CURVE CELEBRI DELL ANTICHITA
|
|
|
- Fabia Manzi
- 9 anni fa
- Visualizzazioni
Transcript
1 CURVE CELEBRI DELL ANTICHITA La matematica è un grandioso e vasto paesaggio aperto a tutti gli uomini a cui il pensare arrechi gioia, ma poco adatto a chi non ami la fatica del pensare Vediamo le proprietà di alcune curve celebri dell antichità. IL FUSO CIRCOLARE Immanuel Lazarus Fuchs Una di queste è il celebre fuso, la cui forma ricorda uno dei principali strumenti usati nel passato in ambito pastorale. Esso si ottiene intersecando due circonferenze i cui centri corrispondono a due vertici opposti di un quadrato e i cui raggi sono congruenti al lato del quadrato stesso. Proprietà 1: L area del fuso circolare è congruente alla differenza tra la somma delle aree dei due settori circolari di 90 (quadranti di cerchio) e l area del quadrato. stesso. [ ] Sia ABCD un quadrato di lato l. L area del fuso S F si può calcolare come il doppio dell area S del segmento circolare verde scuro individuato dalla diagonale del quadrato AC e dall arco AC. Poiché l arco AC insiste su un angolo di 90, l area S si calcola facendo la differenza tra 1/4 del cerchio di raggio pari a BC e l area del triangolo ABC: ( ) Calcoliamo ora la differenza tra la somma delle aree dei due settori circolari di 90 e l area del quadrato stesso: ( ) che è pari a quanto calcolato in precedenza Proprietà 2: Il perimetro del fuso è uguale alla lunghezza della semicirconferenza avente come raggio un lato del quadrato.
2 Poiché gli archi che formano il fuso insistono su angoli di 90, il perimetro di uno di tali archi è pari alla lunghezza di un quarto di circonferenza ; per cui il perimetro del fuso sarà pari alla lunghezza della semicirconferenza di raggio : 2P fuso = 2 LA PELECOIDE Anche la pelecoide è una figura ispirata ad un oggetto d uso quotidiano; essa infatti è simile ad una scure, ed infatti pelecoide in greco, significa proprio a forma di scure. Vediamone la costruzione e le proprietà. Preso il diametro AB di una circonferenza, fissiamo 2 punti C e D, con AC < AD e con AC=DB, e descriviamo quattro semicirconferenze: le prime due di diametro AC e AD opposte rispetto a quelle di diametro CB e AD. La figura in questione è quella racchiusa dalle 4 semicirconferenze. Proprietà1: La pelecoide ha il perimetro congruente alla circonferenza di diametro AB. Determiniamo la lunghezza della pelecoide sommando la lunghezza delle semicirconferenze che la formano. che è la lunghezza della circonferenza di diametro AB ( ) ( ) ( ) ( ) Proprietà2: L area della pelecoide sta all area del cerchio di diametro AB come CD sta ad AB. Calcoliamo l area della pelecoide e del cerchio di diametro AB.
3 [ ( ) ( ) ] [ ( ) ( ) ] [( ) ( ) ] Poiché AD=AB-DB=AB-AC ( ) [( ) ] ( )( ) [ ( )] Moltiplico S pelecoide per AB ( ) ( ) Moltiplico S cerchio per CD ( ) ( ) Ne risulta che sono uguali; perciò, applicando la proprietà delle proporzioni secondo cui il prodotto dei medi è uguale al prodotto degli estremi, troviamo la relazione cercata: IL TRIFOGLIO Inscriviamo dentro una circonferenza di raggio r il triangolo equilatero ABC. Per ogni vertice disegniamo un segmento circolare che ha come corda il lato del triangolo. Ottenuamo così un trifoglio. Proprietà1: L area del trifoglio è uguale alla differenza tra la somma dei tre settori circolari costruiti sui lati del triangolo e il triangolo stesso.
4 Inscriviamo dentro la circonferenza il triangolo equilatero ABC, il cui lato. La sua area sarà data da: Congiungendo poi il centro O della circonferenza con i vertici del triangolo si ottengono 3 triangoli isosceli con angolo al vertice O di 120. Calcoliamo prima la differenza tra la somma dei tre settori circolari costruiti sui lati del triangolo e il triangolo stesso. Considero il triangolo AOB; la sua area Troviamo ora l area del settore circolare di centro O che insiste sull arco AB:. Per trovare l area del segmento circolare costruito sul lato AB del triangolo, sottraggo le due aree appena calcolate: Moltiplichiamo per 3 e sottraiamo da tale valore l area del triangolo: ( ) ( ) ( ) Calcoliamo ora l area del trifoglio, calcolando, con riferimento alla figura, l area di una sua parte azzurra, racchiusa dal raggio e dalla corda OB. L angolo ottuso alla circonferenza che insiste sul lato AB è di 120, per cui. Per cui l area azzurra, calcolata come differenza tra un settore circolare di ampiezza 60 e il triangolo ODB, sarà: L area del trifoglio sarà pari a quanto calcolato in precedenza: Proprietà 2: Il perimetro del trifoglio è uguale alla lunghezza della circonferenza in cui è inscritto. L angolo ottuso alla circonferenza su cui insiste un qualunque lato del triangolo ABC è di 120 e quindi la lunghezza dell arco AB è pari a. Di conseguenza il perimetro del trifoglio è dato da: ( ) che è proprio pari alla lunghezza della circonferenza in cui è inscritto.
5 IL TRIANGOLO CURVILINEO Il triangolo curvilineo HDG è un particolare triangolo i cui lati circolari sono ottenuti da tre circonferenze tangenti esternamente l una all altra. Ogni lato del triangolo curvilineo è perciò dato dall arco di circonferenza delimitato dai punti di tangenza D, H e G con le altre due circonferenze. Proprietà 1: Il perimetro del triangolo curvilineo è uguale alla semicirconferenza di raggio r ( ) Congiungo i centri A, C e E delle tre circonferenze passando per i punti di tangenza. Poiché AC=CE=EA=2r, allora il triangolo ACE è equilatero. Di conseguenza gli angoli nei vertici A, C e E sono di 60 e quindi gli archi DG,GM e MA sottesi da tali angoli sono uguali a. Il perimetro del triangolo mistilineo è pari a: ( ) che è la lunghezza della semicirconferenza di raggio r: Proprietà 2: L area del triangolo mistilineo è uguale alla superficie del triangolo formato dai punti di tangenza meno i 3 segmenti circolari. I punti D, M e G sono i punti medi del triangolo equilatero ACE e quindi DM=MG=GD=r ; quindi il triangolo DMG è equilatero e la sua area è:
6 Ricordando che l angolo in E è di 60, l area del segmento circolare MFG sarà data da: ( ) L area triangolo curvilineo possiamo calcolarla sottraendo all area del triangolo DMG tre volte l area del segmento circolare MFG: ( ) ( ) ( ) che è proprio pari alla differenza tra l area del triangolo ACE (che è un triangolo equilatero di lato 2r) meno l area dei tre settori circolari (ognuno dei quali insiste su un angolo di 60 ) ( ) ( ) ( ) LA LUNULA Gli studi sulle proprietà geometriche della lunula si devono attribuire ad Ippocrate. Il fatto che questo matematico greco del V secolo a.c. avesse studiato le particolarità della lunula, è ben noto in un frammento di Elementi della geometria, libro purtroppo andato perduto. La figura si ottiene costruendo sull ipotenusa AB di un triangolo rettangolo isoscele ABC la semicirconferenza di diametro AB e tracciando poi un arco di circonferenza che ha centro in C e come raggio il cateto del triangolo; la parte di piano racchiusa dai due archi di circonferenza è la lunula, ovvero lo spicchio della luna.
7 Proprietà 1: La superficie della lunula è uguale a metà del quadrato di lato AC. Calcoliamo la superficie della lunula come differenza tra l area del semicerchio di diametro AB e l area del segmento circolare individuato dalla corda AB e dal secondo arco di circonferenza tracciato. Area della semicirconferenza di diametro AB = ( ) ( ) Area del segmento circolare = Area del settore di 90 - Area del triangolo ABC = che è metà dell area del quadrato di lato AC. ( ) Proprietà 2: Il perimetro della lunula è equivalente alla semicirconferenza che ha come diametro l ipotenusa più il cateto. Il perimetro della Lunula si può calcolare come somma delle lunghezze degli archi di circonferenza che la racchiudono: la semicirconferenza di diametro AB ha lunghezza = ( ) l arco del settore AB ha lunghezza = Per cui: ( ) che è la lunghezza della semicirconferenza che ha come raggio l ipotenusa AB più il cateto BC.
