COSTRUZIONI GEOMETRICHE ELEMENTARI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COSTRUZIONI GEOMETRICHE ELEMENTARI"

Transcript

1 COSTRUZIONI GEOMETRICHE ELEMENTARI 1 ASSE del segmento AB - Con centro in A e in B traccio 2 archi di circonferenza con raggio R>½AB; - chiamo 1 e 2 i punti di intersezione tra gli archi di circonferenza; - l asse di AB è il segmento congiungente 1 e 2. 1

2 2 PERPENDICOLARE del segmento AB condotta da un estremo -Con centro in A traccio una semicirconferenza di raggio a piacere; - Chiamo rispettivamente 2 e 1 i punti di intersezione della semicirconferenza con AB e con il suo prolungamento; -Con centro in 1 e 2 traccio due archi di circonferenza di raggio a piacere, che si incontrano in C; - CA è la perpendicolare cercata. 3 Costruzione della retta s passante per il punto P e parallela alla retta r - Scelgo sulla retta r un punto B a piacere e lo congiungo con P; - con centro in B traccio l arco di circonferenza con raggio BP, che interseca r in A; - con centro in P traccio un arco di circonferenza di raggio PB; - con centro in B traccio un arco di circonferenza di raggio PA; - chiamo 1 il punto di intersezione tra i due archi di circonferenza; -La congiungente 1P è la retta s cercata. 2

3 4 Divisione del segmento AB in n parti uguali Pongo, per esempio, n=6 - A partire da A costruisco un segmento, inclinato a piacere, e riporto su di esso 6 volte la stessa misura (ad es. 1 cm) indicando gli estremi con i numeri 1, 2, 3, 4, 5 e 6; - Congiungo i punti 6 e B; - traccio dai punti 5, 4, 3, 2 e 1 le parallele a 6B; - per il teorema di Talete, il fascio di rette parallele ed equidistanti taglia il segmento AB in 6 parti uguali. 5 Costruzione del segmento CD parallelo ad AB a distanza assegnata d - Si scelgono a piacere i punti P e Q, su AB; - con centro in P e Q si tracciano due semicirconferenze di raggio uguale che intersecano AB nei punti 1; - con centro nei punti 1 si tracciano quattro archi di circonferenza di raggio uguale, che si intersecano tra loro nei punti 2 e 3; 3

4 5 Costruzione del segmento CD parallelo ad AB a distanza assegnata d - i segmenti P2 e Q3 sono ortogonali ad AB; - con centro in P e Q e raggio d, pari alla distanza assegnata, traccio due archi di circonferenza che individuano i punti R e S sulle due ortogonali; - La retta passante per i punti R e S contiene il segmento CD cercato. 6 Costruzione di un angolo B Â C uguale all angolo BÂC dato c - Si traccia il segmento A B ; - con centro in A si traccia l arco di circonferenza che individua i punti 1 e 2; - con centro in A si traccia un arco di circonferenza con lo stesso raggio, che individua su A B il punto 1 ; - con il compasso, con centro in 1, si misura la distanza 1-2; - con centro in 1 si riporta con il compasso la distanza 1-2 e si individua il punto 2 ; - la congiungente A 1 individua il lato A C dell angolo cercato. 4

5 7 BISETTRICE di un angolo c - Con centro in A si traccia un arco di circonferenza che individua i punti 1 e 2; - con centro in 1 e 2 e stesso raggio si tracciano due archi di circonferenza che si intersecano nel punto 3; - la congiungente 3A è la bisettrice dell angolo. 8 Divisione di un angolo retto in tre parti uguali - Con centro in A si traccia un arco di circonferenza CB a piacere; - con centro in C e B, con la stessa apertura di compasso, si tracciano due archi di circonferenza che intersecano l arco BC nei punti 1 e 2; - i segmenti A1 e A2 tripartiscono l angolo retto. 5

6 9 Costruzione di un triangolo equilatero di lato assegnato l l - Si traccia il segmento AB di lunghezza assegnata l; - con centro in A e in B si tracciano due archi di circonferenza con raggio l; - i due archi si intersecano nel punto C, vertice del triangolo equilatero; - congiungendo C con A e con B si ottiene il triangolo equilatero. 10 Costruzione di un triangolo equilatero di altezza assegnata h - Si tracciano due rette parallele, r ed s, a distanza pari ad h; - su r si fissa un punto C, centro di un arco di circonferenza che interseca r nei punti 1 e 2; - con centro in 1 e 2 e stesso raggio si costruiscono due archi di circonferenza che intersecano la prima circonferenza in 3 e 4; - si costruiscono i segmenti C3 e C4 e si prolungano fino ad incontrare la retta s nei punti A e B; - il triangolo equilatero è definito dai tre vertici A, B e C. 6

7 11 Costruzione di un triangolo rettangolo dati l ipotenusa l e un cateto a - Si traccia un segmento AB di lunghezza l e si individua il punto medio 1; - con centro in 1 si traccia la semicirconferenza di diametro AB; - con centro in A e raggio a si traccia un arco di circonferenza che incontra la semicirconferenza in C; - C è il vertice retto del triangolo cercato ABC. 12 Costruzione di un triangolo di lati a, b e l assegnati l - Si traccia un segmento AB di lunghezza l; - con centro in A e B si disegnano due archi di circonferenza di raggio pari rispettivamente ad a e b; - i due archi si intersecano in C, terzo vertice del triangolo cercato ABC. 7

8 13 Costruzione di un triangolo equilatero inscritto in una circonferenza data - Si costruisce il diametro verticale della circonferenza di estremi 1 e 4; - si fissa in 1 un vertice del triangolo; - con centro in 4 si traccia un arco di circonferenza di raggio pari alla circonferenza data, che la interseca nei punti 2 e 3; - i punti 2 e 3 sono gli altri vertici del triangolo equilatero inscritto alla circonferenza. 14 Costruzione di un pentagono inscritto in una circonferenza data - Si costruiscono il diametro verticale 12 e quello orizzontale 34 della circonferenza; - sul diametro orizzontale si fissano M e M : punti medi rispettivamente dei raggi O3 e O4; - con centro in M e raggio 1M si traccia un arco di circonferenza che interseca il diametro orizzontale in H; - la distanza 1H è pari al lato del pentagono; 8

9 14 Costruzione di un pentagono inscritto in una circonferenza data - con centro nel punto 1 e apertura di compasso pari a 1H, si traccia un arco che incontra la circonferenza nei punti B e E; - con centro nei punti B e E e stesso raggio si tracciano due archi che individuano sulla circonferenza i punti C e D; - congiungendo i punti A, B, C, D e E si ottiene il pentagono inscritto. 15 Costruzione di un esagono inscritto in una circonferenza data - Si traccia sulla circonferenza il diametro verticale 16; - con centro in 1 e in 6 si tracciano due archi di circonferenza di raggio uguale alla circonferenza assegnata; - detti archi incontrano la circonferenza nei punti 2, 3, 4 e 5 che, insieme a 1 e 6, sono i vertici dell esagono cercato. 9

10 16 Costruzione di un ottagono inscritto in una circonferenza data - Si tracciano sulla circonferenza i diametri orizzontale e verticale ; - i punti 1, 3, 5 e 7, di intersezione tra circonferenza e diametri, sono quattro degli otto vertici dell ottagono; - con centro in 1, 3, 5 e 7 e raggio a piacere, si tracciano degli archi di circonferenza che si intersecano nei punti A, B, C e D; - i segmenti AC e BD tagliano la circonferenza nei punti 2, 4, 6 e 8, che sono i rimanenti vertici dell ottagono. 17 Costruzione di un poligono di n lati inscritto in una circonferenza data - Si tracciano sulla circonferenza i diametri orizzontale GN e verticale AB ; - con centro in A e B e raggio pari al diametro della circonferenza data, si tracciano due archi di circonferenza, che incontrano la retta passante per il diametro orizzontale nei punti C e D; - Si divide il diametro verticale in n parti ( ad es. 10 in figura); 10

