Fondamenti e didattica di Matematica Finanziaria
|
|
|
- Celia Mancuso
- 9 anni fa
- Visualizzazioni
Transcript
1 Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo MILANO U6-368 [email protected] SILSIS 1
2 Unità 3 Tassi equivalenti Tassi effettivi e nominali Capitalizzazione a tassi variabili Tassi medi SILSIS 2
3 Tassi equivalenti Come si confrontano tassi riferiti a durate diverse? Quale è la corrispondenza tra tassi di interesse in regime di capitalizzazione semplice e composta? La risposta si trova tramite il confronto dei montanti che essi generano. Da cui la definizione: Due tassi d interesse si dicono equivalenti se producono, ad una data futura t e a parità di capitale impiegato, lo stesso montante, ovvero gli stessi interessi. SILSIS 3
4 Relazione tra tassi equivalenti in regimi differenti Per trovare la relazione matematica sussistente fra due tassi unitari i e y relativi rispettivamente al regime a interesse semplice e a quello composto, occorre uguagliare i montanti che essi producono a uno specifico tempo t: M(t) = C(1+it) = C(1+y) t Noto uno dei due tassi, l altro ad esso equivalente si può calcolare immediatamente esplicitando la relazione ora scritta. i 1 t = [( 1+ y ) 1] y = t ( 1+ it) 1 t SILSIS 4
5 Relazione tra tassi equivalenti in capitalizzazione semplice Per fissare le idee sia i il tasso annuo e i k il tasso espresso in ragione di 1/k di anno (per un tasso semestrale sarà k = 2). Una durata di capitalizzazione pari a t anni corrisponderà a t k = kt periodi (ad es. 3 anni = 6 semestri). Uguagliando i montanti da cui M(t)= C(1+ i t) = C(1+i k kt) i = k i k Tale relazione di equivalenza non dipende dal tempo in cui si impone l uguaglianza dei montanti. SILSIS 5
6 Relazione tra tassi equivalenti in capitalizzazione composta Analogamente al caso precedente, e con le stesse notazioni, calcoliamo la relazione tra tassi equivalenti nel regime a interesse composto, uguagliando i montanti al tempo t da cui e M(t) = C(1+i) t = C(1+i k ) kt i = (1+i k ) k 1 i k i = k ( 1+ ) 1 SILSIS 6
7 Esempio Capitalizzazione semplice: Il tasso trimestrale 1,5% (i 4 ) equivale al tasso mensile i 12 = 0,5%, al tasso semestrale i 2 = 3% e al tasso annuo 6%. Capitalizzazione composta: Capitalizzazione composta: Il tasso annuo equivalente al tasso trimestrale i 4 = 1,5% è i = (1 + 0,015) 4 1 = 0,06136 = 6,136%. SILSIS 7
8 Tasso annuo nominale convertibile k volte all anno j k Nella capitalizzazione composta talvolta si preferisce, per comodità, enunciare il tasso annuo nominale convertibile k volte l anno, così definito: dove i k è il tasso di periodo. j k = k i k j k è un tasso annuo fittizio, poiché è definito come se fosse equivalente a i k nel regime a interesse semplice. Non ha, quindi, alcun significato finanziario e perciò nei calcoli occorre sempre riferirsi a i k. Il tasso annuo i, detto anche tasso effettivo, è maggiore del tasso annuo nominale convertibile j k, ossia i > j k. SILSIS 8
9 Esempio j 4 = 6% (tasso annuo nominale convertibile quattro volte l'anno) corrisponde a un tasso trimestrale i 4 = j 4 / 4= 6%/4 = 1,5% ma il tasso annuo equivalente, come abbiamo visto nell esempio precedente, è 6,136%. SILSIS 9
10 Tassi variabili nel tempo Nella pratica accade molto spesso che la capitalizzazione venga regolata, anziché da un unico tasso costante nel tempo, da una sequenza di tassi di interesse diversi, ciascuno applicabile a un determinato lasso temporale. Vediamo come si possano adeguare i regimi di capitalizzazione semplice e capitalizzazione composta a questa circostanza, nel rispetto della formulazione generale di ciascun regime. C 0 i 1 i 2 t 1 M? t 2 SILSIS 10