SOLUZIONI DEI QUESITI PROPOSTI
SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO
Problemi di geometria
1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola
La circonferenza e il cerchio
La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una
LA CIRCONFERENZA e IL CERCHIO
LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più
Problemi di geometria
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm
Problemi di geometria
1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;
LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.
LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza
LA MISURA DELLA CIRCONFERENZA
LA MISURA DELLA CIRCONFERENZA E DEL CERCHIO Q ISTITUTO ITALIANO EDIZIONI ATLAS 1 GEOMETRIA 3 LA MISURA DELLA CIRCONFERENZA EDELCERCHIO LA LUNGHEZZA DELLA CIRCONFERENZA E DELLE SUE PARTI richiami della
LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO
LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Circonferenza e cerchio
Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti
CIRCONFERENZA E CERCHIO:
GEOMETRIA CIRCONFERENZA E CERCHIO: MISURE PREREQUISITI l conoscere le rorietaá delle quattro oerazioni fondamentali ed oerare con esse l conoscere gli enti fondamentali della geometria iana e le loro rorietaá
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.
LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si
Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..
Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica
Problemi di geometria
1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto
Principali Definizioni e Teoremi di Geometria
Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:
Problemi sui teoremi di Euclide
Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione
PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA
PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO È una linea chiusa formata da tutti i punti del piano che sono equidistanti da un punto interno detto centro. La distanza punto della circonferenza-centro è detto raggio. circonferenza
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015
CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli
LA CIRCONFERENZA E IL CERCHIO
GEOMETRIA LA CIRCONERENZA E IL CERCHIO PREREQUISITI l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti fondamentali della geometria e le loro proprietaá l possedere
I TRIANGOLI AB < AC + BC
I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie
Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni
Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono
Il cerchio e la circonferenza
Il cerchio e la circonferenza DEFINIZIONI Circonferenza: linea curva chiusa i cui punti sono equidistanti da un punto O detto centro della circonferenza. Raggio: un qualsiasi segmento che unisce il centro
CIRCONFERENZA E CERCHIO. Parti di una circonferenza
CIRCONFERENZ E CERCHIO Circonferenza: è il luogo geometrico dei punti equidistanti da un punto fisso detto centro Raggio: è la distanza tra un qualsiasi punto della circonferenza e il centro Cerchio: è
Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems
Cerchio e circonferenza. Eserciziario ragionato con soluzioni. - 1 Raccolta di problemi di geometra piana sul cerchio e sulla circonferenza Circle and Circumference Problems 1. I dischi cd-rom, inventati
Test sui teoremi di Euclide e di Pitagora
Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate
Elementi di Geometria euclidea
Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Costruzioni inerenti i triangoli
Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione
Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo
Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il
1 I solidi a superficie curva
1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8
1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
CIRCONFERENZA E CERCHIO
CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la
Problemi di geometria
criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente
Circonferenza e cerchio
Circonferenza e cerchio è il luogo dei punti che hanno dal centro una distanza assegnata. La figura costituita da tutti i punti di una circonferenza e dai suoi punti interni si chiama Prendi uno spago,
PROBLEMI SVOLTI SULLA PIRAMIDE
PROBLEMI SVOLTI SULLA PIRAMIDE Premetto che non ho messo il trattino nell indicazione dei segmenti, ad esempio VK (sopra ci vuole il trattino perché indica una misura) e il triangolino per indicare i triangoli,
1 La lunghezza della circonferenza
1 La lunghezza della circonferenza Ricordiamo che per misurare una grandezza bisogna scegliere un unità di misura e stabilire quante volte quest ultima è contenuta nella prima. Nel caso della circonferenza
Teoremi di geometria piana
la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti
ANGOLO AL CENTRO ANGOLO ALLA CIRCONFERENZA
CIRCONFERENZA 1. Nella circonferenza di centro 0 il diametro è di 26 cm. le due corde AB e CD sono parallele e congruenti e misurano ciascuna 24 cm. Calcola il perimetro dei quadrilatero ABCD.[68 cm] 2.