11 17 Costruzione di un poligono di n lati inscritto in una circonferenza data - Se n è un numero pari si congiungono i punti dispari del diametro verticale ( se n è dispari si congiungono i pari) con C e D e si ottengono sulla circonferenza i punti di intersezione E, F, H, I, L, M, O e P, che costituiscono i vertici del poligono cercato; - la costruzione è tanto più precisa tanto più alto è il numero n. 18 Costruzione di un pentagono di lato l dato l - Si traccia una retta r su AB; - da B si traccia una perpendicolare a r; - con centro in B si traccia un arco di circonferenza di raggio l, che interseca la perpendicolare in H; - si individua il punto medio ½ di AB; - con centro in ½ e raggio ½H, si traccia un arco che interseca r nel punto 1; 11

12 18 Costruzione di un pentagono di lato l dato l - con centro in A e in B e raggio pari alla distanza A1, si tracciano due archi che si intersecano in D, vertice del pentagono; - con centro in B e in A e raggio pari a l, si tracciano due archi di circonferenza, che si intersecano rispettivamente con l arco 1D e 2D, nei punti C e E; - Il pentagono si ottiene congiungendo i punti A, B, C, D e E. 19 Costruzione di un esagono di lato l assegnato l - Da A e B si tracciano due archi di circonferenza di raggio l, che si incontrano in O; - con centro in O e raggio OB, si traccia la circonferenza che circoscrive l esagono; - con centro in B e raggio l si traccia un arco che interseca la circonferenza in C; - con centro in C e raggio l si traccia un arco che interseca la circonferenza in D; - con lo stesso procedimento si individuano tutti i vertici dell esagono. 12

13 20 Costruzione di un ottagono di lato l assegnato l - si trova il punto medio ½ di AB e da esso si traccia la perpendicolare ad AB; - con centro in ½ e diametro AB, si traccia un arco di circonferenza, che interseca la perpendicolare in O ; - con centro in O e raggio O A, si traccia un arco di circonferenza, che interseca la perpendicolare in O; 20 Costruzione di un ottagono di lato l assegnato l - con centro in O e raggio OA, si traccia la circonferenza che circoscrive l ottagono; - con centro in B e raggio l si traccia un arco che individua sulla circonferenza il punto C; - con centro in C e raggio l si traccia un arco che individua sulla circonferenza il punto D; - con analogo procedimento si trovano tutti i vertici dell ottagono. 13

14 20 Costruzione di un ottagono di lato l assegnato l - La costruzione dell ottagono si può ottenere anche tracciando da B una retta inclinata di 45 rispetto ad AB, sulla quale a distanza l si fissa il punto C; - tutti gli altri lati si trovano in maniera analoga, ricordando che i lati dell ottagono formano tra loro angoli di Costruzione di un poligono di n lati di lato l assegnato l - Si divide AB in 6 parti; - dal punto medio di AB (3) si traccia la perpendicolare ad esso; - con centro in A e in B e raggio l, si tracciano due archi che si incontrano sulla perpendicolare in O ; - da O si riportano sulla perpendicolare dei segmenti di lunghezza uguale a A1, in numero pari a n-6; 14

15 21 Costruzione di un poligono di n lati di lato l assegnato l - se, ad esempio n=9, si determinano tre punti: 7, 8 e 9; - il punto 9 è il centro della circonferenza circoscritta al poligono, che si traccia con raggio 9A; - partendo da B, con apertura di compasso pari a l, si individuano in successione tutti i vertici del poligono; - la costruzione è tanto più precisa quanto maggiore è il numero n. 22 Costruzione dell ellisse, assegnati due diametri Metodo del giardiniere - Si tracciano i due assi ortogonali AB e CD, che si intersecano nel punto O; - si costruisce una retta r passante per C e parallela all asse maggiore AB; - con centro in C si traccia una semicirconferenza di diametro pari ad AB; - la semicirconferenza incontra AB nei punti F1 e F2: i fuochi dell ellisse; 15

