REALTÀ E MODELLI SCHEDA DI LAVORO
|
|
|
- Cosima Festa
- 9 anni fa
- Visualizzazioni
Transcript
1 LE TRSFRINI GEETRICHE RELTÀ E DELLI SCHED DI LVR Il televisore La forma rettangolare di uno schermo televisivo è differente a seconda del rapporto tra la larghezza e l altezza. I televisori di vecchio tipo, a tubo catodico, hanno un rapporto :, mentre generalmente quelli moderni hanno un rapporto 6 : 9. Considera uno schermo : di altezza h e uno schermo 6 : 9 di altezza. Posizionata l origine del sistema di riferimento cartesiano nell angolo in basso a sinistra dello schermo, scrivi l equazione della trasformazione che porta l immagine dal primo schermo al secondo. Di che tipo di trasformazione si tratta? Daniela non vuole buttare il suo vecchio televisore funzionante: come vedrà l immagine se la trasmissione è predisposta per uno schermo di nuovo tipo? Schematizziamo la situazione con una figura. C' ' C I due rettangoli rappresentano i due schermi televisivi. Il rettangolo C individua lo schermo di tipo :. I suoi lati sono pertanto in rapporto: =. Il rettangolo llc l individua lo schermo di tipo 6:9. I suoi lati sono pertanto in rapporto: l 6 =. l l 9 Inoltre: l l =. h Per trovare l equazione dell affinità che trasforma il rettangolo C nel rettangolo llc l osserviamo che: l= $ ll= $ $ = $ $ $ " l = $ $. 9 9 h 9 h h l l= $ " = $. h h L equazione dell affinità è quindi: l = $ $ [ h = $ \ h Si tratta di una dilatazione. ' Figura Copright 0 anichelli editore S.p.., ologna
2 LE TRSFRINI GEETRICHE L immagine è predisposta per uno schermo 6:9. Se sul televisore : l immagine occupa l intero schermo, allora risulterà «allungata» in verticale, ovvero subisce una contrazione orizzontale. Se invece l immagine viene rimpicciolita in modo da essere tutta contenuta nello schermo mantenendo le proporzioni originali, allora appariranno due bande nere sopra e sotto l immagine. Come si elaborano le immagini? Determina la trasformazione che riproduce nel rettangolo del quarto quadrante individuato da (; -) la porzione del frattale di andelbrot individuata dal rettangolo simile di vertici (0; 0) e (; 9,). Nei rettangoli indicati sono messe in evidenza le diagonali e perché saranno le trasformazioni della diagonale a determinare quelle di tutta la figura. pplichiamo alla figura una traslazione in modo che il punto si trasformi nel punto. La stessa traslazione è applicata a tutti i punti dell immagine. Poiché (0; 0) e (0; 0), la traslazione considerata è: l = -0 t :( = -0 I trasformati dei vertici della diagonale sono: ( 0; 0) 7 l / ( 0; 0), ( ; 9, ) 7 lb; - l. ' Figura Copright 0 anichelli editore S.p.., ologna
3 LE TRSFRINI GEETRICHE Determiniamo ora la rotazione di centro che porta la diagonale l, appartenente alla retta di equazione =- ( $ 0), sulla diagonale del rettangolo d arrivo, individuata dall equazione =- ( $ 0). ' '' Figura Figura Una rotazione mantiene le distanze, quindi il punto l deve portarsi in m tale che l= m. 7 l = + b- l =. Il punto mb; - l della figura ha coordinate tali che: m = + = " = " mc ; - m. 6 0 l = cos a-sen a Le equazioni di una rotazione di centro sono ( ; = sen a+ cos a in queste sostituiamo ( ; ) = b; - l 7 7 e ( l; ) = c ; - m: 0 7 = cos a+ sen a [ 7 - = sen a- cos a \ 0 da cui: cos a = e sen a =- " a o. Posto a = cos a e b = sen a, ormai noti, rimane individuata la rotazione: l = a-b r : ( = b+ a La trasformazione geometrica si conclude con un omotetia di centro di equazioni 7 7 mc ; m nel punto (; - ): 0 7 = k 7 : 0 ~ [ " k = k - = \ 0 l = k ( che manda il punto = k Copright 0 anichelli editore S.p.., ologna
4 LE TRSFRINI GEETRICHE La trasformazione geometrica cercata è data dalla composizione ~ % r% t delle tre trasformazioni sopra determinate. La porzione iniziale del frattale viene trasformata nel rettangolo di diagonale. l frattali Uno dei frattali più noti è il triangolo di Sierpinski, che si ottiene in questo modo: da un quadrato di lato unitario si elimina il quadratino in basso a destra di lato ½. La figura che rimane è costituita da tre quadrati di lato ½: da ciascuno di questi quadrati si toglie il quadratino in basso a destra di lato ¼ e così via. La figura mostra un triangolo di Sierpinski in cui abbiamo colorato tre zone: ciascuna parte è simile all intero frattale. Fissato il sistema di riferimento con origine nell angolo in basso a sinistra del quadrato in cui il frattale è costruito, determina le trasformazioni geometriche che, applicate al frattale, restituiscono uno dei sottofrattali indicati in figura (considera solo la forma, non i colori). Dobbiamo determinare le trasformazioni geometriche che applicate al frattale restituiscono la parte (), oppure () oppure (), tutte simili al frattale di partenza. Poiché ognuna delle tre parti è grande la metà della figura iniziale, occorrono omotetie di ragione da comporre con opportune traslazioni. Le trasformazioni sono: l = l = l = + T :, T :, T : [ [ [. = = + = + \ \ \ T è un omotetia di ragione. T è un omotetia di ragione composta con una traslazione secondo il vettore b 0; l. T è un omotetia di ragione composta con una traslazione secondo il vettore b ; l. La tenda da sole Sui balconi di alcuni appartamenti vengono installate delle tende da sole profonde, m; il perno attorno al quale la tenda ruota si trova a m dal piano del terrazzo. Supponendo che per coprire una parte di balcone la tenda, da chiusa, venga aperta di, determina: le equazioni della rotazione nel piano individuata dall apertura della tenda (considera il sistema di riferimento con l asse verticale passante per il perno e l asse orizzontale appoggiato al piano del terrazzo e orientato verso la strada); di quanto bisogna inclinare la tenda affinché la parte opposta al perno raggiunga il 60% dell altezza totale. Copright 0 anichelli editore S.p.., ologna