11 Tassi variabili nel tempo : capitalizzazione semplice Nel primo periodo gli interessi prodotti, dovendo essere proporzionali al capitale iniziale e alla durata della prima parte di capitalizzazione, in cui è in vigore il tasso i 1, varranno I 1 =C i 1 t 1 mentre gli interessi prodotti nella seconda parte varranno I 2 =C i 2 (t 2 t 1 ) Pertanto il montante in t 2, come somma di capitale e interessi maturati sarà dato da M(t 2 )= C (1+ i 1 t 1 + i 2 (t 2 t 1 )) SILSIS 11
12 Tassi variabili nel tempo : capitalizzazione semplice E ovvia l estensione della formula al caso in cui i valori diversi dei tassi di capitalizzazione siano più di due. La formula ora esposta concretizza il presupposto finanziario del regime di capitalizzazione a interesse semplice, e cioè che gli interessi si rendono disponibili solo alla fine della capitalizzazione, e quindi non producono altri interessi. SILSIS 12
13 Esempio Un capitale di viene impiegato in capitalizzazione semplice al tasso trimestrale 1,5% per un trimestre, e successivamente per tre trimestri al tasso trimestrale 2%. Il montante raggiunto alla fine (dopo un anno) risulta M(4) = ( , ,02) = SILSIS 13
14 Tassi variabili nel tempo : capitalizzazione composta Al tempo t 1 sarà costituito un montante pari a M(t 1 )=C(1+i 1 ) t 1 e poiché il regime a interesse composto prevede che l intero montante sia fruttifero di interessi, alla fine della capitalizzazione sarà accumulato il montante M(t 2 )=C(1+i 1 ) t 1 (1+i 2 )(t 2 -t 1 ) e così via se il tasso dovesse assumere altri valori successivi. SILSIS 14
15 Esempio Un capitale di viene impiegato in capitalizzazione composta al tasso trimestrale 1,5% per un trimestre, e successivamente per tre trimestri al tasso trimestrale 2%. Il montante raggiunto alla fine (dopo un anno) risulta M(4) = (1 + 0,015)(1 + 0,02) 3 = SILSIS 15
16 Tassi variabili nel tempo: capitalizzazione continua e Al tempo t 1 sarà costituito un montante pari a M(t 1 )=Ce δ 1 t 1 δ t t ) δ t M( t ) = Ce 1 1e = Ce δ ( t + δ ( t t ) SILSIS 16
17 Tassi medi Una particolare tipologia di tassi equivalenti è costituita dai tassi medi. Nelle capitalizzazioni a tassi di interesse non costanti nel tempo, vi è l esigenza di sintetizzare con un unico numero il risultato economico raggiunto. A questo scopo risponde il tasso medio, che è quel tasso costante equivalente alla sequenza dei tassi variabili nel senso che consente di ottenere lo stesso montante. SILSIS 17
18 Tassi medi: capitalizzazione semplice Uguagliando i montanti, il tasso medio i sarà tale da soddisfare l uguaglianza da cui M(t 2 )= C (1+ i 1 t 1 + i 2 (t 2 t 1 ))= C (1+it 2 ) i = i 1 t t i 2 t 2 t t Si noti che il tasso medio risulta una media aritmetica dei tassi che intervengono nella capitalizzazione, ponderata con le durate di applicabilità dei tassi stessi. 2 1 SILSIS 18
19 Tassi medi: capitalizzazione composta Uguagliando i montanti, il tasso medio i sarà tale da soddisfare l uguaglianza M(t 2 )= C (1+ i 1 ) t 1 (1+ i 2 )t 2 -t 1 = C (1+i)t 2 da cui 1+ i = t t 1 ) ( ( 1+ i + i 2 ) t t Si noti che il fattore di montante medio risulta una media geometrica dei fattori di montante che intervengono nella capitalizzazione, ponderata con le durate di applicabilità dei tassi stessi. SILSIS 19
20 Tassi medi: capitalizzazione continua Uguagliando i montanti, il tasso medio i sarà tale da soddisfare l uguaglianza δ1t1 δ2( t2 t1 ) δt M( t 2 2 ) = Ce e = Ce da cui δ t δ = δ ( t t 2 Si noti che la forza di interesse media risulta una media aritmetica delle forze di interesse che intervengono nella capitalizzazione, ponderata con le durate di applicabilità delle stesse. 2 t 1 ) SILSIS 20
Regime finanziario dell interesse composto
Regime finanziario dell interesse composto Il regime dell interesse composto si caratterizza per la capitalizzazione periodica degli interessi che genera ulteriori interessi. La differenza rispetto al
Regime di capitalizzazione
