Corso di Informatica
|
|
|
- Bonifacio Ferraro
- 9 anni fa
- Visualizzazioni
Transcript
1 Corso di Informatica Modulo T1 2 - Problemi e strategie 1 Prerequisiti Concetti intuitivi di: geometria elementare (calcolo di aree e volumi) insieme ordinato (precedente, successivo) procedimento logico (dimostrazione, verifica) 2 1
2 Introduzione La risoluzione di un problema è affidata alle qualità del risolutore: intelligenza intuizione fantasia conoscenze Spesso, nonostante queste qualità, un problema non è risolvibile. Come si può studiare sistematicamente la risoluzione di un problema? Tutti i problemi si possono risolvere? Rispondiamo a questi interessanti quesiti. 3 Strategie risolutive Per risolvere un problema possiamo sceglie una delle seguenti strategie risolutive: a. Analogia (problemi simili; es. quadrato, rettangolo, cubo) b. Generalizzazione (modelli di calcolo comuni; es. ricerca) c. Specializzazione (considerare il problema partendo da casi semplici) d. Ragionamento all indietro (partire dalla soluzione e retrocedere) e. Scomposizione del problema (utilizzare la tecnica top-down) 4 2
3 a. Analogia L analogia consiste nell utilizzare un procedimento risolutivo analogo a quello considerato, da cui il nome di questa tecnica. Calcolo dell area di un quadrato di lato l Calcolo dell area laterale di un cubo di lato l Calcolo dell area di un rettangolo di lati a e b Calcolo del volume di un cubo di lato l 5 b. Generalizzazione La generalizzazione consente di riutilizzare lo stesso procedimento risolutivo di un problema per risolvere altri problemi, variando soltanto i dati ricerca di un nominativo in un elenco di persone ricerca di un prodotto in un catalogo di magazzino ricerca del titolo di un libro in un catalogo di biblioteca 6 3
4 c. Specializzazione La specializzazione consiste nel considerare il problema nel caso più semplice e via via aumentarne la dimensione, cercando di giungere alla soluzione, sfruttando le soluzioni dei casi precedenti, più semplici. Gioco delle torri di Hanoi: quante mosse servono per spostare una pila di N dischi da A a C (un disco alla volta e senza sovrapporre dischi più grandi a dischi più piccoli) Per spostare dal paletto al paletto servono 1 disco A C 1 mossa 2 dischi A C 3 mosse 3 dischi A C 7 mosse 4 dischi A C 15 mosse. A C. N dischi A C 2 N -1 mosse 7 d. Ragionamento all indietro Il ragionamento all indietro consiste nel partire dall obiettivo finale e, passo passo, retrocedere fino a giungere alla situazione di partenza. problema dei secchi d acqua risolvere un caso di omicidio (si parte dal fatto e si risale..) Un secchio A ha capacità di 8 litri, un secchio B ha la capacità di 5 litri. Come si possono, usando operazioni di travaso, svuotamento o riempimento, avere 4 litri di acqua nel recipiente da 5 litri? (I secchi non hanno graduazioni) 8 4
5 d. Ragionamento all indietro Per avere occorre avere. ed eseguire. Vb=4 Va=4 Svuota (B), Sposta (A,B,4) Va=4 Vb=1 Riempi (A), Sposta (A,B,4) Vb=1 Va=1 Svuota (B), Sposta (A,B,1) Va=1 Va=6 Svuota (B), Sposta (A,B,5) Va=6 Vb=3 Riempi (A), Sposta (A,B,2) Vb=3 Va=3 Svuota (B), Sposta (A,B,3) Va=3 Va=8 Svuota (B), Sposta (A,B,5) Va=8 Va=0 Riempi (A) 9 e. Tecnica top-down La tecnica della scomposizione in sottoproblemi consiste nel suddividere il problema di partenza in problemi (sottoproblemi) pià semplici che vengono affrontati separatamente (eventualmente scomponendoli ulteriormente) calcolo dell area di una figura irregolare 10 5
6 Problemi insolubili PROBLEMA (teorema di Fermat) Esistono tre numeri interi positivi, x, y, e z legati dalla relazione: x n + y n = z n con n > 2? Escludendo le soluzioni banali (0,0,0), (0,1,1) e (1,0,1), per n=2 si hanno le cosiddette terne pitagoriche (che verificano il teorema di Pitagora, ad es. 3,4,5), ma per n>2 nessuno, fino al 1995, era stato in grado di stabilire se il problema posto fosse solubile o insolubile. Nel 1995 fu data la dimostrazione della insolubilità del teorema di Fermat. 11 Problemi insolubili PROBLEMA (decimo problema di Hilbert) Data l equazione in forma di polinomio a coefficienti interi P(x 1, x 2,, x n ) = 0 trovare un algoritmo per stabilire se essa ammette soluzioni intere. La dimostrazione della insolubilità del problema fu data nel 1970 dal matematico russo Matiyasevich P(x 1, x 2,, x n ) = 0 ALGORITMO DI DECISIONE si no 12 6