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
IL TEOREMA DI PITAGORA
IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI
LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA
POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli
Elementi di Geometria euclidea
Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto
C8. Teoremi di Euclide e di Pitagora - Esercizi
C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
SIMULAZIONI TEST INVALSI
SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica
Equivalenza, misura di grandezze e aree
MATEMATICAperTUTTI Equivalenza, misura di grandezze e aree 1 ESERCIZIO GUIDATO L equivalenza dei poligoni. Sappiamo che per stabilire se due figure sono equivalenti si può vedere se sono equiscomponibili,
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE
REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.
La circonferenza e il cerchio
La circonferenza e il cerchio Considerazioni generali Prof. Angela Gay 14 novembre 2009 pagine 196-200 del libro di testo I luoghi geometrici Un luogo geometrico è l insieme di tutti e soli i punti del
AREE DEI POLIGONI. b = A h
AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.
ESERCIZI DI GEOMETRIA ANALITICA
ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)
Problemi di geometria
equivalenza fra parallelogrammi 1 2 3 4 Dimostra che, fra tutti i rettangoli equivalenti, il quadrato è quello che ha perimetro minimo. Dimostra che ogni quadrato è equivalente alla metà del quadrato costruito
Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )
Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =
GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P
GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non
1 L omotetia. i punti O, A e A siano allineati
1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).
ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo
3 :
COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero
C9. Teorema di Talete e similitudine - Esercizi
C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
COSTRUZIONI GEOMETRICHE ELEMENTARI
COSTRUZIONI GEOMETRICHE ELEMENTARI 1 ASSE del segmento AB - Con centro in A e in B traccio 2 archi di circonferenza con raggio R>½AB; - chiamo 1 e 2 i punti di intersezione tra gli archi di circonferenza;
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.
Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto
PROBLEMI DI GEOMETRIA SUL CERCHIO
PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente
a) A = 8 dm²; 2p = dm. b) A = 6 dm²; 2p = dm.
GB00001 Un triangolo rettangolo ABC, rettangolo in A, è isoscele e la sua ipotenusa BC misura 2 2 dm. Calcolare l area e il perimetro del triangolo. GB00002 Kg 121,25 è il peso di un cubo di gesso avente
TEST SULLE COMPETENZE Classe Seconda
TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito
Consolidamento Conoscenze
onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..
Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI
Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO
Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.
Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10
METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora
ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI
ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela
01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5
GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di
C7. Circonferenza e cerchio
7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio
Esercizi di geometria per il corso PAS A059
Esercizi di geometria per il corso PAS A059 1. Dato un rombo con un angolo di 60 trovare il rapporto tra il raggio del cerchio inscritto nel rombo e il raggio del piu piccolo cerchio che contiene interamente
Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?
1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti
soluzione in 7 step Es n 208
soluzione in 7 soluzione in 7 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm 3 : 4,8 5 4,8 : HB 4,8 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04
Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema
Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che
Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche
2B GEOMETRIA. Isoperimetria, equivalenza e calcolo delle aree. Esercizi supplementari di verifica
2 GEOMETRI Isoperimetria, equivalenza e calcolo delle aree Esercizi supplementari di verifica Esercizio 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F ue poligoni isoperimetrici
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE
QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano
Lezione 3. Angoli al centro e angoli alla circonferenza
Lezione 3. Angoli al centro e angoli alla circonferenza 1 Angoli in una circonferenza La proprietà illustrata dalle proposizioni 0, 1 e 3 del terzo libro degli Elementi si riferisce a una delle caratteristiche
14 Sulle orme di Euclide. Volume 2
PREFAZIONE Il nostro viaggio negli Elementi prosegue con lo studio delle proprietà della circonferenza e dell equivalenza tra poligoni. Le questioni relative alla superficie dei poligoni occupano parte
In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana
66 08 09 10 11 1 13 14 In un triangolo qualsiasi, la semiretta che, uscendo dal vertice di un angolo, lo divide in due parti uguali prende il nome di: a) mediana b) bisettrice c) asse d) ortogonale Un
LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE
LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini
COMPITI DI MATEMATICA PER LE VACANZE
IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO
Precorso di Matematica
UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................
2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
