Rappresentazione generale del problema e fasi di progettazione
|
|
|
- Albana Rocca
- 9 anni fa
- Visualizzazioni
Transcript
1 D MATERIA DATA OGGETTO Informatica 18/10/2015 Progettazione degli algoritmi: strategia top-down Rappresentazione generale del problema e fasi di progettazione In generale, la risoluzione di un problema si può intendere come un operazione di trasformazione, che, a partire da un insieme di dati iniziali, produce un risultato, attraverso una serie di passaggi di elaborazione intermedi. Ad esempio Un problema di geometria che richieda di calcolare il volume di un cubo conoscendo la misura del suo lato è una trasformazione, che produce un risultato il volume del cubo a fronte di un dato iniziale la misura del suo lato. L elaborazione, in questo caso, corrisponde a un semplice passaggio: l operazione matematica volume = lato 3. In quest ottica, un generico algoritmo può essere descritto nel seguente schema generale, prescindendo dalle operazioni che deve effettivamente svolgere per realizzare l elaborazione. Stando a questo schema, la progettazione di un algoritmo implica tre fasi: 1) identificare il risultato che l algoritmo deve produrre; 2) identificare i dati iniziali che l algoritmo deve sfruttare; 3) definire l elaborazione che ricavi il risultato dai dati iniziali. Metodo diretto Quando un algoritmo corrisponde a un elaborazione semplice, la traduzione dello schema generale in istruzioni elementari (i.e. LEGGI, SCRIVI, etc.) è un compito immediato. Si parla, perciò di metodo diretto. Ad esempio L algoritmo che determina il quadrato q di un numero reale n può essere descritto con il metodo diretto in tre semplici istruzioni, dal momento che l elaborazione (che ricava il risultato q dall unico dato iniziale n) corrisponde all ovvia operazione q = n n. quadrato di un numero n n q = n n q LEGGI n q = n n SCRIVI q Pagina 1 di 5
2 Strategia top-down Quando un algoritmo corrisponde, invece, a un elaborazione complessa, il suo modello generale può essere considerato come il punto di partenza di una serie di più fasi di progettazione successive, che fa capo a un metodo di progettazione conveniente detto strategia top-down. La strategia top-down prevede di individuare, nel problema complessivo, dei sottoproblemi più semplici, che si possano risolvere, gli uni indipendentemente dagli altri, come fossero algoritmi separati. Il procedimento viene ripetuto due o più volte, in base alla complessità del problema, cosicché ogni fase di progettazione corrisponda a una descrizione via via più dettagliata (dall altro verso il basso ) del problema stesso, nelle parti in cui risulta utile scomporlo. Questa strategia ha il vantaggio non indifferente di permettere non solo la risoluzione di algoritmi complessi, ma anche l individuazione di sottoproblemi ricorrenti, che si possono ripresentare in algoritmi differenti. Ad esempio Per calcolare il perimetro di un triangolo rettangolo conoscendo le misure dei suoi due cateti, occorre il teorema di Pitagora; per calcolare il perimetro di un trapezio isoscele conoscendo le misure delle sue due basi, serve lo stesso teorema. I due problemi condividono, perciò, un sottoproblema comune, che può essere risolto una volta soltanto per entrambi. A scopo di dimostrazione della strategia top-down, si consideri il seguente problema di geometria solida. Calcolare la misura della superficie totale S TOT di un cilindro, conoscendone il volume V e l altezza h. Fase 1: prima rappresentazione del problema In prima approssimazione, l algoritmo per risolvere il problema si può progettare nel seguente schema. Calcola la superficie totale del cilindro I dati iniziali corrispondono, evidentemente, alle misure del volume (V) e dell altezza del cilindro (h), mentre il risultato alla misura della superficie totale dello stesso (S TOT ). Il calcolo della superficie totale del cilindro è un elaborazione articolata: si tratta, evidentemente, di un problema generale, che dev essere risolto in più passaggi, ripartendolo in sottoproblemi progressivamente più immediati. Pagina 2 di 5