7 Problemi insolubili PROBLEMA (problema dell arresto) Dato un qualunque processo risolutivo P R di un problema P, su certi dati D, esiste un altro processo P R in grado di prevedere se P R abbia termine oppure no, ossia se P sia risolubile? Si può dimostrare che il problema dell'arresto è insolubile, cioè non esiste alcun processo risolutivo P R in grado di stabilire se il processo P R sui dati D abbia termine, ossia se P sia risolubile. L insolubilità del problema dell'arresto mette in evidenza come non sia possibile costruire alcun dispositivo che riconosca i problemi P non risolubili e li blocchi prima che venga avviato il loro processo risolutivo P R 13 Problemi insolubili P1: P2: P3: P4: P5: P6: P7: Problema: Dato un cerchio di raggio R, calcolare il lato L del quadrato ad esso equivalente. è richiesto il valore (numero reale) del lato del quadrato equivalente al cerchio Non ci sono dettagli inutili, ci interessa solo R Dobbiamo sapere che equivalente vuol dire stessa area Occorre conoscere: relazione tra raggio e area del cerchio (A C =π*r 2 ) relazione tra lato e area del quadrato (A Q =L*L) Il problema è solubile Il valore di R è sufficiente a risolvere il problema Dal valore ottenuto per L si può ricavare R 14 7
8 Problemi insolubili Il problema risulta apparentemente ben posto. Tuttavia, scendendo nei calcoli, si nota che per trovare il lato L del quadrato occorrerebbe calcolare con esattezza il valore: L=R π ma poichéπrappresenta un numero irrazionale (decimale, illimitato e non periodico) NON è possibile darne una valutazione esatta. Pertanto, questo è un esempio di problema insolubile. Operativamente parlando, occorre modificare le specifiche del problema ed accettare per π un certo margine di errore. In tal modo si ottiene una soluzione approssimata del problema. 15 Problemi insolubili P1: P2: P3: P4: P5: P6: P7: Problema: Si debba calcolare il quoziente esatto della divisione tra due valori A e B interi. Il problema chiede di calcolare il valore reale Q, risultato della divisione di A per B Non ci sono dettagli inutili non ci sono dati impliciti Occorre saper svolgere la divisione il problema è solubile i valori di A e B sono sufficienti a risolvere il problema dal valore di Q e di B posso ricavare A 16 8
9 Problemi insolubili Cosa succede se, ad esempio, A=1 e B=3? In questo caso, il risultato esatto NON può essere ottenuto. La divisione porta ad un risultato periodico ( ) il cui valore non è conosciuto: quindi anche in questo caso ci troviamo di fronte ad un problema insolubile. Qualora sia necessario, si possono modificare le specifiche del problema ed accettare, ad esempio, una soluzione con un prefissato margine di errore (ad es. limitando il numero di cifre decimali). E se B=0? In questo caso la divisione è addirittura impossibile e di nuovo ci troviamo di fronte ad un problema insolubile. Potrebbe funzionare un programma che controlli una espressione algebrica, ad esempio S = x y, al posto di S = x + y? 17 Problemi intrattabili L'uso del calcolatore ha un costo in termini di tempo e di memoria, che dipende essenzialmente dalla scelta dei dati e del processo risolutivo. Nell ambito dei problemi solubili è di fondamentale importanza distinguere quelli che lo sono in un tempo ragionevole da quelli che richiederebbero un tempo inaccettabile. Quando un problema, pur essendo solubile, richiede tempi di esecuzione inaccettabili, si dice problema intrattabile. Si può dimostrare che l insieme dei problemi non trattabili è enormemente più grande dell'insieme dei problemi trattabili. 18 9
10 Problemi intrattabili Spesso i problemi intrattabili sono risolvibili solo in casi di modeste dimensioni o con metodi approssimati o empirici; classici esempi di problemi intrattabili sono i seguenti: costruire con n simboli, tutte le stringhe di lunghezza k il gioco delle Torri di Hanoi il problema del commesso viaggiatore (visitare n città una sola volta, tranne quella di partenza, a cui deve tornare, in modo tale da minimizzare la distanza percorsa) 19 Problemi intrattabili un classico esempio di problemi di questo tipo è la traduzione da una lingua ad un altra la soluzione automatica di molti giochi (filetto, scacchi, ecc) presenta le caratteristiche di problema intrattabile a causa della esplosione combinatoria delle configurazioni da analizzare e memorizzare. In molti casi, la soluzione di un problema intrattabile può essere tentata mediante le tecniche tipiche dell intelligenza artificiale (I.A.)