16 22 Costruzione dell ellisse, assegnati due diametri Metodo del giardiniere - la somma delle distanze di ogni punto dell ellisse dai due fuochi è costante; - si fissano in F1 e F2 due chiodi e ad essi si attacca una corda lunga AB, ovvero la somma di CF1 + CF2; - tenendo tesa la corda con la punta della matita è possibile tracciare l ellisse. 23 Costruzione dell ellisse, assegnati due diametri Metodo dei cerchi concentrici - Si tracciano i due assi ortogonali AB e CD, che si intersecano nel punto O; - con centro in O si tracciano due circonferenze aventi diametri pari a AB e a CD; - da O si traccia un generico diametro che interseca le circonferenze in a e in b; 16

17 23 Costruzione dell ellisse, assegnati due diametri Metodo dei cerchi concentrici - la verticale condotta da a e l orizzontale condotta da b si intersecano nel punto 1, che è un punto dell ellisse; - ripetendo la costruzione per diversi diametri, si individuano numerosi punti dell ellisse, che possono essere raccordati. 24 Costruzione dell ellisse, assegnati due diametri Metodo dei fasci proiettivi - Si tracciano i due assi ortogonali AB e CD, che si intersecano nel punto O; - da A e da B si tracciano due segmenti verticali, da C e da D due orizzontali, a e b, in modo da formare un rettangolo che racchiude l ellisse; - si divide il semidiametro minore in un certo numero di parti uguali, 1, 2, 3, numerate dagli estremi verso il centro O; 17

18 24 Costruzione dell ellisse, assegnati due diametri Metodo dei fasci proiettivi - si dividono a e b nello stesso numero di parti numerate progressivamente, 1, 2, 3, da C e D verso gli estremi; - si tracciano i segmenti A1 e B1, che prolungate si intersecano in un punto dell ellisse; - analogo procedimento per A2 e B2, e per A3 e B3 ; - raccordando i vari punti trovati si ottiene l ellisse. 25 Costruzione dell ellisse, assegnati due diametri coniugati Metodo dei fasci proiettivi - Si tracciano i due diametri coniugati AB e CD, che si intersecano nel punto O; - da A e da B si tracciano due segmenti paralleli a CD, da C e da D due orizzontali, a e b, in modo da formare un parallelogramma che racchiude l ellisse; - si divide il semidiametro minore in un certo numero di parti uguali, 1, 2, 3, numerate dagli estremi verso il centro O; 18

19 25 Costruzione dell ellisse, assegnati due diametri coniugati Metodo dei fasci proiettivi - si dividono a e b nello stesso numero di parti numerate progressivamente, 1, 2, 3, da C e D verso gli estremi; - si tracciano i segmenti A1 e B1, che prolungate si intersecano in un punto dell ellisse; - analogo procedimento per A2 e B2, e per A3 e B3 ; - raccordando i vari punti trovati si ottiene l ellisse. 26 Costruzione di una parabola, noti il fuoco F e la direttrice d - Si conduce da F la retta perpendicolare a d, che è l asse della parabola; - si divide a metà la distanza tra F e d e si ottiene il punto V, vertice della parabola; - a partire da F si tracciano alcune parallele a d poste tra loro a distanza FV; - con centro in F si tracciano diversi archi di circonferenza con raggio pari alla distanza tra ciascuna retta orizzontale e d; 19

20 26 Costruzione di una parabola, noti il fuoco F e la direttrice d -Si interseca ciascuna circonferenza con la rispettiva retta orizzontale; - tali punti di intersezione appartengono alla parabola, che si traccia raccordandoli. 27 Costruzione di una parabola, noti il vertice V e l asse - Si conduce una retta n passante per V e normale all asse della parabola; - con centro in V si traccia una circonferenza di raggio a piacere che interseca l asse nei punti A e B e n nei punti 1 e 1 ; - si tracciano due verticali da 1 e 1 e un orizzontale da B, che si intersecano nei due punti 1 e 1, appartenenti alla parabola; - si ripete il procedimento tracciando altre circonferenze con raggi diversi tutte passanti da A. 20

