184 Capitolo 6. Logica di base
|
|
|
- Casimiro Mattei
- 9 anni fa
- Visualizzazioni
Transcript
1 184 Capitolo 6. Logica di base 6.5 Esercizi Esercizi dei singoli paragrafi Le proposizioni 6.1. Quali delle seguenti frasi sono proposizioni logiche? a ) I matematici sono intelligenti; b ) 12 è un numero dispari; c ) Pascoli è stato un grande poeta; d ) Pascoli ha scritto La Divina Commedia; e ) Pascoli ha scritto poesie; f ) Lucia è una bella ragazza; g ) Lucia ha preso 8 al compito di matematica; h ) Il parallelogramma è una figura strana; i ) Per favore, fate silenzio; j ) = 5; k ) I miei insegnanti sono laureati Algebra delle proposizioni 6.2. A partire dalle due proposizioni: p = «16 è divisibile per 2», q = «16 è divisibile per 4» costruisci le proposizioni p q e p q. 6.3 ( ). A partire dalle proposizioni: p = «18 è divisibile per 3», q = «18 è numero dispari» costruisci le proposizioni di seguito indicate e stabilisci il loro valore di verità. a ) p q V F b ) p q V F c ) p V F d ) q V F e ) p q V F f ) p q V F g ) p q V F h ) p q V F i ) (p q) V F 6.4. A partire dalle proposizioni a = «20 è minore di 10», b = «20 è maggiore di 10», c = «20 è multiplo di 5», d = «20 è dispari» scrivi per esteso le seguenti proposizioni composte e stabilisci il loro valore di verità. a ) a b V F b ) a c V F c ) d a V F d ) a b V F e ) a b V F f ) ( a b) (c d) V F g ) (a b) (c d) V F 6.5 ( ). Date le proposizioni p = «oggi è lunedì», q = «oggi studio matematica» riscrivi in simboli le seguenti proposizioni composte: a ) Oggi è lunedì e studio matematica; b ) Oggi non è lunedì e studio matematica; c ) Oggi è lunedì e non studio matematica; d ) Oggi non è lunedì e non studio matematica In quale delle seguenti proposizioni si deve usare la o inclusiva e in quali la o esclusiva: a ) Nelle fermate a richiesta l autobus si ferma se qualche persona deve scendere o salire. b ) Luca sposerà Maria o Claudia. c ) Fammi chiamare da Laura o da Elisa. d ) Si raggiunge l unanimità quando sono tutti favorevoli o tutti contrari.
2 Sezione 6.5. Esercizi A partire dalla preposizioni: p = «oggi pioverà» e p = «oggi non pioverà» scrivere le proposizioni p p, p p, p p. Scrivere quindi la loro tabella della verità Scrivere le tabelle di verità delle formule: a ) p (p q); b ) p (p q); c ) p (p q); d ) p (p q); e ) (p q) ( p q); f ) (p q) r; g ) ( p q) (p q); h ) (p q) (p q); i ) (p q) (r); j ) (p q) ( q); k ) (p q) ( q); l ) ( p q) ( p q) Verificare che, date due proposizioni p e q, la proposizione composta ( p q) (p q) è equivalente alla proposizione p q. Dimostrare l equivalenza verificando che le tavole della verità sono uguali Predicati e quantificatori Qual è la negazione della frase «Ogni volta che ho preso l ombrello non è piovuto»? a ) Almeno una volta sono uscito con l ombrello ed è piovuto; b ) Quando esco senza ombrello piove sempre; c ) Tutti i giorni in cui non piove esco con l ombrello; d ) Tutti i giorni che è piovuto ho preso l ombrello Scrivi le negazioni delle seguenti frasi che contengono dei quantificatori. a ) Al compito di matematica eravamo tutti presenti. b ) Ogni giorno il professore ci dà sempre compiti per casa. c ) Ogni giorno Luca vede il telegiornale. d ) Tutti i miei familiari portano gli occhiali. e ) Tutti hanno portato i soldi per la gita Implicazione Sono date le frasi p = «Mario è cittadino romano», q = «Mario è cittadino italiano», scrivi per esteso le seguenti implicazioni e indica quale di esse è vera. a ) p q; b ) q p; c ) q p Trasforma nella forma «Se... allora...» le seguenti frasi: a ) Un oggetto lanciato verso l alto ricade a terra. b ) Quando piove prendo l ombrello. c ) I numeri la cui ultima cifra è 0 sono divisibili per 5. d ) Per essere promosso occorre aver raggiunto la sufficienza Date le proposizioni p, q, r costruisci la tavola di verità delle seguenti proposizioni: a ) p q; b ) p q; c ) p q; d ) p (q r); e ) (p q) r; f ) (p q) p; g ) (p q) q; h ) (p q) ( p q); i ) (p q) (q p).
