequazioni e sistemi, stabilite al punto precedente, ad esempio per via algebrica. 4) VERIFICA: I dati relativi ai valori delle incognite, che sono stati ottenuti risolvendo il modello matematico, vengono sostituiti al posto delle lettere incognite (la x nelle equazioni di primo grado) che compaiono nel modello matematico, verificando se le relazioni di partenza siano soddisfatte e, inoltre, che tali soluzioni rispettino le condizioni di accettabilità del dominio. Alla luce di quanto sopra è stato esposto passiamo ora ad esaminare tre esempi di problemi numerici. Problema 1: Un cellulare, dopo che è stato applicato uno sconto del 15%, viene acquistato al prezzo di 170 euro. Quale è il prezzo originale? Sconto sul prezzo=15%; Prezzo scontato: 170 euro. Richiesta: prezzo iniziale prima dello sconto=x Dominio: x>170 euro. 3)Risoluzione del modello matematico: x = 170 x = 170 = 200 euro ) Verifica della soluzione: %200=200-30=170 Il valore ottenuto appartiene al dominio perchè 200>170.
5 P.5\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 Problema 2: Si deve costituire una somma di 14 euro con 40 monete, alcune di esse da 50 centesimi ed altre da 20 centesimi. Quale è la combinazione numerica dei due tipi di monete? Somma da costituire=14 euro. Monete disponibili da 50 centesimi=x. Monete disponibili da 20 centesimi=y. Totale delle monete da usare=40. Richiesta: quanto valgono x e y? Dominio: 0<x<40, 0<x<40. relazioni fra i dati: x+y=40 ; y=40-x relazione con l incognita: 0.5x+0.2y=14. 3) Risoluzione del modello: 0.5x+0.2(40-x)=10 ; 0.3x+8=14; 0.3x=12; x=6:0.3=20; y=20 4) Verifica: 20*0.5+20*0.2=10+4=14 ; x=y=20<40 Problema 3: In un triangolo rettangolo un cateto è lungo 6 cm mentre l altro cateto misura 2 cm in meno dell ipotenusa. Determinare la lunghezza dell ipotenusa. (si riportare il triangolo in uno schema grafico che qui, vista la semplità, non si rappresenta) Triangolo rettangolo. Lunghezza Cateto 1=6 ; Cateto 2=y; Incognita=ipotenusa=x y = x 2 ; 6 + y = x (Teorema di Pitagora) 3) Risoluzione del modello matematico: 4) Verifica della soluzione: = = 40 ; 4cm=6cm-2cm ( ) 2
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI I SISTEMI LINEARI Stabilisci se il sistema è determinato, indeterminato o impossibile senza risolverlo [determinato] [impossibile] Determina per
Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:
LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando
Equazioni e disequazioni
Equazioni e disequazioni Le equazioni Una uguaglianza tra espressioni letterali che risulta vera per ogni valore delle lettere che vi compaiono prende il nome di identità. 2a=2a (a+b)(a-b)=a 2 -b 2 Una
1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari
Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore
PROBLEMI DI SECONDO GRADO: ESEMPI
PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,
Matematica www.mimmocorrado.it 1
Equazioni letterali fratte di I grado Un equazione letterale fratta è un equazione fratta che contiene, oltre la lettera che rappresenta l incognita dell equazione, altre lettere, dette parametri, che
Identità ed equazioni
Identità ed equazioni Un'identità è un'uguaglianza tra due espressioni letterali che è vera per qualsiasi valore numerico che si può attribuire alle lettere. (x + 2x = 3x è un'identità, perché sempre vera)
UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI
UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI N. ore previste 35 Periodo di realizzazione SETTEMBRE OTTOBRE 2017 in termini di competenze, abilità e conoscenze Monomi Polinomi Prodotti
MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI
MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI
Ore annue: 132 MODULO 1
Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI 2 e Programmazione Didattica Disciplina: Ore annue: 132 Matematica Settembre ottobre MODULO 1 novembre Disequazioni numeriche
Equazioni di Primo grado
Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
1 Identità ed equazioni
1 Identità ed equazioni Consideriamo l uguaglianza espressa dalla seguente frase: Trova un numero tale che il suo doppio sommato con se stesso sia uguale al suo triplo. x > 2x + x = 3x La relazione: 2x