11 Problemi aperti Sono tutti quei problemi per i quali non è dato, al momento, di sapere se siano solubili o meno, ossia per i quali non è stata dimostrata né la solubilità né la insolubilità. Non è detto che prima o poi non si arrivi a dimostrare la solubilità o la non solubilità di questi problemi. 21 Argomenti Strategie risolutive Analogia Generalizzazione Specializzazione Ragionamento all indietro Tecnica top-down Problemi insolubili Problemi intrattabili Problemi aperti 22 11
12 Altre fonti di informazione P.Gallo, F.Salerno Informatica Generale 1, ed. Minerva Italica G.Callegarin Corso di Informatica 1, ed. CEDAM M. Pellerey-Informatica: fondamenti culturali e tecnologici, ed. SEI 23 12
Corso di Informatica Modulo T1 1 - Il concetto di problema
Corso di Informatica Modulo T1 1 - Il concetto di problema 1 Prerequisiti Concetti intuitivi di: Proporzione Problema Variabile Numeri interi e reali 2 1 Introduzione Nel risolvere un problema abbiamo
Rappresentazione generale del problema e fasi di progettazione
D-003-2015-10-18 MATERIA DATA OGGETTO Informatica 18/10/2015 Progettazione degli algoritmi: strategia top-down Rappresentazione generale del problema e fasi di progettazione In generale, la risoluzione
COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.
SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico
COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali)
COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) Utilizzare con sicurezza le tecniche e le procedure nel calcolo aritmetico e algebrico, scritto e mentale, anche con
Teoria della Calcolabilità!
Teoria della Calcolabilità! Si occupa delle questioni fondamentali circa la potenza e le limitazioni dei sistemi di calcolo.! L'origine risale alla prima metà del ventesimo secolo, quando i logici matematici
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^
CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ Nucleo fondante 1: IL NUMERO Argomento 1: Sistemi di numerazione Sa rappresentare graficamente numeri, ordinarli e confrontarli.
L ELABORATORE ELETTRONICO!
L ELABORATORE ELETTRONICO! Il calcolatore elettronico è uno strumento in grado di eseguire insiemi di azioni ( mosse ) elementari le azioni vengono eseguite su oggetti (dati) per produrre altri oggetti
Teoria della Calcolabilità!
Teoria della Calcolabilità!! Si occupa delle questioni fondamentali circa la potenza e le limitazioni dei sistemi di calcolo.!! L'origine risale alla prima metà del ventesimo secolo, quando i logici matematici
Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione
SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione Descrittori Descrittori Descrittori 1.1.1 E in grado di comprendere testi e altre fonti di
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari
Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro
Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale è la capacità in litri del serbatoio?