3 186 Capitolo 6. Logica di base Completa i seguenti ragionamenti: a ) Se un numero è multiplo di 10 allora è pari; il numero n non è pari quindi b ) Se il sole tramonta fa buio; il sole è tramontato quindi Dimostra con un controesempio che non è vera l affermazione «Tutti i multipli di 3 sono dispari» ( ). [Giochi d autunno, 2010] Ecco le dichiarazioni rilasciate da quattro amiche: Carla: «Io non sono né la più giovane né la più anziana»; Liliana: «Io non sono la più giovane»; Milena: «Io sono la più giovane»; Anna: «Io sono la più anziana». Il fatto è che una di loro (e solo una) ha mentito. Chi è, delle quattro amiche, effettivamente la più giovane? 6.18 ( ). [I Giochi di Archimede, 2011] Dopo una rissa in campo l arbitro vuole espellere il capitano di una squadra di calcio. É uno tra Paolo, Andrea e Gabriele ma, siccome nessuno ha la fascia al braccio, non sa qual è dei tre. Paolo dice di non essere il capitano; Andrea dice che il capitano è Gabriele; Gabriele dice che il capitano è uno degli altri due. Sapendo che uno solo dei tre dice la verità, quale delle affermazioni seguenti è sicuramente vera? a ) Gabriele non è il capitano; b ) Andrea dice la verità; c ) Paolo dice la verità; d ) Andrea è il capitano; e ) Gabriele mente 6.19 ( ). [I Giochi di Archimede, 2010] Un celebre investigatore sta cercando il colpevole di un omicidio tra cinque sospettati: Anna, Bruno, Cecilia, Dario ed Enrico. Egli sa che il colpevole mente sempre e gli altri dicono sempre la verità. Anna afferma: «Il colpevole è un maschio»; Cecilia dice: «É stata Anna oppure è stato Enrico»; Enrico dice: «Se Bruno è colpevole allora Anna è innocente». Chi ha commesso l omicidio? 6.20 ( ). [I Giochi di Archimede, 2009] Quattro amici, Anna, Bea, Caio e Dino, giocano a poker con 20 carte di uno stesso mazzo: i quattro re, le quattro regine, i quattro fanti, i quattro assi e i quattro dieci. Vengono distribuite cinque carte a testa. Anna dice: «Io ho un poker!» (quattro carte dello stesso valore); Bea dice: «Io ho tutte e cinque le carte di cuori»; Caio dice: «Io ho cinque carte rosse»; Dino dice: «Io ho tre carte di uno stesso valore e anche le altre due hanno lo stesso valore». Sappiamo che una e una sola delle affermazioni è falsa; chi sta mentendo?
4 Sezione 6.5. Esercizi ( ). [I Giochi di Archimede, 2008] Un satellite munito di telecamera inviato sul pianeta Papilla ha permesso di stabilire che è falsa la convinzione di qualcuno che: «su Papilla sono tutti grassi e sporchi». Determina la verità delle seguenti affermazioni: a ) su Papilla almeno un abitante è magro e pulito; b ) su Papilla tutti gli abitanti sono magri e puliti; c ) almeno un abitante di Papilla è magro; d ) almeno un abitante di Papilla è pulito; e ) se su Papilla tutti gli abitanti sono sporchi, almeno uno di loro è magro ( ). [I Giochi di Archimede, 2000] Anna, Barbara, Chiara e Donatella si sono sfidate in una gara di nuoto fino alla boa. All arrivo non ci sono stati ex-equo. Al ritorno, Anna dice: «Chiara è arrivata prima di Barbara»; Barbara dice: «Chiara è arrivata prima di Anna»; Chiara dice: «Io sono arrivata seconda». Sapendo che una sola di esse ha detto la verità, a ) si può dire solo chi ha vinto; b ) si può dire solo chi è arrivata seconda; c ) si può dire solo chi è arrivata terza; d ) si può dire solo chi è arrivata ultima, e ) non si può stabile la posizione in classifica di nessuna ( ). [I Giochi di Archimede, 1999] «In ogni scuola c è almeno una classe in cui sono tutti promossi». Volendo negare questa affermazione, quale dei seguenti enunciati sceglieresti? a ) In ogni scuola c è almeno una classe in cui sono tutti bocciati. b ) In ogni scuola c è almeno un bocciato in tutte le classi c ) C è almeno una scuola che ha almeno un bocciato in ogni classe. d ) C è almeno una scuola in cui c è una classe che ha almeno un bocciato ( ). [I Giochi di Archimede, 1997] Se il pomeriggio ho giocato a tennis, la sera ho fame e se la sera ho fame, allora mangio troppo. Quale delle seguenti conclusioni non posso trarre da queste premesse? a ) Se gioco a