Semplici proprietà degli amplicatori operazionali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Semplici proprietà degli amplicatori operazionali"

Transcript

1 Semplici proprietà degli amplicatori operazionali Matteo Poggi 26 agosto 2008 In questi berevi appunti vedremo delle semplici proprietà di amplicatori operazionali; i modi di procedere con i calcoli sono svariati, qui verrà seguita una strada già battuta principalmente da altre dispense; in particolare abbiamo fatto riferimento a materiale fornitoci dai Pro A Perego, R d'alessandro, nonché al testo Esperimenti di elettricità e magnetismo del prof G Poggi Faremo delle approssimazioni che ci semplicheranno notevolmente i calcoli, si tratta sempre però di approssimazioni, per cui si badi a non rimaere scandalizzati di fronte a scritture come A A, dato che, per i nostri amplicatori supporremo A 0 5 Questo vuol dire che in altri testi magari si troveranno delle espressioni leggermente diverse rappresentanti lo stesso risultato Un'ulteriore osservazione circa tali approssimazioni: cercheremo comunque di approssimare tutti i risultati al primo ordine e non all'ordine zero Per cominciare ricaveremo alcune grandezze importanti per il nostro operazionale Reazione negativa e massa virtuale Questo schema ha in se sia la congurazione invertente che quella non invertente che l'operazionale abbia un amplicazione puramente dierenziale: Supporremo V o = A (V V ( Ci pare più conveniente sutudiare questo caso generale, specicando poi delle restrizioni a casi particolari Iniziamo calcolando : per far ciò impostiamo le seguenti equazioni: i = i r i f (2a i r i f = VV = V V o R o (2b (2c i f i V i r V o V 2 Figura : Schema generale di un amplicatore

2 da queste possiamo scrivere sostituendo (2b e (2c in (2a: i = V V V V o ( = V V V ( A (V V A A = (V V R o = (V V A A = (V V A da questa evinciamo che ed inoltre che = (3 V V i A 0 (4 i r = V V i A 0 i = i f (5 a meno di non scegliere valore molto grandi per la resistenza di reazione Questo concetto è la famigerata massa virtuale: essa implica che il potenziale dei due terminali sia, al primo ordine, lo stesso, ed al contempo non circoli corrente tra essi Potremo pensare tale massa virtuale come un'esca per la tensione, come se non fosse virtuale, ma che, a dierenza di questa, non permette il passaggio di corrente Adesso occorre fare attenzione per l'uso corretto di queste approssimazioni, come abbiamo detto, eravamo intenzionati ad approssimare al primo ordine, e così abbiamo fatto al secondo membro dell'uguaglianza (4 Il terzo membro risulta invece ad ordine zero Risulta catastroco utilizzare ingenuamente risultati di ordine zero assieme a risultati esatti o di ordini successivi; ad esempio se volessimo calcolare V o = A (V V 0 A = 0 il che è palesemente assurdo Questo perchè dobbiamo tenere in mente che stiamo lavorando con o ( A Per procedere usiamo la (2c per trovare V o : V o = V i f ( (6 e dunque possiamo agevolmente calcolare, usando il partitore di tensione, : = V i f ( = V i f (7 Adesso utilizzando il concetto di massa virtuale riscriviamo l'espressione precedente in maniera a noi più conveniente: (4,(5 = V V V (4 = V V V (8 per concludere, trascurando la caduta di potenziale sulla resistenza (poiché i r i dalla (5, e ponendo quindi V V 2 si giunge all'espressione nale: dove si è posto = V 2 G NI V G I (9 G NI := = β G I := (0a (0b In tal modo è facile vericare che ponendo V = 0 o V 2 = 0 si hanno rispettivamente il caso dell'amplicatore in congurazione non invertente ed in congurazione invertente Si noti altresì che nelle nostre approssimazioni la resistenza gioca un ruolo (per ora inessenziale 2 Impedenze d'ingresso Adesso calcoleremo le impedenze d'ingresso viste dai due generatori, esse sono denite: R = V i (2 2