5 LE TRSFRINI GEETRICHE Schematizziamo la situazione in figura (osserviamo la tenda di profilo). ' C Figura La rotazione di centro C( C ; C ) e angolo a ha equazioni: l = ( - ) cos a-( - ) sen a+ rc ( ; a): ( = ( - ) sen a+ ( - ) cos a+ C C C C C C La rotazione in esame avviene con centro C(0; ) e angolo a = -. Ricordando che cos( - o ) = e o sen( - ) =-, l equazione diventa: l = + ( -) rc ( ; a): [ =- + ( - ) + \ Per raggiungere il 60% dell altezza totale (pari a +, =, m), l estremo libero della tenda (con =, ) deve portarsi in l (con =, ). Calcoliamo l angolo dall equazione generale di una rotazione: = ( - ) sen a+ ( - ) cos a+ " = ( - ) sen a+ ( - ) cos a+ " C C C l C C C ", = (0-0) sen a+ (, - ) cos a+ ", =, cos a+ " " cos a = " a =! arccosb l -! 86 o. Per come abbiamo posto il sistema di riferimento, dobbiamo considerare l angolo negativo: a o. Copright 0 anichelli editore S.p.., ologna
TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3
TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali
ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.
Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo
Problemi sull ellisse
1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi
punti uniti rette di punti uniti rette unite qual è la trasformazione inversa
3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
LICEO SCIENTIFICO QUESTIONARIO QUESITO 1
www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =
1 Congruenza diretta e inversa
1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.
Le Isometrie e il piano cartesiano
Le Isometrie e il piano cartesiano Generalità piano Gli enti geometrici del piano come punti, rette, angoli, poligoni,... possono essere spostati sul TRSLTI v RILTTI RISPTTO UN RTT r Francesca Incensi
Carlo Sintini, Problemi di maturità, 1942 Luglio, matematicamente.it Luglio 1942 Primo problema. AD > BC AB = l AC = kl (con k > 0) EM = 2 LM EM = DC
Luglio 194 Primo problema Nel trapezio ABCD di basi AD, BC (con AD > BC), le lunghezze del lato obliquo AB e della diagonale AC sono rispettivamente l e kl. Si sa inoltre che detto E il punto d incontro
Risoluzione dei problemi
Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli
I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti
TRAFORMAZON Una trasformazione (geometrica) è una funzione iunivoca fra i punti del piano. Un punto si dice unito rispetto ad una data trasformazione se il suo corrispondente è se stesso. Una retta si
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
TRASFORMAZIONI GEOMETRICHE E FUNZIONI
TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB.
VERIFICA DI MATEMATICA SIMULAZIONE GLI INTEGRALI DEFINITI - SOLUZIONI Problema : a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. Per determinare la posizione di P, affinché
4^C - Esercitazione recupero n 6
4^C - Esercitazione recupero n 6 1 Sono assegnate le parabole p' e p'' di equazioni rispettivamente: y=x e x= y y a Forniscine la rappresentazione grafica dopo aver determinato, tra l'altro, i loro punti
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva
ESAME DI STATO DI LICEO SCIENTIFICO Sessione suppletiva PROBLEMA Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. Si consideri la funzione reale f m di variabile
Matematica Lezione 4
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri
GEOMETRIA ANALITICA. Il Piano cartesiano
GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
1 Funzioni trigonometriche
1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione
1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse
Trasformazioni geometriche del piano. 3 marzo 2013
Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE
Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.
UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero
Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:
ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,
RECUPERO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO CARTESIANO
RECUPER LE TRSFRMZINI GEMETRICHE NEL PIN CRTESIN La traslazione di punti, rette, parabole secondo un vettore assegnato 1 Data la retta r di equazione 0 e la traslazione secondo il vettore v (; ), scrivi
Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1
Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
Chi non risolve esercizi non impara la matematica.