Quesiti ord 011 Pagina 1 di 6 a cura dei Prof. A. Scimone, G. Florio,. R. Sofia Quesito 1 Un serbatoio ha la stessa capacità del cilindro di massimo volume inscritto in una sfera di raggio 60 cm. Quale
Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4
Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo
Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016
Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016 NUCLEI DISCIPLINARI OBIETTIVI SPECIFICI 1. RIPASSO Saper operare con: 0.1 scomposizioni 0.2 frazioni algebriche
PROGRAMMAZIONE MATEMATICA PRIMO BIENNIO. Liceo Linguistico
PROGRAMMAZIONE MATEMATICA PRIMO BIENNIO Liceo Linguistico Anno scolastico 2017-2018 Programmazione di Matematica pag. 2 / 7 MATEMATICA - PRIMO BIENNIO OBIETTIVI SPECIFICI DI APRENDIMENTO ARITMETICA E ALGEBRA
inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180
L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del
Allegati dpr 89/2010 e d.m. 211/2010
DIPARTIMENTO MATEMATICA INDIRIZZO Servizi per l enogastronomia e l ospitalità alberghiera Programmazione disciplinare condivisa PRIMO BIENNIO Allegati dpr 89/2010 e d.m. 211/2010 DISCIPLINA MATEMATICA
OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO
OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DELLE INDICAZIONI PER IL CURRICOLO OBIETTIVI DI APPRENDIMENTO ANNUALI Classe prima- secondaria Classe seconda secondaria
Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca
Matematica CLASSE PRIMA INDIRIZZO AFM - TUR UdA n. 1 Titolo: Calcolo aritmetico e algebrico Utilizzare le tecniche e le procedure di calcolo aritmetico e algebrico rappresentandole anche sotto forma grafica
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
L ELABORATORE ELETTRONICO
L ELABORATORE ELETTRONICO Il calcolatore elettronico è uno strumento in grado di eseguire insiemi di azioni ( mosse ) elementari le azioni vengono eseguite su oggetti (dati) per produrre altri oggetti
Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano
Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano 5 agosto 2008 I problemi classici della geometria euclidea Quadratura del cerchio Costruire un quadrato avente
Fondamenti di Informatica. Definizione di Algoritmo. Algoritmo Euclideo. Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a.
Fondamenti di Informatica Prof.V.L.Plantamura Informatica e Comunicazione Digitale a.a. 006-007 Definizione di Algoritmo Def.: Per Algoritmo si intende un elenco di istruzioni che specificano una serie
E F G H I
ISTITUTO COMPRENSIVO DI AGORDO Scuola Primaria a.s. 2014 / 2015 PIANO ANNUALE DI MATEMATICA CLASSE 5^ UNITA DI APPRENDIMENTO (U.A.) OBIETTIVI FORMATIVI OBIETTIVI SPECIFICI DI APPRENDIMENTO ( O.S.A. ) 1
Cosa è l Informatica?
Cosa è l Informatica? Scienza degli elaboratori elettronici (Computer Science) Scienza dell informazione Scienza della rappresentazione, memorizzazione, elaborazione e trasmissione dell informazione Elaboratore
DIVISIONE TRA POLINOMI IN UNA VARIABILE
DIVISIONE TRA POLINOMI E SCOMPOSIZIONE Prof. Erasmo Modica [email protected] DIVISIONE TRA POLINOMI IN UNA VARIABILE L algoritmo della divisione tra polinomi è analogo a quello della divisione ordinaria
Comprensivo 1 Frosinone Secondaria 1 grado Aldo Moro MATEMATICA CLASSE PRIMA
Comprensivo 1 Frosinone Secondaria 1 grado Aldo Moro 1. i sistemi di numerazione 2. i numeri naturali 3. i numeri decimali MATEMATICA CLASSE PRIMA NUCLEO TEMATICO: IL NUMERO U.A.: Il sistema di numerazione
ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO
ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO MACRO INDICA TORI OBIETTIVI DI APPRENDIMENTO Curricolo verticale OBIETTIVI DI APPRENDIMENTO
MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte
MATEMATICA E COMPETENZE DI BASE IN SCIENZA E TECNOLOGIA MATEMATICA CONCORRENTI DISCIPLINA DI RIFERIMENTO: MATEMATICA COMPETENZA DISCIPLINE tutte MATEMATICA CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE Utilizzare
64=8 radice perché 8 2 = 64
RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato
I NUMERI N, Z, Q INSIEMI
classe PRIMA I NUMERI N, Z, Q - i numeri naturali - saper semplificare espressioni - operazioni con i numeri naturali e loro proprietà - saper applicare le proprietà delle potenze - potenze e loro proprietà
PROGRAMMAZIONE DISCIPLINARE
Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
Il Concetto Intuitivo di Calcolatore. Esercizio. I Problemi e la loro Soluzione. (esempio)
Il Concetto Intuitivo di Calcolatore Elementi di Informatica e Programmazione Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini Variabile di uscita Classe di domande
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
PROGRAMMI EFFETTIVAMENTE SVOLTI DI FISICA della classe 1 F a.s. 2016/17 _ prof.ssa Stefania SCALI
PROGRAMMI EFFETTIVAMENTE SVOLTI DI FISICA della classe 1 F CAPITOLO 1 LE GRANDEZZE FISICHE LE GRANDEZZE FISICHE La fisica e le leggi della natura Di che cosa si occupa la fisica Le grandezze fisiche Le
Misura. Istituzioni di matematiche 2. Come facciamo a misurare? Come facciamo a misurare? Diego Noja
Istituzioni di matematiche 2 Diego Noja ([email protected]) 10 marzo 2009 Misura CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione Primaria Istituzioni
Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi
Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un
1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23)
Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile
Curricolo Verticale Scuola Secondaria di I Grado I. C. S. Via Libertà San Donato Milanese (MI) CLASSE PRIMA
CLASSE PRIMA TRAGUARDI per lo sviluppo delle competenze OBIETTIVI CONTENUTI al termine della classe 3 a Comprendere il significato logico dei numeri nell insieme N e rappresentarli sulla retta orientata.