Diseguaglianze e disequazioni. definizioni proprietà tecniche risolutive
Diseguaglianze e disequazioni definizioni proprietà tecniche risolutive Che cosa è una diseguaglianza? Una diseguaglianza è una relazione di ordine che intercorre fra numeri. Le possibili relazioni sono:
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19
IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19 Classe 1L MODULO 1: I NUMERI NATURALI. Cap 1. 1. Le operazioni definite nell insieme dei numeri naturali
Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona
Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado
B7. Problemi di primo grado
B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta
Le equazioni lineari
Perchè bisogna saper risolvere delle equazioni? Perché le equazioni servono a risolvere dei problemi! Le equazioni lineari Un problema è una proposizione che richiede di determinare i valori di alcune
PROGRAMMAZIONE MATEMATICA classe seconda economico/turistico:
PROGRAMMAZIONE MATEMATICA classe seconda economico/turistico: UDA n. 0 Statistica descrittiva (ripasso da attuare in un qualsiasi momento dell a.s.) Prerequisiti Padronanza del calcolo nei vari insiemi
Istituto di Istruzione Superiore L. da Vinci Civitanova Marche. Anno scolastico PROGRAMMA SVOLTO. Materia: Matematica
Anno scolastico 2015-2016 PROGRAMMA SVOLTO Materia: Matematica Docente: Massimiliano Iori Classe : 2F Indirizzo: Linguistico Disequazioni lineari Le diseguaglianze: definizioni e proprietà. Disequazioni
I sistemi lineari Prof. Walter Pugliese
I sistemi lineari Prof. Walter Pugliese Le equazioni lineari in due incognite Un equazione nelle incognite x e y del tipo #$ + &' = ) dove *,,, - sono numeri reali è un equazione lineare in due incognite
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico
EQUAZIONI DI II GRADO
RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.
Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni
Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.
Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A. Scomposizione dei polinomi in fattori primi ( 2.4 del testo) Equazioni di primo grado ( 3.1 del testo) Equazioni
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
IIIIS VIIA SIILVESTRII 301 Pllesso «ALESSANDRO VOLTA» Programma di MATEMATICA Classe 1aL Indirizzo LICEO DELLE SCIENZE APPLICATE Anno
IIIIS VIIA SIILVESTRII 301 Pllesso «ALESSANDRO VOLTA» Programma di MATEMATICA Classe 1aL Indirizzo LICEO DELLE SCIENZE APPLICATE Anno Scolastico 2014-2015 (3 pagine) ALGEBRA 1. I NUMERI NATURALI E I NUMERI
LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche
LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09 Classe II E - corso Tecnologico Scomposizioni in fattori dei polinomi Scomposizione di un polinomio in fattori Concetto di scomposizione Raccoglimento
Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco
Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi
MATEMATICA CLASSE II D
ISTITUTO PROFESSIONALE STATALE Emanuela Loi MATEMATICA CLASSE II D eno Docente: Maria Antonietta Carrus a.s.: 2017/18 CLASSE: II Modulo n : 1 TITOLO: RECUPERO ARGOMENTI TRATTATI NELL ANNO PRECEDENTE PERIODO:
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
Istituto d Istruzione Superiore Francesco Algarotti
Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione
Le eguaglianze algebriche: Identità ed Equazioni
Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza
CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI
CLASSE II A LICEO LINGUISTICO A.S. 2015/2016 Prof.ssa ANNA CARLONI OBIETTIVI la scomposizione dei polinomi le frazioni algebriche X X X scomposizione in fattori dei Scomporre a fattor comune polinomi Calcolare
Programma svolto a.s. 2015/1016 Classe 1G Materia: Matematica Docente: De Rossi Francesco
Classe 1G Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. Bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978-88-08-53467-5 Capitolo 1 Insiemi
Appunti di matematica per le Scienze Sociali Parte 1
Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici
Per risolvere un equazione letterale fratta occorre: 1. Scomporre in fattori i denominatori e calcolare il m.c.m.