Regime di capitalizzazione Per studiare un operazione finanziaria da un punto di vista matematico, è necessario fissare un insieme di regole in modo tale che se sono noti: L importo del capitale impiegato
Matematica finanziaria
Matematica finanziaria La matematica finanziaria studia le operazioni che riguardano scambi di somme di denaro nel tempo. Sono operazioni di questo tipo, ad esempio, l investimento di un capitale in un
Matematica Finanziaria AA
Matematica Finanziaria AA 2017 2018 Annalisa Fabretti [email protected] N.B. Questo materiale NON sostituisce il libro di testo Operazione Finanziaria Un operazione finanziaria é un contratto
MATEMATICA FINANZIARIA
MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 1 E. Michetti (Esercitazioni in aula MOD. 1) MATEMATICA FINANZIARIA 1 / 24 Introduzione e principali grandezze finanziarie Esercizio 1.1 Due
Corso di Economia degli Intermediari Finanziari
Corso di Economia degli Intermediari Finanziari Elementi di base finanziaria Definizione di operazione finanziaria Successione di importi di segno - e + da considerare congiuntamente ad una successione
Unità Didattica realizzata dalla prof.ssa De Simone Marilena A.S. 2015/16
Unità Didattica realizzata dalla prof.ssa De Simone Marilena A.S. 2015/16 La matematica finanziaria si occupa di tutti i problemi relativi al denaro e al suo impiego. Il denaro è lo strumento con cui possiamo
Esercizi svolti durante le lezioni del 29 novembre
Esercizi svolti durante le lezioni del 29 novembre Esercizi su capitalizzazione. Tassi equivalenti Due tassi si dicono equivalenti, se a parità di tempo di impiego e capitale investito, producono lo stesso
1. Un capitale C = euro viene investito in t = 0 per 3 anni in capitalizzazione composta ai seguenti tassi:
1. Un capitale C = 15000 euro viene investito in t = 0 per 3 anni in capitalizzazione composta ai seguenti tassi: primo anno: tasso d interesse annuo del 6%; secondo anno: tasso d interesse annuo nominale
La capitalizzazione composta
Il montante di un capitale La capitalizzazione composta Esempio 1. Un capitale di 400 Fr viene investito al tasso di interesse del 5% annuo per. Alla fine di ogni periodo (anno), gli interessi fruttati
MD6 Matematica finanziaria. Capitalizzazione semplice e imposta preventiva Interesse composto
MD6 Matematica finanziaria Capitalizzazione semplice e imposta preventiva Interesse composto Capitalizzazione semplice, imposta preventiva Capitalizzazione semplice Un regime di capitalizzazione è semplice
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi: lezione 20/10/2016
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 206/207. Esercizi: lezione 20/0/206 Regime di sconto commerciale Esercizio. Un impresa ha un credito C scadente tra due
= i = ( ) (12) = 0,02049 = 2,049%
1. (a) Calcolare, nel regime dell interesse composto, l interesse I ed il montante M di 5000 euro impiegati per 3 anni e 5 mesi al tasso annuo i = 2%. [3 punti] (b) A quale tasso annuo d interesse semplice
Anatocismo e usura nei contratti bancari Profili civilistici alla ricerca di un linguaggio comune tra matematica e diritto
Anatocismo e usura nei contratti bancari Profili civilistici alla ricerca di un linguaggio comune tra matematica e diritto Marina di Carrara, 29 marzo 2019 Antonio Annibali - Carla Barracchini Analisi
M = C(1 + it) = 1000 (1 + 0, ) = 1070
1. Data l operazione finanziaria di investimento scadenze (mesi) 0 7 ------------------------------------------ importi -1000 M determinare il montante M utilizzando: (a) il tasso annuo d interesse i =
Matematica Finanziaria a.a Prof. Alberto Cambini
Matematica Finanziaria a.a. 2018-2019 Prof. Alberto Cambini 2 Indice 1 Elementi di Matematica Finanziaria 5 1.1 Regime di capitalizzazione semplice.................. 8 1.1.1 Operazione di capitalizzazione................