tennis il pomeriggio, allora la sera ho fame e mangio troppo; b ) se la sera ho fame, allora mangio troppo, oppure ho giocato a tennis il pomeriggio; c ) se la sera non ho fame, allora non ho giocato a tennis il pomeriggio; d ) se la sera non ho fame, allora non mangio troppo; e ) se la sera non mangio troppo, allora non ho giocato a tennis il pomeriggio ( ). [I Giochi di Archimede, 1998] Su un isola vivono tre categorie di persone: i cavalieri, che dicono sempre la verità, i furfanti, che mentono sempre, ed i paggi che dopo una verità dicono sempre una menzogna e viceversa. Sull isola incontro un vecchio, un ragazzo e una ragazza. Il vecchio afferma: «Io sono paggio»; «Il ragazzo è cavaliere». Il ragazzo dice: «Io sono cavaliere»; «La ragazza è paggio». La ragazza afferma infine: «Io sono furfante»; «Il vecchio è paggio». Si può allora affermare che: a ) c è esattamente un paggio; b ) ci sono esattamente due paggi; c ) ci sono esattamente tre paggi; d ) non c è alcun paggio; e ) il numero dei paggi non è sicuro.
5 188 Capitolo 6. Logica di base Dimostra che in ogni festa c è sempre una coppia di persone che balla con lo stesso numero di invitati. (Suggerimento: cassetti) Risposte 6.3. Vere a), d), e), f), g) i) a) p q, b) p q, c) p q, d) p q Milena a) Anna Bea e) c) c) d) c).
Richiami teorici ed esercizi di Logica
Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1C 22.11.2012 prof. Mimmo Corrado 1. Dato l insieme universo U= x N x
L'algebra Booleana. Generalità. Definizioni
L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati
LICEO STATALE C. LORENZINI - PESCIA
LICEO STATALE C. LORENZINI - PESCIA Progetto Olimpiadi di Matematica Prof. Gianpaolo Prina [[email protected]] Lezione del 21/11/2013 - Problemi di allenamento tratti dalle gare olimpiche Algebra * *
NOZIONI DI LOGICA PROPOSIZIONI.
NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale
Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve
3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...
Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l
Logica proposizionale
Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)
Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A
Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia
I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014
I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova I.T.I, Marzotto, Valdagno 24 febbraio 2014 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità di ragionamento
I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011
I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 1 Un test problematico Sapendo che in questo test una sola risposta
2. Quesiti dell area scientifica e scientifico-tecnologica
2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.
Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.
Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore
I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016
I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità
LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità.
LA LOGICA 1. Le proposizioni logiche ESERCIZI Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. 1 A «1 1 è uguale a 5»; «Non si
Prof. Roberto Capone. Negazioni e deduzioni
Prof. Roberto Capone Negazioni e deduzioni Negazioni Tutti fanno qualcosa; Tutti sono qualcosa Qualcuno non fa qualcosa; Almeno uno non è qualcosa Tutti gli italiani sono intelligenti Almeno un Italiano
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1B 23.11.2012 prof. Mimmo Corrado 1. Dati gli insiemi: = è = è " = è " = è " = è
Cenni di logica matematica Dott.ssa Sandra Lucente 1
Cenni di logica matematica Dott.ssa Sandra Lucente 1 Il linguaggio della logica matematica integra e traduce il linguaggio comune sostituendolo quando questo presenta ambiguità. Procediamo come quando
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;
Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,
Prerequisiti Matematici
Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione
A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket.