Equazioni letterali fratte di II grado Un equazione letterale fratta è un equazione fratta che contiene, oltre la lettera che rappresenta l incognita dell equazione, altre lettere, dette parametri, che
LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H
LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H Modulo 1 Calcolo numerico e primo approccio col calcolo letterale Numeri naturali:
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare
Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer
Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione
Sistemi di 1 grado in due incognite
Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
I numeri razionali 1. numeri razionali assoluti e relativi 2.definizioni,confronto,rappresentazione ed operazioni
PROGRAMMA DI MATEMATICA CLASSE 1^P A.S. 2017/2018 Prof. ALGHISI MODULO N 1 1. CALCOLO ARITMETICO 2. CALCOLO ALGEBRICO 1. CALCOLO ARITMETICO ANALISI DELLE FAMIGLIE NUMERICHE I numeri naturali 1. ordinamento
Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016
Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 ALGEBRA Ripasso programma di prima. Capitolo 5 - I monomi e i polinomi La divisione fra polinomi La divisione di un polinomio per un monomio.
LICEO SCIENTIFICO E. CURIEL Anno scolastico 2018/2019
LICEO SCIENTIFICO E. CURIEL Anno scolastico 2018/2019 Classe 1^ B PROGRAMMA CONSUNTIVO DEL DOCENTE DI: MATEMATICA PROF. FILIPPO SCARSO ALGEBRA I numeri naturali e i numeri interi I numeri razionali Insiemi
4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre
www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.
TEMI D ESAME: classi III
TEMI D ESAME: classi III a.f. 2017-2018 Operatore del benessere Raccolta di esercizi, suddivisi per argomento, tratti dalle prove d esame a cura di A. Vaghi e G. Lorusso AFOL SUD MILANO Preparazione alla
Numeri naturali ed operazioni con essi
Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI Programmazione Didattica 1 e Disciplina: MATEMATICA Ore annue: 110 MODULO 1 TEORIA DEGLI INSIEMI E INSIEMI NUMERICI settembre
Disequazioni - ulteriori esercizi proposti 1
Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Lelezionifrontalisarannoassociateadelleesperienzedilaboratorioperaccompagnarelateoriae
UNITÀ 4. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI 1. Generalità e definizioni sulle disequazioni. 2. I principi di equivalenza delle disequazioni. 3.
UNITÀ. DISEQUAZIONI E SISTEMI DI DISEQUAZIONI. Generalità e definizioni sulle diquazioni.. I principi di equivalenza delle diquazioni.. Diquazioni di primo grado.. Diquazioni con più fattori di primo grado..
LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI
LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI Anno scolastico 2016/2017 Docente: Stefania Petronelli Matematica classe I sez. Internazionale L. Sasso La matematica a colori 1 ed. azzurra Petrini Gli insiemi:
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni
DISEQUAZIONI DI PRIMO GRADO Disuguaglianze Due espressioni numeriche, di diverso valore, separate da un segno di disuguaglianza, formano una disuguaglianza numerica Esempi di disuguaglianze 6 6 Simboli
Le equazioni di I grado
Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere
Le disequazioni di primo grado. Prof. Walter Pugliese
Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e
Lezione 2. Percentuali. Equazioni lineari
Lezione 2 Percentuali Equazioni lineari Percentuali Si usa la notazione a % per indicare a/100 Esempio: 25%= 25/100=0.25 30% = 30/100=0.30 Inoltre: Applicare la percentuale a % a un numero b è come moltiplicare
www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1
www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,
Complementi di algebra
Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico I numeri naturali e i numeri interi Che cosa sono i numeri naturali. Le quattro operazioni. I multipli e i divisori di un numero. Le potenze. Le espressioni con
U.D.1: POLINOMI conoscere le regole della scomposizione in fattori di un polinomio (raccoglimento totale e parziale, prodotti notevoli).
Docente Materia Classe Cristina Frescura Matematica 2B Programmazione Consuntiva Anno Scolastico 2011-2012 Data 6 giugno 2012 Obiettivi Cognitivi Obiettivi minimi U.D.1: POLINOMI conoscere le regole della