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi: lezione 07/10/2016
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 1. Esercizi: lezione 07/10/2016 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/ Esercizi: lezione 06/10/2017
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2017/2018 1. Esercizi: lezione 06/10/2017 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato
Capitolo 1. Rendite. i 4,a = (1 + i a ) = ( ) ,
Capitolo Rendite Esercizio Un imprenditore dovrà sostenere un pagamento di 40 000 euro tra tre anni. A tal fine inizia ad effettuare dei versamenti trimestrali costanti posticipati presso una banca che
Spett.le Banca d Italia in merito al documento di consultazione Aprile 2015- relativa alle Istruzioni
Spett.le Banca d Italia in merito al documento di consultazione Aprile 2015- relativa alle Istruzioni per la rilevazione dei tassi effettivi globali medi ai sensi della legge sull usura ritengo doveroso
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi 1
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 1. Esercizi 1 Regimi semplice e composto Esercizio 1. A quale tasso mensile i m deve viaggiare un investimento
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/ Esercizi 1
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 1 Regimi semplice e composto Esercizio 1. A quale tasso mensile i m deve viaggiare un investimento
Indice. Capitalizzazione e attualizzazione 1. Prefazione. Capitolo 1. pag.
Indice V Indice Prefazione XI Capitolo 1 Capitalizzazione e attualizzazione 1 1.1. Operazioni finanziarie 1 1.2. Montante, interesse e sconto 2 1.3. Leggi finanziarie di capitalizzazione 3 1.4. Tasso d
Leggi di capitalizzazione e di attualizzazione
Sommario Alcuni appunti di supporto al corso di Matematica Finanziaria (L-Z) Facoltà di Economia & Management- Università di Ferrara Sommario Parte I: Funzioni di capitalizzazione Parte II: Capitalizzazione
Elementi di matematica finanziaria
Elementi di matematica finanziaria 1. Percentuale Si dice percentuale di una somma di denaro o di un altra grandezza, una parte di questa, calcolata in base ad un tanto per cento, che si chiama tasso percentuale.
Si consideri un bond con scadenza a 30 anni e con tasso effettivo annuale = 10%. Si assuma che sia quotato alla pari. Si calcoli la duration.
Esercizio Si consideri un bond con scadenza a 30 anni e con tasso effettivo annuale = 0%. Si assuma che sia quotato alla pari. Si calcoli la duration. La duration di uno zcb é pari alla sua vita residua
Esercizi di consolidamento
Esercizi di consolidamento Sui concetti introduttivi 1 A quale delle seguenti frazioni di anno corrisponde un tempo di 2 anni 4 mesi e 12 giorni? a. 18 360 b. 71 30 c. 2 In regime di interesse semplice
2. Ricevo oggi 90 unità di capitale impegnandomi a renderne 100 in un epoca successiva. Si calcoli il fattore di attualizzazione.
NOTA BENE: gli esercizi senza asterisco riportano il solo risultato, quelli con asterisco contengono un commento alla soluzione ed il risultato (il tutto alla fine dei problemi). Le soluzioni nel foglio
Esercizi svolti di Matematica Finanziaria
Esercizi svolti di Matematica Finanziaria Anno Accademico 2009/2010 Rossana Riccardi Dipartimento di Statistica e Matematica Applicata all Economia Facoltà di Economia, Università di Pisa, Via Cosimo Ridolfi
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini)
COMPLEMENTI di MATEMATICA (Docente: Luca Guerrini) Alcuni esercizi assegnati in appelli precedenti, comprendenti anche quesiti a risposta multipla ed esercizi nei quali veri care se l a ermazione fatta
3. Problemi inversi sulle annualità. Poliannualità
3. Problemi inversi sulle annualità. Poliannualità Di cosa parleremo Individuate le modalità di determinazione dell accumulazione iniziale e finale di una rendita, i problemi inversi consistono nella determinazione
P = ( /4 1) =
ESERCIZI RENDITE R1) Si trovi il montante di una rendita posticipata costituita da 40 rate annue di cui le prime 15 di 2 milioni, le successive 10 di 4 milioni e le restanti di 3 milioni ciascuna. Il tasso
REGIMI DI CAPITALIZZAZIONE E SCONTO (Esercizi)
REGIMI DI CAPITALIZZAZIONE E SCONTO (Esercizi) Elena Coffetti Copyright SDA Bocconi INDICE INDICE... REGIMI DI CAPITALIZZAZIONE E SCONTO...1 INFLAZIONE...4 TASSI EQUIVALENTI...5 Avvertenza: nonostante
Operazioni Finanziarie. Appunti sulle principali operazioni finanziarie
Operazioni Finanziarie Appunti sulle principali operazioni finanziarie Operazioni Finanziarie Regimi di Capitalizzazione e Cenni sulle Rendite La matematica finanziaria La matematica finanziaria si occupa
Calcolare il tasso interno di rendimento i del contratto finanziario:
May 4, 2018 Esercizi Esercizio 1 Calcolare il tasso interno di rendimento i del contratto finanziario: x/t = { 45, 40, 100 } / { 0, 1, 2 } essendo il tempo espresso in anni. Determinare, inoltre, importo
Indice NOZIONI ELEMENTARI REGIMI FINANZIARI. Prefazione VII. pag. XIII. Capitolo 1
VII Prefazione XIII Capitolo 1 NOZIONI ELEMENTARI 1.1. La matematica finanziaria 1 1.2. Situazione Finanziaria Elementare (SFE) e Operazioni Finanziarie 1 1.3. Capitalizzazione e attualizzazione 4 1.3.1.
Fondamenti e didattica di Matematica Finanziaria. Unità 2. Regime finanziario della capitalizzazione semplice
Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo - 6 MILANO U6-368 [email protected] SILSIS Unità Capitalizzazione semplice Capitalizzazione composta in
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 aa 2016-2017-6 GIUGNO 2017 NUMERO DI CFU
Set Domande MATEMATICA FINANZIARIA ECONOMIA (D.M. 270/04) Docente: Lazzarini Paolo
Set Domande MATEMATICA FINANZIARIA Indice Indice Lezioni... Lezione 004... Lezione 005... Lezione 006... Lezione 007... Lezione 008... Lezione 009... Lezione 010... Lezione 011... Lezione 012... Lezione
OPERAZIONE FINANZIARIA EQUA. Per la proprietà di scindibilità della legge di capitalizzazione composta si ha:
OPERAZIONE FINANZIARIA EQUA Con riferimento ad una operazione finanziaria si dice che { x, x, K, x }/{ t, t,, } x / t = 1 2 m 1 2 K t m con t 1 < t2 < K< tm x / t è equa nell istante t se ( t, x) = 0 Per
2. Leggi finanziarie di capitalizzazione
2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M
a b a : b Il concetto di rapporto
1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si
ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/ Esercizi 2
ESECIZI DI MATEMATICA FINANZIAIA DIPATIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 018/019 1 Esercizi endimento di un BOT Esercizio 1 Supponendo di acquistare un BOT di durata 18 mesi e valore nominale pari
RENDITE. Ricerca del tasso di una rendita
RENDITE Ricerca del tasso di una rendita Un problema che si presenta spesso nelle applicazioni è quello di calcolare il tasso di interesse associato a una rendita quando siano note le altre grandezze 1
ECONOMIA ED ESTIMO RURALE
Università degli Studi di Teramo Facoltà di Medicina Veterinaria ECONOMIA ED ESTIMO RURALE Dott. Agronomo Raffaella Castignani Corso di Laurea in Tutela e Benessere Animale Università degli Studi di Teramo
Lezione 4: Indici di posizione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 4: Indici di posizione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Indice di posizione Obiettivo di una misura di posizione è quello di
Come calcolare il valore attuale
CAPITOLO 5 Come calcolare il valore attuale Semplici PROBLEMI 1. a. FA 6 = 1/(1.12) 6 = 0.507; b. 125/139 = 0.899; c. 100 000 3 (1.06) 8 = 159 385; d. 37 400/(1.09) 9 = 17 220 1 e. VA = C r 1 r(1 r) t
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 A 16 dicembre 2017 14 dicembre 2017 NUMERO
(a) cinque mesi (b) sette mesi (c) sei mesi (d) otto mesi
Matematica Finanziaria a.a. 2018-19 Prof. Ghiselli Ricci Ferrara 16 gennaio 2019 Cognome Nome matricola Firma e indirizzo posta elettronica solo per chi non si è registrato sul sito NOTA BENE: si accetta
Sommario. Alcuni esercizi. Stefania Ragni. Dipartimento di Economia & Management - Università di Ferrara
Sommario Dipartimento di Economia & Management - Università di Ferrara Sommario Parte I: Capitalizzazione semplice e composta Parte II: Capitalizzazione mista Parte III: Capitalizzazione frazionata e tassi
MATEMATICA FINANZIARIA Appello del 14 gennaio 2016
MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte
Giurimetria: l ammortamento alla francese
Giurimetria: l ammortamento alla francese La capitalizzazione composta degli interessi e l anatocismo, differenze Avv. Giampaolo Morini L anatocismo non è presente nel sistema d ammortamento alla francese
equazione della popolazione o bilancio demografico:
La dimensione della popolazione Consideriamo un conto corrente bancario: il saldo (fenomeno statico) è riferito ad un certo istante, ad es. inizio anno. Nel corso dell anno si verificano entrate ed uscite
INTEREST RATE SWAP VARIANTI ALLO SCHEMA BASE SOLUZIONI. unità didattica n. 5. SDA Bocconi School of Management. Danilo Drago
Danilo Drago unità didattica n. 5 INTEREST RATE SWAP VARIANTI ALLO SCHEMA BASE SOLUZIONI Copyright SDA Bocconi, Milano ESERCIZIO N.1 Il tasso del forward swap da determinare deve rispettare una precisa
Distribuzioni Statistiche e Medie Esercitazione n 01
Distribuzioni Statistiche e Medie Esercitazione n 01 ESERCIZIO 1 In una clinica pediatrica si è registrato, nell'ultima settimana, il peso alla nascita dei neonati (in kg): Peso (in Kg) 2,7 1,8 4,6 2,9
APPLICAZIONI DELLE GRANDEZZE PROPORZIONALI. Problemi del tre semplice
APPLICAZIONI DELLE GRANDEZZE PROPORZIONALI Problemi del tre semplice diretto: riguardano due grandezze direttamente proporzionali. Sono noti tre valori e si deve calcolare il quarto Problemi del tre semplice
INDICE REGIMI DI INTERESSE E DI SCONTO NELLA PRATICA FINANZIARIA. Capitolo 1 La matematica finanziaria in condizioni di certezza o di incertezza..
INDICE PARTE PRIMA REGIMI DI INTERESSE E DI SCONTO NELLA PRATICA FINANZIARIA Capitolo 1 La matematica finanziaria in condizioni di certezza o di incertezza.. Capitolo 2 Interesse semplice e sconto razionale.
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 Esonero di Matematica Finanziaria aa 2017-2018
IL PREZZO DI UN BOND
IL PREZZO DI UN BOND in pratica, il titolo con cedole viene scomposto in tanti zero coupon bond quanti sono i flussi di cassa: il suo prezzo è pari alla somma dei prezzi di tali zero coupon bond P = P
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA
UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 A 24 novembre 2017 aa 2016-2017-25 ottobre
I regimi finanziari 1. I TERMINI FONDAMENTALI E IL LORO SIGNIFICATO. Obiettivi
I regimi finanziari Obiettivi l l l riconoscere un'operazione di capitalizzazione e di sconto saper operare nei vari regimi finanziari saper convertire i tassi di interesse 1. I TERMINI FONDAMENTALI E
Appunti di Calcolo finanziario. Mauro Pagliacci
Appunti di Calcolo finanziario Mauro Pagliacci c Draft date 26 febbraio 2015 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati per le
RENDITE ANTICIPATE
LE RENDITE FINANZIARIE PROF. ROSARIO OLIVIERO Indice 1 RENDITA ------------------------------------------------------------------------------------------------------------------------ 3 2 RENDITE POSTICIPATE
Cognome. Nome. matricola. Matematica Finanziaria a.a Traccia A Prof.ssa RAGNI Ferrara 17 gennaio 2017
Cognome Matematica Finanziaria a.a. 2016-17 Traccia A Prof.ssa RAGNI Ferrara 17 gennaio 2017 Nome matricola Firma e indirizzo posta elettronica solo per chi non si è registrato sul sito) NOTA BENE: si
1 Esercizi di Riepilogo sui piani di ammortamento
1 Esercizi di Riepilogo sui piani di ammortamento 1. Un individuo riceve, al tempo t 0, in prestito la somma di euro S 60.000 da restituire con quattro rate semestrali posticipate R 1 ; R ; R 3 ; R 4.