21 28 Costruzione di una parabola, noti il vertice V, l asse a e un punto P - Si traccia da V la normale n all asse; - da P si conduce la parallela a, che interseca n nel punto T; - si divide TV in parti uguali con numerazione progressiva a partire da T; - si divide PT nello stesso numero di parti, numerando a partire da P; - si traccia il segmento V1, che interseca la verticale condotta da 1 in un punto della parabola; - ripetendo la costruzione per i punti 2, 3 si ottiene, per punti, la parabola. 29 Costruzione di una parabola, note due tangenti t1 e t2 e i due punti di tangenza T1 e T2 - Si individua il punto O di intersezione tra t1 e t2; - si traccia il segmento T1T2 e da O la retta normale a, che è l asse della parabola; - si divide t2 in un numero di parti uguali numerate a partire da T2 e t1 nello stesso numero di parti numerate a partire da O; - si congiungono i punti delle due tangenti aventi lo stesso numero e si ottiene un fascio di rette che inviluppa la parabola; 21

22 29 Costruzione di una parabola, note due tangenti t1 e t2 e i due punti di tangenza T1 e T2 - i punti di tangenza della parabola sono i punti medi dei segmenti di inviluppo - raccordando tutti i punti di tangenza si ottiene la parabola. 30 Costruzione dell iperbole, noti i fuochi F1 e F2 e i vertici V1 e V2 - Si traccia l asse focale af che congiunge i fuochi e i vertici; - dato C, centro dell iperbole, punto medio tra V1 e V2, si traccia perpendicolarmente ad af, l asse trasverso at; - su af si traccia, a sinistra di F2, il punto H, distante da esso quanto V1 e V2; - si fissa su af il punto 1 a piacere; - con centro in F2, si traccia un arco di circonferenza di raggio F21; 22

23 30 Costruzione dell iperbole, noti i fuochi F1 e F2 e i vertici V1 e V2 - con centro in F1, si traccia un arco di raggio pari a 1H; - i due archi si incontrano nei punti P e P, appartenenti all iperbole. - fissando su af un punto 2 a piacere si ripete il procedimento e si trovano altri due punti dell iperbole; - con procedimento analogo si costruisce anche l altro ramo dell iperbole. 31 Costruzione dell iperbole, dati gli asintoti a e i vertici V1 e V2 - Si uniscono i vertici V1 e V2 con una retta che passa anche per C, centro dell iperbole e si ottiene l asse focale af; - da V1 si traccia una retta normale ad af, che interseca l asintoto a nel punto S; - con centro in C si traccia una circonferenza di raggio CS; 23

24 31 Costruzione dell iperbole, dati gli asintoti a e i vertici V1 e V2 - l intersezione della circonferenza con af determina i fuochi F1 e F2; - si fissa su af un punto 1 a piacere e con centro in F1 si traccia una circonferenza di raggio 1V1; - con centro in F2 si traccia la circonferenza di raggio 1V2; - i punti di intersezione tra le due circonferenze sono punti del ramo d iperbole; - ripetendo la costruzione e raccordando i punti trovati si disegna l iperbole. 32 Costruzione di un ovale, dati gli assi AB e CD - Gli assi AB e CD si intersecano in O; - con centro in O e raggio OA si traccia un arco che interseca il semiasse minore nel punto E; - si traccia il segmento CB; - con centro in C e raggio CE si traccia un arco che interseca CB nel punto F; - si traccia l asse del segmento FB, che interseca AB in H e CD in I; - H e I sono due dei quattro centri dell ovale, gli altri due sono i simmetrici L ed M. 24

