SCIVOLANDO SULL IPOTENUSA
|
|
|
- Aurelio Renzi
- 9 anni fa
- Visualizzazioni
Transcript
1 SCIVOLANDO SULL IPOTENUSA la somma dei quadrati costruiti sui cateti è uguale a quella dell'ipotenusa Pitagora Pitagora se l'uomo quadrato sei tu inventami un sistema il nuovo teorema per ogni problema d'amor Pitagora [2] (Samo, 570 a.c. circa Metaponto, 495 a.c. circa) è stato un filosofo greco antico, matematico, taumaturgo, astronomo, scienziato,politico e fondatore a Crotone di una scuola iniziatica secondo quanto tramandato dalla tradizione. Egli viene ricordato come fondatore storico della scuola a lui intitolata, nel cui ambito si svilupparono le conoscenze matematiche e le sue applicazioni come il noto teorema di Pitagora. Il suo pensiero ha avuto importanza per lo sviluppo della scienza occidentale, perché ha intuito per primo l'efficacia della matematica per descrivere il mondo
2 Dai TRIANGOLI ai Meccano geometrico -Introdurre concetto costruendo figure con striscioline di carta e ferma campioni oppure, usare le cannucce per i lati con all interno del filo non estensibile -Arrivare al concetto di terna pitagorica Per infanzia e primaria
3 TRIANGOLI RETTANGOLI con gli arpedonapti Il loro strumento di lavoro era un cordino lungo 12 unità in quanto già nota la terna Pitagorica Gli agrimensori egizi erano chiamati "arpedonapti", annodatori di funi, essi compivano le operazioni concrete corrispondenti agli assiomi euclidei: Tendendo una fune tra due punti, Tiravano rette, prolungavano le "rette. Tenendo ferma la fune in un estremo, e tenendola tirata, descrivevano circonferenze Riportando su carta, in scala, la situazione dei campi, usavano gli strumenti presenti, ma equivalenti alla riga e al compasso.
4 PLIMPTON 322 tavoletta babilonese a.c PROBLEMA DI TIPOLOGIA PITAGORICA: «Un bastone lungo 30 unità è appoggiato a un muro. In alto scivola di 6 unità. Di quanto il piede del bastone si è allontanato dalla base del muro?» non vi ricorda le prove Invalsi?
5 VERIFICHE del th. Pitagora Si basano sul concetto di equiscomponibilità e di figure equivalenti (Pitagora e Tangram video)
6
7 Applicare il teorema e chiedersi se è vero il suo inverso, non è scontato infatti se piove prendo l ombrello, ma se prendo l ombrello non è detto che piova
8 Il teorema di Pitagora è verificato con qualsiasi costruzione, regolare o irregolare, purché vengano mantenuti i rapporti (ciò è possibile usando dei grigliati quadrati sui lati mantenendo fissa l unità) Il concetto può essere estremizzato costruendo un modello dinamico di tipo fluido
9 Lavoro mathemagica
10 Esempi di applicazioni pratiche del teorema di Pitagora Nel costruire una abitazione è necessario fare una planimetria dell interno per sistemare i mobili Tracciare le linee in un campo da calcio Dalla cima dell Etna (3300m) guardo verso il mare con il cannocchiale, fino a che distanza si può vedere un oggetto sul mare? (raggio terrestre 6370 km) Improvvisarsi sarti Mettere delle piantine a 3m di distanza in tutte le direzioni Ecc
11 Dal TH. Di PITAGORA al TH. DI EUCLIDE Prendendo, per esempio, la squadretta e mettendo un elastico lungo il perimetro, provare ad allungare oppure abbassare il vertice opposto all ipotenusa. Se ne deduce che il quadrato costruito sull ipotenusa rimane uguale ma gli altri due variano, quindi non permane la condizione di equiestensione. Da ciò si deduce che i teoremi sopracitati sono validi solo con triangoli rettangoli.
12 Teoremi di Euclide sul triangolo rettangolo dimostrati con equiestensione di poligoni Solitamente i due teoremi di Euclide sul triangolo rettangolo sono dimostrati con la similitudine e questa è probabilmente la tecnica didatticamente più efficace. Tuttavia esistono eleganti dimostrazioni esclusivamente geometriche, probabilmente più antiche, basate sull equiestensione di poligoni. Primo teorema In un triangolo rettangolo il quadrato avente per lato un cateto è equivalente al rettangolo avente per lati l ipotenusa e la proiezione del cateto su di essa.
13
14 Secondo teorema Il quadrato avente per lato l altezza relativa all ipotenusa è equivalente al rettangolo avente per lati le proiezioni dei cateti su di essa.
15 Come il teorema di Pitagora arriva a supporto di un antica problematica: In matematica un numero irrazionale è ogni numero reale che non è un numero razionale, cioè non può essere scritto come una frazione. I numeri irrazionali sono esattamente quei numeri la cui espressione decimale non termina mai e non forma una sequenza periodica: Una costruzione classica riguardante i numeri irrazionali e nota come Spirale di Teodoro che permette di costruire geometricamente le radici
16 Da Pitagora alle frazioni passando per il rapporto aureo Video Paperino nel mondo della matematica dalla sezione aurea alla spirale alle simmetrie Da 6:55 a 13:02http:// La simmetria è l accordo armonico tra le parti di un opera e la rispondenza di proporzioni tra le singole parti e l intera figura. Marcus Vitruvius Pollio a.c. Si studiano le proporzioni del corpo collegamento con rapporto aureo e rettangolo aureo nell antica Grecia (arte) Uomo vitruviano Leonardo da Vinci dal rettangolo aureo alla Serie di Fibonacci
Il teorema di Pitagora al centro della didattica della geometria nella scuola secondaria di primo grado di Luciano Porta
Il teorema di Pitagora al centro della didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Gli egizi usavano per disegnare gli angoli retti una corda ad anello suddivisa da
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
Elementi di Euclide. Libro II. Algebra Geometrica. Proposizione 4: (x + y) 2 = x 2 + 2xy + y 2.
PAS 2014 GEOMETRIA Programma di massima: Elementi di logica elementare. La geometria degli Elementi di Euclide. De nizioni, assiomi e postulati. La geometria del triangolo. Criteri di uguaglianza. Teorema
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
TEOREMA DI PITAGORA. Francobollo greco dedicato al celebre teorema
Francobollo greco dedicato al celebre teorema Livello scolare: 1 biennio Abilità interessate:!conoscere le caratteristiche generali dei poligoni!saper confrontare ed operare con segmenti ed angoli!conoscere
Compiti per le vacanze estive 2016 II A-B MATEMATICA Borgofranco
Compiti per le vacanze estive 06 II A-B MATEMATICA Borgofranco Svolgi i compiti sui quaderni di matematica e di geometria che già usi, un po per volta, non subito dopo il termine delle lezioni e neanche
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
I TRIANGOLI RETTANGOLI
I TRIANGOLI RETTANGOLI IN QUESTA ATTIVITÀ PARLEREMO DI TRIANGOLI RETTANGOLI, PERTANTO RICORDA CHE I LATI DI TALI TRIANGOLI HANNO NOMI PARTICOLARI: SI CHIAMANO CATETI DI UN TRIANGOLO RETTANGOLO ABC I DUE
Appunti di Matematica 2 - Geometria euclidea - La similitudine GEOMETRIA EUCLIDEA. La similitudine
Appunti di Matematica GEOMETRIA EUCLIDEA Se consideriamo due triangoli equilateri di lato diverso, due quadrati di lato diverso intuitivamente diciamo che hanno la stessa forma. Ma cosa comporta avere
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
Anno 1. Poligoni equivalenti
Anno 1 Poligoni equivalenti 1 Introduzione Una qualsiasi figura geometrica piana è costituita da una linea spezzata chiusa che, a sua volta, delimita una parte di piano. In questa lezione introdurremo
CURRICOLO DI MATEMATICA CLASSE PRIMA
CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato
PROGRAMMA DI MATEMATICA
Docente: Rosinella Cuomo Classe: IID Anno scolastico 2017/2018 ALGEBRA PROGRAMMA DI MATEMATICA 1. Le disequazioni di primo grado Insiemi di numeri sulla retta Disuguaglianze numeriche Disequazioni equivalenti
Test sui teoremi di Euclide e di Pitagora
Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate
Nucleo concettuale : IL NUMERO
Nucleo concettuale : IL NUMERO UAD 1: L INSIEME N E LA SUE OPERAZIONI Conoscere il significato di termini e simboli Saper applicare regole e che specificano i concetti di numerazione proprietà relative
IL TEOREMA APPLICAZIONE AI RETTANGOLI APPLICAZIONE AL ROMBO APPLICAZIONE AL TRAPEZIO APPLICAZIONE AL QUADRATO AVANTI GENERALE
TEOREMA DI PITAGORA IL TEOREMA APPLICAZIONE AI TRIANGOLI RETTANGOLI APPLICAZIONE AI RETTANGOLI APPLICAZIONE AL ROMBO APPLICAZIONE AL TRAPEZIO APPLICAZIONE AL QUADRATO TEOREMA DI PITAGORA IL TEOREMA VALE
Il teorema nella storia - Dimostrazioni Il teorema di Pitagora nel trattato Chou Pei Suan Chjing
Il teorema nella storia - Dimostrazioni Il teorema di Pitagora nel trattato Chou Pei Suan Chjing - Il titolo del trattato corrisponde a Il libro classico dello gnomone e delle orbite circolari del cielo.
ISTITUTO COMPRENSIVO CAMERA SALA CONSILINA. DIDATTICA PER COMPETENZE SCHEDA PROGETTAZIONE DIPARTIMENTI DIPARTIMENTO Di MATEMATICA.
ISTITUTO COMPRENSIVO CAMERA SALA CONSILINA Via Matteotti - 84036 Sala Consilina (SA) Tel. 097521013 Fax 097521013 e-mail [email protected]; posta cert. [email protected] DIDATTICA PER
TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA. c² = a² + b². TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa
TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa TEOREMA DI PITAGORA In un qualsiasi triangolo rettangolo il quadrato costruito sull'ipotenusa
Il Teorema di Pitagora
Il Teorema di Pitagora I Enunciato del teorema: In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti. II Enunciato del teorema:
Gli enti geometrici fondamentali
capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento
ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO
ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO MACRO INDICA TORI OBIETTIVI DI APPRENDIMENTO Curricolo verticale OBIETTIVI DI APPRENDIMENTO
IL TEOREMA DI PITAGORA
IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra
I ludi geometrici di Leonardo da Vinci. Equivalenza di aree
I ludi geometrici di Leonardo da Vinci. Equivalenza di aree di Franco Ghione e Daniele Pasquazi Università di Roma Tor Vergata Dipartimento di Matematica Leonardo e la matematica Il Codice Atlantico 1478-1519
La sezione aurea nelle sue molteplici
La sezione aurea nelle sue molteplici applicazioni Nella geometria piana il rapporto aureo trova molteplici applicazioni. Se prendiamo un segmento AB =, la sua parte aurea AD vale circa 0,68 (Figura ).
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Compiti vacanze IIG a.s Alunno:
Compiti vacanze IIG a.s. 2015-2016 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6
Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano
Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano 5 agosto 2008 I problemi classici della geometria euclidea Quadratura del cerchio Costruire un quadrato avente
Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto
Terza Media Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest inizio d anno scolastico, fino alle vacanze autunnali. Ti servono qual ripasso!!!se
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni
COMPITI DELLE VACANZE - CLASSE 2^A A.S. 2018/2019
COMPITI DELLE VACANZE - CLASSE 2^A A.S. 2018/2019 ARITMETICA 1. Calcola la frazione generatrice dei seguenti numeri decimali: 7, 3=... 1,48=... 4, 3=... 4,8 =... 5,38=... 3,75 =... 3, 21=... 1, 4=... 2,92
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
k l equazione diventa 2 x + 1 = 0 e ha unica soluzione
a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione
IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.
IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c
PROGRAMMA SVOLTO E COMPITI ESTIVI
Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890
Liceo classico Vittorio Emanuele II. Napoli. Prof. Ognissanti Gabriella. Programma di Matematica
Liceo classico Vittorio Emanuele II Napoli Anno scol. 2015/16 classe V sez. E Prof. Ognissanti Gabriella Programma di Matematica POLINOMI Richiami sui prodotti notevoli e sulle operazioni. EQUAZIONI Generalità
IL TEOREMA DI PITAGORA E IL QUADRATO DI BINOMIO
IL TEOREMA DI PITAGORA E IL QUADRATO DI BINOMIO Parole cardine Triangolo: poligono formato da tre angoli e da tre lati. Triangolo rettangolo: è un triangolo in cui l angolo formato da due lati, detti cateti,
L equivalenza delle superfici piane
GEOMETRIA EUCLIDEA L equivalenza delle superfici piane Superficie piana Il concetto di superficie piana è un concetto primitivo: i poligoni, i cerchi o in generale regioni di piano delimitate da una linea
Insegnante TREVISAN LUISA Materia MATEMATICA E SCIENZE Classe Seconda A Anno scolastico 2018/19
ISTITUTO COMPRENSIVO STATALE A. Palladio Via Dante Alighieri, 4-36026 POJANA MAGGIORE (VI) Tel. n. 0444/898025 -Partita Iva Codice fiscale 80015470240 - Cod. Mecc. VIIC814001 e_mail: [email protected]
1 MISURA DEI SEGMENTI
1 MISUR DEI SEGMENTI 1 MISUR DEI SEGMENTI 1.1 La classe dei segmenti Nell insieme S formato da tutti i segmenti contenuti in un piano introduciamo le seguenti operazioni: Confronto di segmenti: dati due
Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni.
onsolidamento conoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni.. Siano c, e i rispettivamente i cateti e l ipotenusa di un triangolo rettangolo, quale delle seguenti scritture esprime
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI I SISTEMI LINEARI Stabilisci se il sistema è determinato, indeterminato o impossibile senza risolverlo [determinato] [impossibile] Determina per
Consolidamento Conoscenze
onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..
Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:
ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,
Compiti vacanze IIG a.s Alunno:
Compiti vacanze IIG a.s. 2012-2013 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6
Corso di Didattica della Matematica
Corso di Didattica della Matematica Docente: Prof. Roberto Capone Ore di didattica: 72 pari a 12cfu Appunti delle lezioni: www.robertocapone.com Notizie burocratiche: www.unimol.it Prova finale: dal 12
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ Nucleo fondante 1: IL NUMERO Argomento 1: Sistemi di numerazione Sa rappresentare graficamente numeri, ordinarli e confrontarli.
1 L omotetia. i punti O, A e A siano allineati
1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che
2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:
Equivalenza delle figure piane
Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:
RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
3) Risolvi almeno due fra le seguenti espressioni dopo avere ricavato le frazioni generatrici dei numeri decimali finiti e periodici.
IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO
C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati
5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a
I TEOREMI DI EUCLIDE
I TEOREMI DI EUCLIDE 1 Teorema di Euclide Dato il triangolo rettangolo ABC: consideriamo i triangoli ABC e ABH simili I due triangoli sono simili perché se consideriamo gli angoli: - l'angolo A è comune
Programma di matematica classe II sez. F a.s
Programma di matematica classe II sez. F a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il primo biennio vol.2 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------
Unità Didattica N 30 Equivalenza delle superfici piane 79. Unità Didattica N 30 Equivalenza delle superfici piane
Unità idattica N 30 Equivalenza delle superfici piane 79 Unità idattica N 30 Equivalenza delle superfici piane 0) oncetti primitivi e postulati 0) parallelogrammi equivalenti 03) Parallelogrammi e triangoli
Unità Didattica N 36 La similitudine
Unità Didattica N 36 La similitudine 1 Unità Didattica N 36 La similitudine 01) Definizione di poligoni simili 0) Definizione di triangoli simili 03) Primo criterio di similitudine dei triangoli 04) Secondo
Proporzioni, proprietà, risoluzione, proporzionalità diretta e inversa: una proposta didattica innovativa di Luciano Porta
Proporzioni, proprietà, risoluzione, proporzionalità diretta e inversa: una proposta didattica innovativa di Luciano Porta Le proporzioni strutturano il pensiero in modo potente ed elegante per cui sono
GEOMETRIA. Congruenza, angoli e segmenti
GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre
Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE
Pagina di Matematica anno scolastico 00/0 II A COMPITI DELLE VACANZE - ARITMETICA -.Risolvi le seguenti espressioni sul foglio a protocollo. 0 0.. 0. 0. 0... 0. 0 0.... . 0. 0. Estrai le seguenti radici
Problemi sui teoremi di Euclide e Pitagora
Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: B 9.03.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 3, 1 4,
Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili
Figure simili Se consideriamo due triangoli equilateri di lato diverso, due quadrati di lato diverso intuitivamente diciamo che hanno la stessa forma. Ma cosa comporta avere la stessa forma? Se osserviamo
Sette più SOLUZIONI. Fabio Semprini. Prima Settimana FRAZIONI E NUMERI DECIMALI // // // // 35 2
Airone Fabio Semprini Sette 7+ più 2 SOLUZIONI Prima Settimana FRAZIONI E NUMERI DECIMALI n. a),75 b) 0,25 c) 0,48 d) 3 e),3 f),8 n.2 a) 0,083 b) 3,6 c) 0,46 d) 6,8 e) 0,4 f) 2,6 n.3 a) 0,6 b) 0,863 c)
GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora
GEOMETRIA EUCLIDEA I teoremi di Euclide e Pitagora Vediamo tre importanti teoremi che riguardano i triangoli rettangoli e che si dimostrano utilizzando l equivalenza delle superfici piane. Primo teorema
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
Il triangolo è una figura indeformabile ed è l'unico poligono cui è sempre circoscrivibile e in cui è sempre inscrivibile una circonferenza.
I triangoli e il teorema di Pitagora (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S. VIA SILVESTRI 301 ANNO SCOLASTICO 2016-2017 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