Logica La logica si occupa della correttezza del ragionamento, un ragionamento è formato da un insieme di proposizioni (enunciati di cui è possibile stabilire se sono veri o falsi) Carlo è un alunno di
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche
Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni
PREMIO CITTA DI TERNI (ventiduesima edizione) GARA DEL TRIENNIO Terni 28 aprile 2014 Istruzioni
PREMIO CITTA DI TERNI (ventiduesima edizione) GARA DEL TRIENNIO Terni 28 aprile 2014 Istruzioni 1) Non sfogliare questo fascicoletto finché non ti si dice di farlo. 2) La prova consiste di dieci quesiti
(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari
(1) Quante soluzioni reali ha l equazione 5 2x = 4(5 x 1)? (a) una (b) due (c) infinite (d) nessuna (e) non si può dire (2) Da un urna contenente 90 palline numerate se ne estraggono due, ed escono i numeri
Percorso 2010: Introduzione alla Logica Proposizionale
Percorso 2010: Introduzione alla Logica Proposizionale Francesca Poggiolesi Facoltà di Medicina e Chirurgia 26 Agosto 2010, Firenze Dal test alla logica Alcuni esempi di test 1 Dal test alla logica Alcuni
R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli
Liceo Scientifico L.B. Alberti 9 Febbraio 2010 1 / 40 Outline 2 / 40 La come gioco da tavolo Quali sono gli elementi fondamentali di un gioco da tavolo? I Pezzi 3 / 40 La come gioco da tavolo Quali sono
DI CHE COSA SI OCCUPA LA LOGICA
Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione
Matematica C3, Geometria Razionale
Matematica C3, Geometria Razionale Release 2.1 www.matematicamente.it January 07, 2015 Contents 1 MATEMATICA C3 - GEOMETRIA 1 2 Introduzione alla geometria razionale 3 2.1 Breve nota storica............................................
SIMULAZIONE TEST INVALSI
SIMULAZIONE TEST INVALSI NUMERI Nello schema, la somma dei numeri in orizzontale è uguale alla somma dei numeri in verticale. Alcuni numeri sono coperti da simboli. L affermazione Al posto della stellina
Risposte non motivate non verranno giudicate
Istituzioni di Matematiche 16/02/2016 Ver.1 Nome e cognome Matricola X se Quadriennale Risposte non motivate non verranno giudicate Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5
METODI MATEMATICI PER L INFORMATICA
METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una
INSIEMI E LOGICA. 2527+2234+1846=6607 6607-6000 = 607 numero individui con entrambi gli antigeni
In uno studio di gruppi sanguigni ABO, furono sottoposti ad analisi 6000 cinesi. 2527 avevano l antigene A, 2234 l antigene B e 1846 nessun antigene. Quanti individui avevano entrambi gli antigeni? 2527+2234+1846=6607
ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A
TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo
Elementi di Logica Teoria degli insiemi
Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università
1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):
. equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale
Esempio test di verifica 2
Esempio test di verifica 2 1) In quale delle seguenti frasi la parola improvvido è usata correttamente? A) Da parte tua è stato un gesto improvvido B) Mario è un tipo improvvido C) Oggi fa un freddo improvvido
Gli insiemi. Che cosa è un insieme? Come si indica un insieme?
Gli insiemi Che cosa è un insieme? In matematica si definisce insieme un raggruppamento per cui è possibile stabilire senza ambiguità se un elemento vi appartiene o no. Sono insiemi: i giorni della settimana
Un po di logica. Christian Ferrari. Laboratorio di matematica
Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare
Esempio di test di verifica 1
Esempio di test di verifica 1 1) In quale delle seguenti frasi la parola adusto è usata correttamente: A) Mario è un adusto B) In Italia uno è adusto a 18 anni C) In estate il campo è adusto D) Sono adusto
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci
Calcolo proposizionale
1 Il calcolo delle proposizioni Una proposizione logica si dice semplice o atomica se contiene soltanto un predicato. Due o più proposizioni semplici collegate mediante l'uso di connettivi formano proposizioni
PILLOLE DI LOGICA. Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica. Liceo Scientifico A.
PILLOLE DI LOGICA Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica Liceo Scientifico A.Righi Cesena Le basi della logica formale La logica formale è un indagine sul ragionare
INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.
INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme
LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria
ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile
Proposizione logica Argomento/i Predicato Roma è la capitale d Italia Roma è la capitale d Italia 2>3 2 e 3 è maggiore di
1. Un pò di storia Logica Il primo studioso che si occupò di logica fu il filosofo greco Aristotele (384-322 a.c.). Fino al Cinquecento la logica restò sostanzialmente entro i confini tracciati da Aristotele;
Test di Matematica di base
Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo
TEST DI INGRESSO. Al seguente indirizzo puoi trovare il test di matematica di base per scienze biotecnologiche http://www.testingressoscienze.
TEST DI INGRESSO http://www.smfn.unipi.it/prova_ingresso/verifica2009.aspx Al precedente sito internet puoi trovare un esempio pubblico di test di matematica di base e un test di matematica di base del
Fra quanti anni i quattro bambini avranno insieme la stessa età della loro mamma? Indicate la vostra soluzione e spiegate il vostro ragionamento.
12 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2004-8 a cat. /ARMT/2004 1 6. IL COMPLEANNO DELLA MAMMA (Cat. 4, 5, 6) /ARMT/2004 Andrea, Anna, Annalisa e Alberto hanno rispettivamente 11, 9,
Chi non risolve esercizi non impara la matematica.
. esercizi 85 Esercizio 50. Senza utilizzare la calcolatrice, calcola il prodotto 8. Soluzione. 8 = 0 )0 + ) = 0 = 900 = 896 Espressioni con i prodotti notevoli Esercizio 5. Calcola l espressione + ) +
LA STRUTTURA DEL PERIODO O FRASE COMPLESSA: RAPPORTO DI COORDINAZIONE E SUBORDINAZIONE. CHE COS E UN PERIODO?
LA STRUTTURA DEL PERIODO O FRASE COMPLESSA: RAPPORTO DI COORDINAZIONE E SUBORDINAZIONE. CHE COS E UN PERIODO? E un testo formato da due o più proposizioni. Esso è costituito da tante proposizioni quanti
Prof. Roberto Capone. Nozioni di logica matematica
Prof. Roberto Capone Nozioni di logica matematica Premesse In matematica non è ammesso un linguaggio ambiguo. Le parole chiave di questo linguaggio sono soltanto sette: Connettivi Non E O Se. allora Se
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1
Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente
Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo B. Codici. Scuola:...
Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 006 007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo B Codici Scuola:..... Classe:.. Studente:.
In questa tabella si possono vedere molti quadrati di quattro caselle:
10 o RALLY MATEMATICO TRANSALPINO - PROVA I - gen. - feb. 2002 /ARMT/2002 p. 1 1. Quadrati di quattro caselle (Cat. 3) /ARMT/2002-10 - I prova 3 14 17 11 14 In questa tabella si possono vedere molti quadrati
Matematica con elementi di statistica ESERCIZI: probabilità
Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.
I Giochi di Archimede -- XV edizione
PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE I Giochi di Archimede -- XV edizione ISTRUZIONI GENERALI PER GLI INSEGNANTI
IL CALCOLO DELLE PROBABILITA
IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,
Temperatura( C) Precipitazioni (mm)
D12. Osserva il seguente grafico che rappresenta l andamento delle temperature (scala a sinistra) e delle precipitazioni piovose (scala a destra) in Italia negli ultimi anni. Figura 1. Media annua della
DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze
DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In
Corso di preparazione ai Giochi di Archimede Aritmetica, algebra e teoria dei numeri
Corso di preparazione ai Giochi di Archimede Aritmetica, algebra e teoria dei numeri 1) Il numero reale a è tale che l equazione x 2 + 2ax + 1 = 0 Ammette due soluzioni reali coincidenti. Quanti sono i
ESERCIZI DI RIPASSO DI MATEMATICA. Insiemistica
ESERCIZI DI RIPASSO DI MATEMATICA Insiemistica Esercizio. È vero o falso che {7, 2, 3, 4, } = {2,, 4, 3, 7}? Esercizio 2. Che relazione insiemistica c è fra gli insiemi C = {x R x > 7} e D = {x R x 7}?
Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola primaria. Classe Seconda Fascicolo 5
Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola primaria Classe Seconda Fascicolo 5 Spazio per l etichetta autoadesiva ISTRUZIONI Troverai nel fascicolo 21 domande
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità ) Quante quaterne (x, x2, x3, x4) di numeri interi non negativi soddisfano l equazione x+x2+x3+x4=7? a) 25 b) 289 c) 40 d)
Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di
ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci
1 IL LINGUAGGIO MATEMATICO
1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti
La logica modale e la dimostrazione dell esistenza di Dio di Gödel. LOGICA MODALE
La logica modale e la dimostrazione dell esistenza di Dio di Gödel. In alcuni giornali ho letto che di recente ci sono stati diversi studi che hanno riportato alla ribalta la dimostrazione dell esistenza
APPUNTI DI ANALISI MATEMATICA Parte Prima
APPUNTI DI ANALISI MATEMATICA Parte Prima Versione preliminare del 24 settembre 2008 Pierpaolo Omari Dipartimento di Matematica e Informatica Università degli Studi di Trieste Maurizio Trombetta Dipartimento
DIREZIONE DIDATTICA DI FIGLINE VALDARNO
DIREZIONE DIDATTICA DI FIGLINE VALDARNO Anno Scolastico 2004/2005 Progetto ALISEI U.d.A. SULL APPRENDIMENTO DEL LINGUAGGIO MATEMATICO Realizzata dall Ins. Adriana Tognaccini Rielaborazione a cura dell
LIBRO ADOTTATO. A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI
LIBRO ADOTTATO A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI C. COSTANTINO, P. LONGOBARDI, M. MAJ, C. NICOTERA:
Connettivi del linguaggio e della logica
Connettivi del linguaggio e della logica Fino a che punto il significato di,, e corrisponde al significato delle espressioni del linguaggio naturale e o, se... allora... e non? e e Congiunzioni e connettivi
Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1
Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze
Verifica per la classe prima COGNOME... NOME... Classe... Data...
Capitolo Gli insiemi Insiemi Insiemi Sottoinsiemi Operazioni.a Rappresentare per tabulazione e tramite l uso dei diagrammi di Eulero-Venn i seguenti insiemi dati per caratteristica: A {n n H 0 ; n 7} B
Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA. 4. Qual è la cifra delle unità di 3 (87)? (A) 1 (B) 7 (C) 3 (D) 9 (E) 5
T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Biennio 25 novembre 2015
IL CALCOLO DELLA PROBABILITÀ
IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli
Sulla deduzione e la teoria degli insiemi. Claudio Sacerdoti Coen
Sulla deduzione e la teoria degli insiemi Claudio Sacerdoti Coen http://www.cs.unibo.it/~sacerdot Chi sono e cosa faccio? Ricercatore presso il Dipartimento di Scienze dell'informazione Docente del corso
Indicate il numero di mattonelle bianche e il numero di mattonelle grigie che mancano. Spiegate come avete trovato la risposta.
12 o RALLY MATEMATICO TRANSALPINO - FINALE ARMT.2004 p. 1 1. AL CINEMA (Cat. 3) ARMT.2004-12 - Finale Quattro amiche, Angela, Daniela, Gabriella e Lucia vanno al cinema insieme e si siedono una accanto
Introduzione alla logica
Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine
Fare matematica. 9. Le classificazioni basate su criteri oggettivi sono valide per tutti? Motiva la tua risposta.
Fare matematica Esercizi (UbiMath) - 1 Fare matematica Classificare e ordinare 1. Come organizzeresti i libri di scuola e secondo quali criteri? 2. Se tu fossi il bibliotecario, secondo quale ordine disporresti
Rappresentazione degli insiemi
Rappresentazione degli insiemi 6 Esistono diversi modi per rappresentare un insieme e quindi per indicare con precisione i suoi elementi. 6.1 Rappresentazione tabulare La rappresentazione tabulare è la
Maiuscole e minuscole
Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e
3) Quale numero corrisponde a 1 centinaio - 6 decine - 9 unità?
ATTIVITA A NUMERO 1)1)Numera + 4 da 63 a 107 63 2) numera - 2 da 74 a 52 74 3) Quale numero corrisponde a 1 centinaio - 6 decine - 9 unità? 196 169 619 3) Scrivi il numero che corrisponde a : 5 decine.
Logica proposizionale
Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite
I problemi di questa prova
I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione
Ragionamento LOGICA E PENSIERO COMUNE. Fondamenti di Psicologia Generale Cap. 20. Dott.ssa Stefania Pighin -
Ragionamento LOGICA E PENSIERO COMUNE Fondamenti di Psicologia Generale Cap. 20 Dott.ssa Stefania Pighin - [email protected] Due fratelli, Paolo e Francesco, vanno a fare la spesa al mercato. La
Appunti sui quesiti a scelta multipla
Appunti sui quesiti a scelta multipla E ormai consolidato che molte selezioni pubbliche, e altre forme di valutazione di competenze, avvengono attraverso prove oggettive. Una prova si denomina oggettiva
Informatica e Bioinformatica: AND, OR, NOT
31 marzo 2014 Algebra di Boole L algebra di Boole opera su due valori di verità, VERO e FALSO, mutuamente esclusivi. Nell algebra di Boole è possibile definire funzioni (che chiameremo operazioni logiche)