25 33 Costruzione di un ovale, dato l asse maggiore AB - Si divide AB in tre parti uguali, segnando i punti 1 e 2; - con centri in 1 e in 2 e raggio pari a A1, si tracciano due circonferenze, che si intersecano in 3 e 4; - unendo 3 e 4 con i punti 1 e 2, si ottengono quattro rette, che intersecano le due circonferenze nei punti t (di separazione tra le curve diverse dell ovale); - con centro in 3 e 4 e raggio 3t, si tracciano due archi che raccordano le circonferenze già tracciate e completano la rappresentazione dell ovale. 34 Costruzione della spirale a passo p costante, dati due centri 1 e 2 PASSO = distanza tra due punti della spirale, dopo che ha compiuto un giro completo p è il doppio della distanza Si traccia una retta r e su essa si posizionano i due centri 1 e 2; - con centro in 1 e raggio 1-2 si traccia una semicirconferenza che incontra r nel punto 3; - con centro in 2 e raggio 2-3 si traccia una semicirconferenza che incontra r nel punto 4; etc. 25

26 35 Costruzione della spirale di Archimede - Si traccia una retta a e su essa si posizionano il centro O della spirale ed il punto A, tale che AO sia pari al passo della spirale; - si divide OA in 12 parti numerate; - si tracciano da O le rette b, c, d, e, f che dividono il piano in 12 settori di uguale apertura angolare; - con centro in O si tracciano 12 circonferenze di raggio O1, O2, O3, etc ; 35 Costruzione della spirale di Archimede - iniziando da O si determinano i punti di intersezione tra rette e circonferenze, allontanandosi sempre di un intervallo; - tali punti appartengono alla spirale che si ottiene raccordandoli. 26

27 36 Costruzione di una spirale con quarti di circonferenza e con passo p assegnato - Si costruisce il quadrato 1234 di lato pari ad ¼ di p e si prolungano a piacere i lati del quadrato; - con centro in 1 e raggio pari a 1-2 si traccia una circonferenza e si determina il punto A; - con centro in 2 raggio 2A si traccia un arco e si trova il punto B; - si prosegue con l arco di centro 3 e raggio 3B, etc. 37 Costruzione di tangente ad una circonferenza in un punto P assegnato - Si fissa il punto P sulla circonferenza di centro C; - si traccia il segmento PC; - si costruisce la retta t perpendicolare a PC e passante per P; - essendo t perpendicolare ad uno dei raggi della circonferenza, risulta essere tangente ad essa. 27

28 38 Costruzione del centro di un arco di circonferenza g assegnata - Dato l arco di circonferenza g, si tracciano a piacere due corde 1-2 e 3-4, - si tracciano, con il procedimento già studiato, gli assi dei segmenti 1-2 e 3-4; - i due assi si intersecano nel punto C, che è il centro dell arco. 39 Costruzione di una circonferenza passante per tre punti assegnati A, B e C - Dati i tre punti assegnati A, B e C, si tracciano i segmenti che li uniscono AB, AC e BC; - si tracciano gli assi di AB e BC, che si incontrano nel punto D; - D è il centro della circonferenza ; - si traccia la circonferenza con centro in D e raggio DA. 28

29 40 Costruzione di due tangenti a una circonferenza da un punto assegnato P - Si traccia una retta passante per P e per il centro della circonferenza C; - Si trova il punto ½ medio di PC e con centro in ½ si traccia un arco di circonferenza di raggio ½C; - l arco interseca la circonferenza nei punti A e B; - I segmenti PA e PB sono le tangenti cercate. 41 Raccordo di due rette a e b perpendicolari con un arco di circonferenza di raggio dato - Si traccia il punto V di intersezione tra a e b; - con centro in V si traccia un arco, pari a quello assegnato, e si determinano i punti A e B di intersezione con le due rette; - con centro in A e B e stessa apertura di compasso già usata, si tracciano due archi; - i due archi si intersecano in C, centro del raccordo; - con centro in C e apertura pari al raggio assegnato, si raccordano i punti A di a e B di b. 29

30 42 Raccordo di due rette a e b formanti un angolo acuto, con un arco di circonferenza di raggio r dato - Si tracciano due rette parallele dalle rette a e b a distanza r da esse; - le due parallele si intersecano nel punto C, centro del raccordo; - da C si tracciano due perpendicolari ad a e b e si determinano i punti A e B; - con centro in C e apertura pari al raggio assegnato, si raccordano i punti A di a e B di b. 43 Raccordo di due rette a e b convergenti con un arco di circonferenza - Si traccia una retta c a piacere, che taglia a e b nei punti D e E; - si tracciano le bisettrici degli angoli formati da a e c e da b e c; - le bisettrici si intersecano in C, centro del raccordo; - da C si conducono le normali ad a e b e si individuano A e B; -Con centro in C e raggio CB si traccia il raccordo tra i punti A di a e B di b. 30

31 RIFERIMENTI BIBLIOGRAFICI CUNDARI CESARE, Il Disegno. Ragioni. Fondamenti. Applicazioni, Edizioni Kappa, Roma 2006 DOCCI MARIO, Teoria e pratica del Disegno, Editori Laterza, Roma-Bari 1987 MARIO DOCCI DIEGO MAESTRI, Scienza del disegno, UTET, Torino

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO

Dettagli

COMUNICAZIONE N.4 DEL

COMUNICAZIONE N.4 DEL COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Cerchio e circonferenza - 1 Circonferenza e cerchio La circonferenza è il luogo geometrico dei punti del piano equidistanti da un unico punto detto centro. Il cerchio è l insieme costituito dai punti appartenenti

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo

Dettagli

C7. Circonferenza e cerchio - Esercizi

C7. Circonferenza e cerchio - Esercizi C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come

Dettagli

Fonte: I testi sono tratti dal sito di Ornella Crétaz ***

Fonte: I testi sono tratti dal sito di Ornella Crétaz  *** Fonte: I testi sono tratti dal sito di Ornella Crétaz www.intaglionline.it *** In questa parte del corso vengono descritti i procedimenti per tracciare correttamente figure geometriche elementari che possono

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Dispensa di Disegno Tecnico

Dispensa di Disegno Tecnico Dispensa di Disegno Tecnico Modulo 1 Primo Quadrimestre Scuola Bottega Artigiani di San Polo Onlus Ed. 2016-2017 Docente: Carlo Colombini DISPENSA DI DISEGNO TECNICO 1 È più facile fare bene un lavoro

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

PROIEZIONI ORTOGONALI: SEZIONI CONICHE

PROIEZIONI ORTOGONALI: SEZIONI CONICHE www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

SOLUZIONI DEI QUESITI PROPOSTI

SOLUZIONI DEI QUESITI PROPOSTI SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

PIANO CARTESIANO E RETTA

PIANO CARTESIANO E RETTA PIANO CATESIANO E ETTA Distanza tra due punti: d(a, B) = (x A x B ) + (y A y B ) Distanza tra due punti su una retta di coefficiente angolare m: d(a, B) = x A x B + m Punto medio di un segmento: M = (

Dettagli

Costruzioni inerenti i triangoli

Costruzioni inerenti i triangoli Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo

Dettagli

Problemi sull ellisse

Problemi sull ellisse 1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi

Dettagli

Problemi di geometria

Problemi di geometria equivalenza fra parallelogrammi 1 2 3 4 Dimostra che, fra tutti i rettangoli equivalenti, il quadrato è quello che ha perimetro minimo. Dimostra che ogni quadrato è equivalente alla metà del quadrato costruito

Dettagli

r.berardi COSTRUZIONI GEOMETRICHE schede operative

r.berardi COSTRUZIONI GEOMETRICHE schede operative r.berardi COSTRUZIONI GEOMETRICHE schede operative Costruzioni geometriche di base: Schede operative Asse di un segmento Pag. 1 endecagono Pag. 24 Bisettrice di un angolo Pag.. 2 dodecagono Pag. 25 Perpendicolare

Dettagli

C7. Circonferenza e cerchio

C7. Circonferenza e cerchio 7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio

Dettagli

C9. Teorema di Talete e similitudine - Esercizi

C9. Teorema di Talete e similitudine - Esercizi C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Problemi sui teoremi di Euclide

Problemi sui teoremi di Euclide Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

I PARALLELOGRAMMI E I TRAPEZI

I PARALLELOGRAMMI E I TRAPEZI I PARALLELOGRAMMI E I TRAPEZI 1. Il parallelogramma ESERCIZI 1 A Disegna un parallelogramma ABCD, la diagonale BD e i segmenti AK e CH, perpendicolari a BD. Dimostra che il quadrilatero AHCK è un parallelogramma.