Corso base di Matematica. - I numeri -
Corso base di Matematica - I numeri - Fin dall antichità è stata avvertita dall uomo l esigenza di contare le cose. Ad es. gli animali al pascolo, i cacciatori e le prede, ecc. Da questa istintività nasce
Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000
Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,
Algoritmi e Programmi
Algoritmi e Programmi Algoritmi e Programmi Le azioni che si compiono ogni giorno sono finalizzate alla risoluzione di problemi. Problema di elaborazione Insieme dati di partenza Risultato ricerca Algoritmi
Come ragiona il computer. Problemi e algoritmi
Come ragiona il computer Problemi e algoritmi Il problema Abbiamo un problema quando ci poniamo un obiettivo da raggiungere e per raggiungerlo dobbiamo mettere a punto una strategia Per risolvere il problema
ISTITUTO COMPRENSIVO BASSA ANAUNIA DENNO PIANO DI STUDIO DI MATEMATICA CLASSE SECONDA. Competenza 1
ISTITUTO COMPRENSIVO BASSA ANAUNIA DENNO PIANO DI STUDIO DI MATEMATICA CLASSE SECONDA Alle fine della CLASSE SECONDA l alunno è in grado di Competenza 1 Competenza 1 Componenti della competenza Abilità
Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b
8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b
Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it]
Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it] Tutti conosciamo l esistenza della costante matematica definita come pi greco ( π ) che stabilisce il rapporto fra
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica [email protected] LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti
RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:
RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:
RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA Classe 1BT A. S. 2015/2016
RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA Classe 1BT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio, i seguenti obiettivi in termini
LA LOGICA DELLE EQUAZIONI. Carlo Toffalori (Camerino) Educare alla razionalità. In ricordo di Paolo Gentilini Sestri Levante, 9-11 giugno 2016
LA LOGICA DELLE EQUAZIONI Carlo Toffalori (Camerino) Educare alla razionalità. In ricordo di Paolo Gentilini Sestri Levante, 9-11 giugno 2016 L Algebra nelle Indicazioni Nazionali: risolvere equazioni
DISCIPLINA: MATEMATICA. COMPETENZA n 1 TITOLO: IL NUMERO SCUOLA INFANZIA SCUOLA PRIMARIA CONOSCERE E OPERARE CON I NUMERI NATURALI E NON
Titolo: Competenze disciplinari dal Dipartimento di matematica Classi:infanzia, primaria triennio e secondo biennio e secondaria di I grado Docenti implicati: Matematica COMPETENZA n 1 TITOLO: IL NUMERO
EQUAZIONI DISEQUAZIONI
EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali
U. A. 1 GLI INSIEMI CONOSCENZE
U. A. 1 GLI INSIEMI Acquisire il significato dei termini,dei simboli e caratteristiche dell'insieme delle parti, dell'insieme differenza e complementare della partizione di un insieme e del prodotto cartesiano.
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il
I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico
Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli
Funzioni reali di variabile reale
Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.
risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali
ORD. MODULO MODULO ARGOMENTO 1 Disequazioni disequazioni di 1^ grado disequazioni fratte disequazioni di grado superiore da risolvere con la scomposizione in fattori sistemi di disequazioni 2 Geometria
Progettazione Curricolare di MATEMATICA. Dalla Progettazione Curricolare alla Progettazione per Competenze
Progettazione Curricolare di MATEMATICA Dalla Progettazione Curricolare alla Progettazione per Competenze CLASSE SECONDA SCUOLA SECONDARIA di PRIMO GRADO Competenze attese al termine della classe seconda
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.