3 Fase 2: primo grado di scomposizione del problema Dal momento che la superficie totale di un cilindro è data dalla somma delle aree delle sue due basi (S B ) e della superficie laterale (S L ), l algoritmo può essere perfezionato come segue. Calcola la superficie totale del cilindro Calcolo dell area di base del cilindro (S B ) sottoproblema B Calcolo della superficie laterale del cilindro (S L ) S TOT = 2S B + S L L elaborazione relativa al calcolo della superficie totale del cilindro è ora ripartita in due sottoproblemi indipendenti, ciascuno dei quali può essere risolto separatamente ed innestato, in un secondo tempo, in un diagramma complessivo. Sottoproblema A: calcolare la misura dell area di base del cilindro (S B ). Sottoproblema B: calcolare la misura della superficie laterale del cilindro (S L ). Fase 3: secondo grado di scomposizione del problema (sottoproblemi A e B) Il Sottoproblema A, relativo al calcolo dell area della base del cilindro, può essere tradotto in istruzioni elementari, dal momento che la base del cilindro (S B ) risulta direttamente dalla divisione tra volume e altezza (V h). Calcolo dell area di base del cilindro (S B ) Il Sottoproblema B, ovvero il calcolo della superficie laterale del cilindro, può essere scomposto, invece, nelle operazioni che permettono di calcolare l area di un rettangolo dalle sue dimensioni (qui l altezza del cilindro h e la misura del perimetro della sua base P B ). Pagina 3 di 5
4 sottoproblema B Calcolo della superficie laterale del cilindro (S L ) Calcolo del perimetro della base del cilindro (P B ) S L = P B h Fase 4: terzo grado di scomposizione del problema () La scomposizione del Sottoproblema B ha prodotto un nuovo compito più semplice, che deve ulteriormente essere scomposto. Sottoproblema B1: calcolare la misura del perimetro di base del cilindro (P B ). La risoluzione di quest ultimo problema richiede ovviamente di ottenere il raggio della base del cilindro (r B ) dalla misura della superficie della stessa (S B ). La misura dell area di base si può calcolare come nel Sottoproblema A. Calcolo del perimetro della base del cilindro (P B ) r B = S B / π P B = 2πr B Fase 5: rappresentazione complessiva del problema Dal momento che i sottoproblemi evidenziati nelle precedenti fasi di progettazione sono espressi in istruzioni elementari, si può ora costruire un diagramma di insieme, che realizzi l algoritmo in tutte le sue parti. Le istruzioni ripetute in più sottoproblemi possono ovviamente essere trascritte una volta soltanto, con l accorgimento di verificare l ordine delle istruzioni affinché facciano riferimento a dati calcolati in precedenza. Pagina 4 di 5
5 sottoproblema B r B = S B / π P B = 2πr B S L = P B h S TOT = 2S B + S L Pagina 5 di 5
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
Risposte ai quesiti D E H D
Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia
Test sui teoremi di Euclide e di Pitagora
Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate
Numeri naturali ed operazioni con essi
Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI Programmazione Didattica 1 e Disciplina: MATEMATICA Ore annue: 110 MODULO 1 TEORIA DEGLI INSIEMI E INSIEMI NUMERICI settembre
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA
CLASSE PRIMA TRAGUARDI per lo sviluppo delle competenze OBIETTIVI CONTENUTI al termine della classe 3 a Comprendere il significato logico dei numeri nell insieme N e rappresentarli sulla retta orientata.
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
PROGRAMMA SVOLTO E COMPITI ESTIVI
Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.
Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO. una proposta nuova per imparare un po di geometria e non solo. La proposta
Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO una proposta nuova per imparare un po di geometria e non solo. La proposta GRUPPI: di 3 (formati da tutor e insegnanti) MATERIA: geometria ARGOMENTO:
Come ragiona il computer. Problemi e algoritmi
Come ragiona il computer Problemi e algoritmi Il problema Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia Per risolvere il problema
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ Nucleo fondante 1: IL NUMERO Argomento 1: Sistemi di numerazione Sa rappresentare graficamente numeri, ordinarli e confrontarli.
si usa in geometria per definire due figure uguali per forma ma non per dimensioni.
FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi
Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA
PROBLEMI ALGORITMI E PROGRAMMAZIONE
PROBLEMI ALGORITMI E PROGRAMMAZIONE SCIENZE E TECNOLOGIE APPLICATE CLASSE SECONDA D PROGRAMMARE = SPECIFICARE UN PROCEDIMENTO CAPACE DI FAR SVOLGERE AD UNA MACCHINA UNA SERIE ORDINATA DI OPERAZIONI AL
Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:
Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico I numeri naturali e i numeri interi Che cosa sono i numeri naturali. Le quattro operazioni. I multipli e i divisori di un numero. Le potenze. Le espressioni con
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 ARITMETICA. 1) Risolvi le seguenti espressioni: Voto mate 2 quadr.
Compiti delle vacanze di matematica estate 2016 classe 2 B & 2 G pag. 1/8 Nota bene: il numero di esercizi da svolgere dipende dal voto che hai avuto nella pagella del 2 quadrimestre in matematica, ed
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
Appunti sullo sviluppo piano di figure solide
Appunti sullo sviluppo piano di figure solide Indice 1. Cosa è un prisma 2. Prisma retto, parallelepipedo e cubo. 3. Sviluppo piano di un prisma 1. Cosa è un prisma Per effettuare lo sviluppo piano di
Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016
Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 ALGEBRA Ripasso programma di prima. Capitolo 5 - I monomi e i polinomi La divisione fra polinomi La divisione di un polinomio per un monomio.
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il
Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto
Terza Media Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest inizio d anno scolastico, fino alle vacanze autunnali. Ti servono qual ripasso!!!se
COMPITI PER LE VACANZE ESTIVE
ISTITUTO SALESIANO «Beata Vergine di San Luca» via Jacopo della Quercia, 1-40128 BOLOGNA tel. 051/41.51.711 www.salesianibologna.net [email protected] Il Preside Futura Classe: 3^C (a.s.
Comprensivo 1 Frosinone Secondaria 1 grado Aldo Moro MATEMATICA CLASSE PRIMA
Comprensivo 1 Frosinone Secondaria 1 grado Aldo Moro 1. i sistemi di numerazione 2. i numeri naturali 3. i numeri decimali MATEMATICA CLASSE PRIMA NUCLEO TEMATICO: IL NUMERO U.A.: Il sistema di numerazione
Test sui triangoli. Vengono presentate 25 domande a risposta multipla, risolte e commentate.
Test sui triangoli In questa dispensa vengono proposti dei test di verifica relativi alle nozioni di geometria piana sui triangoli, in particolare, la classificazione dei triangoli, i criteri di uguaglianza
TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE
1.L alunno si muove con sicurezza sia nel calcolo scritto che mentale a partire dai numeri naturali fino a quelli reali; ne padroneggia le diverse rappresentazioni, stima la grandezza di un numero e il
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello
GEOMETRIA SOLIDA PIRAMIDE Prof.ssa M. Rosa Casparriello Scuola media di Cervinara 2007/2008 DEFINIZIONE La piramide è un poliedro limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati
Anno 4 Cilindro, cono e tronco di cono
Anno 4 Cilindro, cono e tronco di cono 1 Introduzione In questa lezione parleremo di alcuni importanti solidi di rotazione. Al termine della lezione sarai in grado di: descrivere le caratteristiche del
OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA
Revisione dei contenuti in data 21 aprile 2015 OBIETTIVI GENERALI Imparare a lavorare in classe (saper ascoltare insegnante e compagni, intervenire con ordine e nei momenti opportuni). Concepire il lavoro
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
Verifica di Topografia
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
LINEE DI PROGETTAZIONE ANNUALE Disciplina: SCIENZE MATEMATICHE a.s
I.C. AMEDEO DI SAVOIA AOSTA Martina Franca (Ta) LINEE DI PROGETTAZIONE ANNUALE Disciplina: SCIENZE MATEMATICHE a.s. 2012 2013 PREMESSA DISCIPLINARE Traguardi per lo sviluppo delle competenze Le Scienze
Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione
SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione Descrittori Descrittori Descrittori 1.1.1 E in grado di comprendere testi e altre fonti di
VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA
VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando
Ripasso figure geometriche piane e solide
a cura di paola Ferrato 1 QUADRATO PERIMETRO AREA TRIANGOLO RETTANGOLO TRAPEZIO PENTAGONO ESAGONO... verifica... Prima di continuare...prova a risolvere alcuni problemi di geometria piana a cura di paola
Algoritmi. Pagina 1 di 5
Algoritmi Il termine algoritmo proviene dalla matematica e deriva dal nome di in algebrista arabo del IX secolo di nome Al-Khuwarizmi e sta ad indicare un procedimento basato su un numero finito operazioni
CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado
CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO SCUOLA secondaria di secondaria di primo grado classe 1^ TRAGUARDI per lo sviluppo L alunno si muove con sicurezza nel calcolo con i numeri Naturali
VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D. Nome...Cognome... ARITMETICA/ALGEBRA
VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D Nome...Cognome... 1. Insiemi numerici. ARITMETICA/ALGEBRA a) Al posto dei puntini inserisci il simbolo (appartiene) o (non appartiene): + 36...! 3,9...!