3 2 Impedenza d'ingresso sul ramo invertente Questo calcolo risulta molto semplice se si applica il concetto di massa virtuale, difatti troviamo subito: i = V V 2 (22 Dunque si avrà che nel caso di congurazione invertente V 2 = 0 dà: R = V V V 2 (23 R = (24 Sarebbe curioso osservare cosa succederebbe nell'espressione (23 se V 2 > V : una resistenza negativa Questo è spiegabile con denizione: in eetti le grandezze di cui si fa il rapporto sono a priori indipendenti e quindi ci potrebbero essere delle situazioni in cui la corrente viene erogata contro il potenziale che il generatore eroga 22 Impedenza d'ingresso sul ramo non invertente Seguendo la traccia generale, dovremo calcolare R = V 2 i r (25 come mostra le gura Adesso ricordando la (2b, per il calcolo di i r e ricordando anche la ( otteniamo: Adesso sfruttiamo la (6 prima considerando però abbiamo dunque i r (2b = V V ( = V o A (26 V V V 2 (27a i f i V V 2 ; (27b V o = V 2 V V 2 ( (28 (si noti come il procedimento assomigli a quello usato per calcolare Inserendo questo risultato nella (26 otteniamo: i r = V 2 V V 2 ( (29 A e per concludere: V 2 A R = V 2 V V 2 ( (20 Questa espressione può essere semplicata tenendo conto che sicamente 0 e calcolando l'espressione in una situazione completamente non invertente, ponendo V = 0: R A β (2 Nelle applicazioni, visto il già elevato valore di MΩ ed il notevole valore di A, si può considerare tale resistenza a tutti gli eetti innita Questo fatto avrà notevelo importanza nelle applicazioni che useranno questo tipo di congurazione 3

4 3 Resistenza d'uscita Per arontare questa questione utilizzeremo il teorema di Thévenin, ricordandone bene l'enunciato, secondo il quale i generatori da cortocircuitare non sono tutti bensì solo quelli indipendenti, difatti, come mostra la gura 3, il generatore V o non è stato cortocircuitato Sempre per la usuale denizione avremo: R out = V L i L (3 Sempre dallo schema capiamo che i L = i 0 i f (32a i 0 = V L V o i f = V L, (32b (32c dove per per comodità deniamo := // Calcoliamoci adesso l'eetto di V L sui terminali V e V Tutto ciò può essere fatto comodamente usanto la formula del partitore e consideranto le resistenze in serie e quelle in parallelo V = V L V = V L (33a (33b Applichiamo ora la (: V o = V LA (34 Sostituendo quindi in (32b si avrà: i 0 = V L ( A ( R2 (R3 (35 mentre per quanto riguarda i f abbiamo: i f = V L (36 i f i 0 i L V o V L Figura 3: Schema per il calcolo della resistenza d'uscita 4

5 V N V off V 2 P Figura 4: Tensione di oset applicata all'ingresso invertente Quindi sommando questi due contributi: [ ( A i L = V L ( R2 (R3 ] (37 onde avremo nalmente: R out = ( A ( ( (38 Adesso, visto l'elevato valore di l'espressione precedente si può molto semplicare poiché, come si verica subito dallo schema si potranno trascurare le cadute di tensione si su che su (, così facendo l'espressione (38 diventa facilmente: R out = Aβ (39 A tutti gli eetti questa resistenza si può considerare trascurabile, visto il già basso valore di 4 Tensione di oset Una caratteristica che contraddistingue gli amplicatori ideali da quelli reali è la presenza di un livello di tensione continua, sempre presente tra il terminale invertente e quello non invertente Questo eetto viene schematizzato con un generatore in continua su di un ingresso V off mv Nella gura 4 abbiamo messo tale generatore all'ingresso non invertente; si potrà altresì spostarlo all'ingresso invertente (si ricorda che questi due ingressi sono collegati internamente tramite una resistenza, non presente in questo disegno, purchè si rovesci la polarità e quindi le due situazioni siano topologicamente equivalenti Per calcolare del nostro amplicatore tenendo conto di V off basterà appellarci alla (9 tenendo conto della somma algebrica delle tensioni sull'ingresso non invertente: = (V 2 V off G NI V G I (4 In parole povere, qualsiasi sia la congurazione che stiamo usando la corrente di oset si manifesta sempre come se fosse un generatore in continua sul ramo non invertente 5