Secondo anno modulo recupero
Secondo anno modulo recupero Unità didattica_1 livello recupero: equazioni di primo grado e formule inverse Padroneggiare il linguaggio formale e i procedimenti dimostrativi. Riconoscere e saper applicare
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
CURRICOLO MATEMATICA SCUOLA SECONDARIA
CURRICOLO MATEMATICA SCUOLA SECONDARIA CLASSE PRIMA Competenze Conoscenze Abilità IL SISTEMA DI NUMERAZIONE DECIMALE Distinguere l insieme dei numeri naturali e decimali Distinguere fra numeri cardinali
NUMERI SCUOLA SECONDARIA I GRADO
NUMERI Eseguire addizioni, sottrazioni, moltiplicazioni, divisioni e confronti tra i numeri conosciuti (numeri naturali, numeri interi, frazioni e numeri decimali), quando possibile a mente oppure utilizzando
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA
L AREA DELLE PRINCIPALI FIGURE DELLA GEOMETRIA PIANA Le formule per il calcolo dell area delle principali figure della geometria piana sono indispensabili per poter proseguire con lo studio della geometria.
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO
Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali
ATTIVITÀ DEL SINGOLO DOCENTE
PIANO DI LAVORO DOCENTE Rho Maria Luisa MATERIA Matematica DESTINATARI Classe 1 Al ANNO SCOLASTICO 2013-2014 COMPETENZE CONCORDATE CON CONSIGLIO DI CLASSE COMPETENZE CONCORDATE CON GRUPPO DI MATERIA Comportamentali
Algoritmi di ricerca. Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati.
E. Calabrese: Fondamenti di Informatica Algoritmi-1 Algoritmi di ricerca Per ricerca si intende qui il procedimento di localizzare una particolare informazione in un elenco di dati. Per esempio: - cercare
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -
CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il
Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006
Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO
MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO - L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse
INTERPOLAZIONE. Introduzione
Introduzione INTERPOLAZIONE Quando ci si propone di indagare sperimentalmente la legge di un fenomeno, nel quale intervengono due grandezze x, y simultaneamente variabili, e una dipendente dall altra,
- Spiega il procedimento seguito, anche in forma scritta, mantenendo il controllo sia sul processo risolutivo, sia sui risultati.
SCUOLA SECONDARIA TRAGUARDI DI SVILUPPO DELLE COMPETENZE MATEMATICA - L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse rappresentazioni e stima la grandezza
ISTITUTO TECNICO INDUSTRIALE STATALE G. e M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO
ISTITUTO TECNICO INDUSTRIALE STATALE G. e M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO Via Montani n. 7 - Tel. 0734-622632 Fax 0734-622912 www.istitutomontani.it e-mail [email protected]
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.
CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado
CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO SCUOLA secondaria di secondaria di primo grado classe 1^ TRAGUARDI per lo sviluppo L alunno si muove con sicurezza nel calcolo con i numeri Naturali
Introduzione all algebra
Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa
TEOREMA DI PITAGORA. Francobollo greco dedicato al celebre teorema
Francobollo greco dedicato al celebre teorema Livello scolare: 1 biennio Abilità interessate:!conoscere le caratteristiche generali dei poligoni!saper confrontare ed operare con segmenti ed angoli!conoscere
DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2
DIPARTIMENTO DI MATEMATICA A.S. 00-05 EQUAZIONI DI GRADO SUPERIORE AL 1. EQUAZIONI RISOLVIBILI MEDIANTE SCOMPOSIZIONE. EQUAZIONI BINOMIE. EQUAZIONI TRINOMIE. EQUAZIONI RECIPROCHE 1. EQUAZIONI RISOLVIBILI
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
PROGRAMMA DI MATEMATICA CONTENUTI.
PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti
RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato)
RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) Se un quadrato ha l'area di 25 mq, qual è la misura del suo perimetro? E se l'area vale 30 mq? Table 1 Risoluzione 1 Poichè l'area
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
Esercizi sugli Algoritmi numerici
Università di Udine, Facoltà di Scienze della Formazione Corso di Informatica Applicata alla Didattica (Giorgio T. Bagni) Esercizi sugli Algoritmi numerici 1. Esercizio risolto. Descrivere, attraverso
Funzioni goniometriche di angoli notevoli
Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea