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Allenamenti di Matematica

Allenamenti di Matematica rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7

Dettagli

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto

Dettagli

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

Costruzione delle coniche con riga e compasso

Costruzione delle coniche con riga e compasso Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

1/6. Esercizi su Circonferenza/retta e circonferenza/circonferenza. Dimostrazioni. Ipotesi. Tesi. Dimostrazione. Ipotesi. Tesi.

1/6. Esercizi su Circonferenza/retta e circonferenza/circonferenza. Dimostrazioni. Ipotesi. Tesi. Dimostrazione. Ipotesi. Tesi. Dimostrazioni Risoluzione 1) Le circonferenze Γ e Γ' (e Γ'') sono tangenti P appartiene alla retta tangente comune t PA, PB (e PB*) sono tangenti PA = PB (= PB*) Non ha importanza se le due circonferenze

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE

DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE DISEGNO TECNICO GEOMETRIA PIANA FIGURE PIANE Costruzione del triangolo equilatero circonferenza e scegliere un punto 1, che risulterà opposto al vertice A. Con la medesima apertura e puntando in 1, tracciare

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Elementi di Geometria euclidea Proprietà dei triangoli isosceli Il triangolo isoscele ha almeno due lati congruenti, l eventuale lato non congruente si chiama base, i due lati congruenti si dicono lati

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2 7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

LA CIRCONFERENZA E IL CERCHIO

LA CIRCONFERENZA E IL CERCHIO GEOMETRIA LA CIRCONERENZA E IL CERCHIO PREREQUISITI l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti fondamentali della geometria e le loro proprietaá l possedere

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 014-015 Classe: 3 H Docente: Paola Zanolo Disciplina: Matematica Ripassare tutto il programma preparando un formulario per

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO È una linea chiusa formata da tutti i punti del piano che sono equidistanti da un punto interno detto centro. La distanza punto della circonferenza-centro è detto raggio. circonferenza

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

Poligoni con riga e compasso

Poligoni con riga e compasso Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,

Dettagli

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio.

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio. TEOREMA DI TALETE Piccolo Teorema di Talete Dato un fascio di rette parallele tagliate da due trasversali, a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra trasversale.

Dettagli

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. a) RISPETTO AI LATI CLASSIFICAZIONE DEI TRIANGOLI SCALENO:

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

ESERCIZI DI GEOMETRIA ANALITICA

ESERCIZI DI GEOMETRIA ANALITICA ESERCIZI DI GEOMETRIA ANALITICA 0.1. EQUAZIONE DELLA CIRCONFERENZA 0.1. EQUAZIONE DELLA CIRCONFERENZA Exercise 0.1.1. Si scriva l'equazione della circonferenza che passa per i punti O 0; 0) e A 7; 0)

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Costruzioni Geometriche

Costruzioni Geometriche Capitolo Secondo Costruzioni Geometriche 2.1. La costruzione euclidea La letteratura in merito alle costruzioni geometriche è generosa e gli apporti, sia nel tempo che nello spazio, ci vengono da vicino

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Capitolo III Ellisse

Capitolo III Ellisse Capitolo III Ellisse 1 Proprietà focali dell ellisse. Benché le coniche siano curve piane la loro definizione usa nozioni della geometria dello spazio. Sembrerebbe ragionevole cercare di caratterizzare

Dettagli

Equivalenza, misura di grandezze e aree

Equivalenza, misura di grandezze e aree MATEMATICAperTUTTI Equivalenza, misura di grandezze e aree 1 ESERCIZIO GUIDATO L equivalenza dei poligoni. Sappiamo che per stabilire se due figure sono equivalenti si può vedere se sono equiscomponibili,

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed ppunti di geometria.s. 14-15 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo esterno

Dettagli