6 5 Correnti di bias Un'altra caratteristica che perturba il modello di amplicatore operazionale ideale sono le delle correnti presenti all'ingresso di entrambe i terminali, schematizzate in gura 5 con dei generatori di corrente Tipicamente (a temperatura ambiente abbiamo i bias 0pA anche se tale valore è molto dipendente dalla temperatura Vediamo le ripercussioni che tali correnti hanno sull'output del nostro circuito Per eseguire tale calcolo basterà sfruttare, mutatis mutandis, la (8, tenendo conto, che, per come abbiamo impostato (e risolto il problema della massa virtuale, e per i nomi che abbiamo attribuito ai varî terminali dovremo avere: = V N V N V P (5 Adesso, tenendo conto dell'eetto dei generatori di corrente, in parallelo alle rispettive resistenze nel circuito, potremo scrivere: Inserendo queste espressioni nella (5 troviamo: V N = V i bias (52a V P = V 2 i bias (52b = ( V 2 i bias GNI V G I i bias (53 Questo mette in evidenza come la resistenza che no ad ora non aveva inuito troppo sui nostri risultati, in questo caso comporti una modica della tensione d'uscita tenendo conto delle correnti di bias Questo ci insegna anche come fare qualora volessimo trascurarle, in particolare, mettendo a terra il terminale positivo sarà possibile trascurare quella sul ramo non invertente In tal caso possiamo riscrivere la (53: = V 2 G NI V G I i bias (54 V i bias N V 2 P i bias Figura 5: Correnti di bias 6

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

IL TEOREMA DI THEVENIN

IL TEOREMA DI THEVENIN IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di

Dettagli

Generatori di Corrente Continua

Generatori di Corrente Continua Generatori di Corrente Continua Maurizio Monteduro Siamo abituati a considerare i generatori come qualcosa di ideale, come un aggeggio perfetto che attinge o eroga corrente non interessandosi di come possa

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano Lezione 2: Amplificatori operazionali Prof. Mario Angelo Giordano L'amplificatore operazionale come circuito integrato è uno dei circuiti lineari maggiormente usati. L'amplificatore operazionale è un amplificatore

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

Esercizio 1. Amplificatore operazionale configurazione non invertente. Calcoliamo l'uscita Vo

Esercizio 1. Amplificatore operazionale configurazione non invertente. Calcoliamo l'uscita Vo Esercizio 1 Amplificatore operazionale configurazione non invertente Calcoliamo l'uscita Vo Esercizio 2 Amplificatore operazionale in configurazione non invertente con partitore di resistenze al morsetto

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11

ALTRI CIRCUITI CON OPERAZIONALI 1 Sommatore invertente 1 Sommatore non invertente 3 Amplificatore differenziale 7 Buffer 11 Altri circuiti con operazionali rev. del /06/008 pagina / ALT CCUT CON OPEAZONAL Sommatore invertente Sommatore non invertente Amplificatore differenziale 7 Buffer Altri circuiti con operazionali Sommatore

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

6. Generatori di corrente controllati

6. Generatori di corrente controllati 6. Generatori di corrente controllati 6.1 Generatori con un solo operazionale In molte applicazioni è utile poter disporre di generatori di corrente controllati in tensione. Un modo semplice, ad esempio,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

L'AMPLIFICATORE OPERAZIONALE

L'AMPLIFICATORE OPERAZIONALE 1. 2. 3. 4. 5. 6. 7. Indice del Capitolo: L'Amplificatore Operazionale Gli Amplificatori Operazionali e la Reazione Negativa Amplificatore di Tensione non Invertente Amplificatore di Transresistenza Amplificatore

Dettagli

Filtri passa alto, passa basso e passa banda

Filtri passa alto, passa basso e passa banda Filtri passa alto, passa basso e passa banda Valerio Toso Introduzione In elettronica i ltri sono circuiti che processano un segnale modicandone alcune caratteristiche come l'ampiezza e la fase. Essi si

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita

Dettagli

Altri circuiti con operazionali

Altri circuiti con operazionali ALTI CICUITI CON OPEAZIONALI Sommatore invertente Sommatore non invertente Amplificatore differenziale 9 Buffer Altri circuiti con operazionali Sommatore invertente CC O CC Con questo circuito possiamo

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

DAC Digital Analogic Converter

DAC Digital Analogic Converter DAC Digital Analogic Converter Osserviamo lo schema elettrico riportato qui a lato, rappresenta un convertitore Digitale-Analogico a n Bit. Si osservino le resistenze che di volta in volta sono divise

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

PUNTO DI SATURAZIONE TRANSISTOR BJT

PUNTO DI SATURAZIONE TRANSISTOR BJT Cristiano Zambon (obiuan) PUNTO DI SATURAZIONE TRANSISTOR BJT 25 November 2013 Introduzione Qualche giorno fa, facendo una lezione ad alcuni studenti sulla maglia standard di polarizzazione di un BJT,

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II 1. (a.a. 2002-2003 e 2001-2002) Prova scritta del 22/06/2004 Qual è la probabilità che, in 6 lanci, due dadi diano la somma 9 (a) una volta,

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010. Esame scritto del 25/02/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010. Esame scritto del 25/02/2010 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 29/2 Corso di Metodi Matematici per la Finanza Pro Fausto Gozzi, Dr Davide Vergni Esame scritto del 25/2/2 Sia dato lo spazio vettoriale

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Esercizi Proposti - 7 Gli o-piccoli - seconda parte T1] Derivabilità e piccoli: Come è noto una funzione reale ( ) è continua in seesoloseper!

Esercizi Proposti - 7 Gli o-piccoli - seconda parte T1] Derivabilità e piccoli: Come è noto una funzione reale ( ) è continua in seesoloseper! Esercizi Proposti - 7 Gli o-piccoli - seconda parte T] Derivabilità e piccoli: Come è noto una funzione reale () è continua in seesoloseper! risulta () = ( )+() vericare che () è derivabile in se e solo

Dettagli

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita)

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 2 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 9.5) e quello invertente (par.

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie. Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 11 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 2.5) e quello invertente (par.

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

Transitori del secondo ordine

Transitori del secondo ordine Università di Ferrara Corso di Teoria dei circuiti Transitori del secondo ordine Si consideri il circuito in figura e si supponga che all istante la corrente della serie e la tensione sul condensatore

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

Alimentatore stabilizzato

Alimentatore stabilizzato Alimentatore stabilizzato Valerio Toso 1 Introduzione Spesso può sorgere la necessità di trasformare una tensione alternata sinusoidale (Vca) come quella proveniente dalla rete di distribuzione elettrica

Dettagli

RESISTORI IN SERIE. Due o più resistori sono collegati in serie quando sono percorsi dalla stessa corrente. Esempio:

RESISTORI IN SERIE. Due o più resistori sono collegati in serie quando sono percorsi dalla stessa corrente. Esempio: Resistenze in serie e parallelo In questa breve lezione vedremo: cosa vuol dire resistenza in serie cosa vuol dire resistenza in parallelo effettueremo delle misure sulle resistenze in parallelo RESISTORI

Dettagli

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione)

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione) Esame di eoria dei Circuiti 13 Febbraio 2015 Soluzione) Esercizio 1 γi 3 V 3 I 1 1 βi 1 I 2 I 2 I 3 V 4 g αi 2 2 3 V 5 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 2