2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE
Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono
LE TRASFORMAZIONI GEOMETRICHE
pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? Si giustifichi la risposta.
1. Un triangolo ha area 3 e due lati che misurano e 3. Qual è la misura del terzo lato? Si giustifichi la risposta. L'area di un triangolo si calcola con la formula A= a b sen α di conseguenza 1 sen α=3
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;
Determina il terzo vertice A di un triangolo di cui. l ortocentro
La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un
PROGRAMMA SVOLTO II LB Matematica 2015/2016
PROGRAMMA SVOLTO II LB Matematica 2015/2016 Sistemi di equazioni lineari: metodo di sostituzione, metodo del confronto, riduzione e Cramer. Cenni a matrici e operazioni con esse. Interpretazione grafica
8 Simulazione di prova d Esame di Stato
8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
Soluzioni dei problemi della maturità scientifica A.S. 2007/2008
Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id Corso ata.. Nome e Cognome Tipo Prova Matematica / Produzione Sessione 1 a.f. 2016/2017 Esame di iploma (IV Livello Europeo) Quarto nno omanda 1 M010586 Un aquilone si trova a 6 metri di altezza dal
INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia
INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO di Francesco Camia 1)Rappresentare nel piano complesso gli insiemi: A = { 2, 3 }, B = { : =+1+2, }. Siccome nel piano complesso e
Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1.
Macerata 9 dicembre 04 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO In un riferimento cartesiano ortogonale è dato il fascio di rette: k + x k y + k + = 0. Determina il centro C del
, c di modulo uguale sono disposti in modo da formare un triangolo equilatero come mostrato in fig. 15. Si chiarisca quanto vale l angolo formato da
22 Tonzig Fondamenti di Meccanica classica ta) Un esempio di terna destra è la terna cartesiana x, y, z [34] Per il prodotto vettoriale vale la proprietà distributiva: a ( b c) = a b a c, ma non vale la
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
TRASFORMAZIONI GEOMETRICHE
TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva
ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani
Diamoci un taglio! I.I.S.S. Gandhi Merano (BZ) Classe: 2 Liceo Scientifico, opzione Scienze Applicate. Insegnante di riferimento: Giovanni Porcellato
Diamoci un taglio! I.I.S.S. Gandhi Merano (BZ) Classe: Liceo Scientifico, opzione Scienze Applicate Insegnante di riferimento: Giovanni Porcellato Ricercatore: Silvia Chiapponi Ragazzi partecipanti: Federico
Il Piano Cartesiano Goniometrico
Valori di seno e coseno per angoli multipli di / Il Piano Cartesiano Goniometrico Seno e coseno: valori per angoli particolari September 1, 010 Valori di seno e coseno per angoli multipli di / Sommario
Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.
τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione
. Imponiamo la validità del teorema di Carnot: =
PROBLEMA 1 Nel piano riferito a coordinate cartesiane, ortogonali e monometriche, si considerino i triangoli ABC con A(1, 0), B(, 0) e C variabile sulla retta d equazione y =. 1. Si provi che i punti (1,
Problemi di secondo grado con argomento geometrico (aree e perimetri)
Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la
Esercizi svolti di geometria analitica
Giulio Donato Broccoli Esercizi svolti di geometria analitica Circa 300 esercizi e nozioni teoriche di base Giulio D. Broccoli Editore Proprietà letteraria riservata Ogni riproduzione, con qualsiasi mezzo
2. Coordinate omogenee e trasformazioni del piano
. Coordinate omogenee e trasformazioni del piano Nella prima sezione si è visto come la composizione di applicazioni lineari e di traslazioni porta ad una scomoda combinazione di prodotti matriciali e
17 LE TRASFORMAZIONI GEOMETRICHE
17 L TRSFORMZIONI GOMTRIH TST I FIN PITOLO 1 Nella trasformazione di equazioni: x' x y 1 y' x y al punto corrisponde: ; 0 ' 3; 4. ' 3;. ' ; 3. ' 1; 4. ' 4; 1. Quale delle seguenti affermazioni è falsa?
Copyright Esselibri S.p.A.
Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul
3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.
1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini ([email protected]) Dipartimento di Matematica F.Enriques Università degli Studi di
Compito di matematica Classe III ASA 23 aprile 2015
Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9
Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:
La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id orso ata.. Nome e ognome Tipo Prova Matematica / Produzione Sessione 2 a.f. 2016/2017 Esame di iploma (IV Livello Europeo) Quarto nno omanda 1 a un punto sul terreno che dista 20 m dalla base di un
F, viene allungata o compressa di un tratto s rispetto alla sua posizione di equilibrio.
UNIÀ 4 L EQUILIBRIO DEI SOLIDI.. La forza elastica di una molla.. La costante elastica e la legge di Hooke. 3. La forza peso. 4. Le forze di attrito. 5. La forza di attrito statico. 6. La forza di attrito
Lezione 5 Geometria Analitica 1
Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla