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
Corso di Informatica
Corso di Informatica Modulo T1 2 - Problemi e strategie 1 Prerequisiti Concetti intuitivi di: geometria elementare (calcolo di aree e volumi) insieme ordinato (precedente, successivo) procedimento logico
ESERCIZI PER LE VACANZE
ESERCIZI PER LE VACANZE Tutti gli esercizi devono essere svolti sul quaderno. 1. Trova il quoziente di ciascuna frazione senza usare la calcolatrice (ricorda che puoi ridurre le frazioni ai minimi termini
PROBLEMI DI GEOMETRIA SUL CERCHIO
PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente
IL CURRICOLO VERTICALE DI MATEMATICA
IL CURRICOLO VERTICALE DI MATEMATICA Sinossi delle competenze per ciascun grado scolastico Scuola primaria Scuola secondaria I grado Scuola secondaria II grado Operare con i numeri nel calcolo scritto
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.
MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che
Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh
Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Geometria Equivalenza e misura delle aree Trapezio. Esercizi risolti. - 1 Raccolta di problemi di equivalenza e misura delle aree sul trapezio completi di soluzioni Area Measurement - Area of a Trapezoid
Come risolvere i quesiti dell INVALSI - primo
Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale
Buone Vacanze! Compiti per le vacanze. Classe II A
Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
E periodico semplice?
COMPITI PER LE VACANZE gruppo A. Per affrontare bene il terzo anno è indispensabile rivedere alcuni argomenti; i compiti che seguono servono a questo. Sono da eseguire su un apposito quaderno che sarà
risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali
ORD. MODULO MODULO ARGOMENTO 1 Disequazioni disequazioni di 1^ grado disequazioni fratte disequazioni di grado superiore da risolvere con la scomposizione in fattori sistemi di disequazioni 2 Geometria
Programma di matematica classe I sez. E a.s
Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri
10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano
Fondamenti e didattica della matematica - Geometria - Corso speciale - Facoltà di Scienze della Formazione - Università Milano Bicocca - a.a. 2007-2008 10 ottobre 2007 Marina Bertolini ([email protected])
Informatica. Come si risolve un problema?
Informatica Elaborazione automatica dell informazione Esempio di elaborazione: rubrica, elenco telefonico. Ogni problema di elaborazione dell informazione è caratterizzato da: un insieme di dati di partenza
TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA. c² = a² + b². TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa
TEOREMA DI PITAGORA Pg. 1 TEOREMA DI PITAGORA TRIANGOLO RETTANGOLO a = cateto minore b= cateto maggiore c= ipotenusa TEOREMA DI PITAGORA In un qualsiasi triangolo rettangolo il quadrato costruito sull'ipotenusa
a.s. 2015/2016 Scuola Secondaria 1 grado Loiano Classe 2 B Compiti per le vacanze
a.s. 2015/2016 Scuola Secondaria 1 grado Loiano Classe 2 B Compiti per le vacanze Per iniziare a settembre con il programma di III a, occorre ripassare alcune nozioni basilari del programma di II a. Nelle
Misura dei volumi dei solidi
Geometria euclidea dello spazio Presentazione n. 8 Misura dei volumi dei solidi Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Richiamo di geometria piana: misura delle aree Per misurare
PROGRAMMAZIONE DISCIPLINARE
Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE
MONITORAGGIO VERIFICHE TRIMESTRALI
ISTITUTO COMPRENSIVO S. D ARRIGO - VENETICO D. S. Prof.ssa Lilia Leonardi MONITORAGGIO VERIFICHE TRIMESTRALI Anno scolastico 0-0 Sperimentazione didattica Consolidamento delle competenze di Italiano e
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria.
COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali)
COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) Utilizzare con sicurezza le tecniche e le procedure nel calcolo aritmetico e algebrico, scritto e mentale, anche con
MATEMATICA: Compiti delle vacanze Estate 2015
MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola
PIANO DI LAVORO DEL DOCENTE anno scolastico 2016/2017. Classe e Indirizzo 1^B AFM n. ore settimanali: 4 Monte orario annuale: 132
PIANO DI LAVORO DEL DOCENTE anno scolastico 2016/2017 Prof. BUGNA CINZIA Classe e Indirizzo 1^B AFM n. ore settimanali: 4 MATERIA MATEMATICA Monte orario annuale: 132 CONOSCENZE INSIEMI NUMERICI Ripasso
PROBLEMI SVOLTI SULLA PIRAMIDE
PROBLEMI SVOLTI SULLA PIRAMIDE Premetto che non ho messo il trattino nell indicazione dei segmenti, ad esempio VK (sopra ci vuole il trattino perché indica una misura) e il triangolino per indicare i triangoli,
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
Istituto Comprensivo Statale Bellano Scuola secondaria di primo grado classe 2B. Anno scolastico Insegnante: Renata Rossi
Istituto Comprensivo Statale Bellano Scuola secondaria di primo grado classe 2B Anno scolastico 2014-2015 Insegnante: Renata Rossi PIANO DELLE UNITA DI APPRENDIMENTO MATEMATICA Unità di apprendimento n.
PROGRAMMA DI MATEMATICA CONTENUTI.
PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti
Liceo Scientifico Statale ALBERT EINSTEIN Milano
Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;
- Spiega il procedimento seguito, anche in forma scritta, mantenendo il controllo sia sul processo risolutivo, sia sui risultati.
SCUOLA SECONDARIA TRAGUARDI DI SVILUPPO DELLE COMPETENZE MATEMATICA - L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse rappresentazioni e stima la grandezza
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo
Anno 4 Superficie e volume dei solidi
Anno 4 Superficie e volume dei solidi Introduzione In questa lezione parleremo del volume e della superficie dei solidi, imparando a trattare con semplicità il loro calcolo tramite le formule Al termine
MATEMATICA classe PRIMA
MATEMATICA classe PRIMA OBIETTIVI DI APPRENDIMENTO MATEMATICA Classe PRIMA SECONDARIA A 1.1.1. Riconoscere,rappresentare e operare correttamente con gli insiemi matematici. A 1.1.2. Scrivere, leggere,
I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico
Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s
Prof. Roberto BIANCO Scuola Media Santa Domenica Talao (CS), a.s. 008-09 In queste pagine si vuole dare un aiuto agli alunni di terza media che intendono approfondire le applicazioni algebriche alla geometria
Algoritmi e Programmi
Algoritmi e Programmi Algoritmi e Programmi Le azioni che si compiono ogni giorno sono finalizzate alla risoluzione di problemi. Problema di elaborazione Insieme dati di partenza Risultato ricerca Algoritmi
P = L + L + L. AREA E PERIMETRO DEL QUADRATO, DEL RETTANGOLO e DEL PARALLELOGRAMMA AREA E PERIMETRO DEL TRIANGOLO. PERIMETRO: è la SOMMA DEI LATI!
AREA E PERIMETRO DEL TRIANGOLO COME SI CALCOLA? P = L + L + L oppure P = L 3 AREA: è la MISURA DELL INTERNO DEL TRIANGOLO! COME SI CALCOLA? A = (b h) : 2 CON QUESTE DUE FORMULE PUOI TROVARE ALTRE PARTI
Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )
Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere
Algoritmo. La programmazione. Algoritmo. Programmare. Procedimento di risoluzione di un problema
Algoritmo 2 Procedimento di risoluzione di un problema La programmazione Ver. 2.4 Permette di ottenere un risultato eseguendo una sequenza finita di operazioni elementari Esempi: Una ricetta di cucina