Dettagli

1.1 Assenza di generatori di tensione ideali

1.1 Assenza di generatori di tensione ideali ANALISI NODALE Questa dispensa presenta un metodo alternativo a quello presentato nel libro Circuiti Elettrici di C.K. Alexander, M.N.O.Sadiku - seconda edizione - traduzione a cura del Prof. P.Gubian

Dettagli

Il problema del carico

Il problema del carico Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di collegare tra due punti A e B del circuito una resistenza c che chiameremo

Dettagli

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1 2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,

Dettagli

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2, 100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 14 Le configurazioni della reazione Nel capitolo cap. 11 si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 11.7) e quello invertente (par. 11.10)

Dettagli

lim Ricordiamo le seguenti de nizioni: Siano e funzioni in nitesime per! + 0 esia non nulla in un intorno destro di 4, se a] lim lim

lim Ricordiamo le seguenti de nizioni: Siano e funzioni in nitesime per! + 0 esia non nulla in un intorno destro di 4, se a] lim lim Esercizi Proposti - 4 Gli o-piccoli - prima parte In queste note con il termine innitesimo per! +, indichiamo una funzione reale (non necessariamente continua) denita in un intorno aperto di con la proprietà

Dettagli

Verifica sperimentale dei due principi di Kirchhoff. Premessa

Verifica sperimentale dei due principi di Kirchhoff. Premessa Verifica sperimentale dei due principi di Kirchhoff Premessa Scegliamo un circuito su cui misurare le correnti e le tensioni in modo da verificare i due principi di Kirchhoff, cioè quello delle correnti

Dettagli

In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli

In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli LOGARITMO Il logaritmo è un operatore matematico indicato generalmente con loga(b); detta a la base e b l'argomento, il logaritmo in base a di b è definito come l'esponente a cui elevare la base per ottenere

Dettagli

AMPLIFICATORI OPERAZIONALI

AMPLIFICATORI OPERAZIONALI Amplificatori operazionali rev. del /06/008 pagina /7 AMPLIFICATI PEAZINALI Configurazione invertente Configurazione non invertente 6 AMPLIFICATI PEAZINALI Un amplificatore operazionale è un dispositivo

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 24 12.1.2016 Circuiti elettrici Equazioni per la soluzione dei circuiti Anno Accademico 2015/2016 Forza elettromotrice

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

CIRCUITI RESISTIVI ESERCIZI

CIRCUITI RESISTIVI ESERCIZI CIRCUITI RESISTIVI ESERCIZI Calcolare la corrente erogata dal generatore e la corrente passante per ogni resistenza dei seguenti circuiti CIRCUITO 1 Figura 1 Per prima cosa calcoliamo la resistenza equivalente

Dettagli

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2.

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2. PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 16 Gennaio 2019 ESERCIZIO 1 Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 2 10 16 cm 3, τ n = 10 6 s, µ n = 0.1 m 2 /Vs, S=1 mm 2 )

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ 4.1 Grandezze fondamentali e derivate Come abbiamo già osservato la scelta di un Sistema di unità di misura è largamente arbitraria e dettata in gran parte da

Dettagli

Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia

Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia PRINCIPALI PARAMETRI DEGLI AMPLIFICATORI OPERAZIONALI Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia Per capire le numerose caratteristiche di un Amp. Op. è opportuno prendere in esame

Dettagli

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente:

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente: PM PO N TNEE --- 9 MGGO 008 ECZO E..: Del circuito mostrato in figura, si desidera determinare: a) la corrente ; b) la potenza elettrica erogata dai tre generatori. Sono assegnati: Ω, 4 Ω, 6 Ω; ; E S 6

Dettagli

Politecnico di Milano A.A. 2010/2011. Corso di ELETTROTECNICA. Esercizi svolti. Prof. L. Codecasa. A cura di. Michele Launi

Politecnico di Milano A.A. 2010/2011. Corso di ELETTROTECNICA. Esercizi svolti. Prof. L. Codecasa. A cura di. Michele Launi Politecnico di Milano A.A. 2010/2011 Corso di ELETTROTECNICA Esercizi svolti Prof. L. Codecasa A cura di Michele Launi Indice tematico: [1] Leggi di Kirchhoff e conservazione della potenza [2] Metodo della

Dettagli

ESPERIENZA 4 DIODI E RADDRIZZATORI R 1 =1 K

ESPERIENZA 4 DIODI E RADDRIZZATORI R 1 =1 K ESPERIENZA 4 DIODI E RADDRIZZATORI PARTE A: Tracciamento della curava caratteristica del diodo Scopo dell'esperienza è studiare la caratterisica tensione-corrente dei diodi. Schema del circuito base utilizzato:

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

TRIGONOMETRIA Goniometria, parte 1

TRIGONOMETRIA Goniometria, parte 1 TRIGONOMETRIA Goniometria, parte 1 1 Funzioni goniometriche elementari SAPER FARE: 1. dato il valore di una funzione goniometrica e conoscendo il quadrante di appartenenza di un angolo, determinare il

Dettagli

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti?

1. Esistono numeri della forma , ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? 1 Congruenze 1. Esistono numeri della forma 200620062006...2006, ottenuti cioè ripetendo le cifre 2006 un certo numero di volte, che siano quadrati perfetti? No, in quanto tutti questi numeri sono congrui

Dettagli

9.Generatori di tensione

9.Generatori di tensione 9.Generatori di tensione In molte applicazioni analogiche, specialmente per i processi di conversione D/A e A/D, è necessario disporre di tensioni di riferimento precise. Mostriamo alcuni metodi per ottenere

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Esercizi di Matematica Lavoro estivo per gli alunni con debito formativo Classe III C

Esercizi di Matematica Lavoro estivo per gli alunni con debito formativo Classe III C Esercizi di Matematica Lavoro estivo per gli alunni con debito formativo Classe III C Dato il triangolo di vertici A( 3, 3), B(1, 3), C(1, 1), rappresentalo sul piano cartesiano, verica se è rettangolo

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

Analisi del circuito. Prima di svolgere i cinque punti richiesti dal tema analizziamo brevemente lo schema proposto.

Analisi del circuito. Prima di svolgere i cinque punti richiesti dal tema analizziamo brevemente lo schema proposto. Analisi del circuito Prima di svolgere i cinque punti richiesti dal tema analizziamo brevemente lo schema proposto. Il blocco A è chiaramente un astabile con frequenza f 0 khz T Il blocco B (da progettare)

Dettagli

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt.

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt. Esercitazioni di Matematica Esercitazioni VIII -5//6 Soluzioni delle Esercitazioni VIII -5//6 A. Funzione integrale. La funzione integrale di f nell intervallo [, ] è per definizione F() = dt con [,].

Dettagli

EQUAZIONI MATRICIALI

EQUAZIONI MATRICIALI EQUAZIONI MATRICIALI a cura di Gioella Lorenzon, Edoardo Sech, Lorenzo Spina, Jing Jing Xu Realizzato nell'ambito del progetto Archimede con la supervisione del Prof. Fabio Breda I.S.I.S.S. M.Casagrande,

Dettagli

Forme quadratiche in R n e metodo del completamento dei quadrati

Forme quadratiche in R n e metodo del completamento dei quadrati Chapter 1 Forme quadratiche in R n e metodo del completamento dei quadrati Ricordiamo che a determinare il tipo (definita positiva o negativa, semidefinita positiva o negativa, indefinita) di una forma

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Sia k un numero pari. È possibile scrivere 1 come la somma dei reciproci di k interi dispari? Soluzione: Siano n 1,..., n k interi dispari tali che 1 = 1 n 1 +

Dettagli

GLI AMPLIFICATORI OPERAZIONALI

GLI AMPLIFICATORI OPERAZIONALI GLI AMPLIFICATORI OPERAZIONALI Prof. Michele Burgarelli 0 Grazie agli studenti della 5 AM a.s. 2013/2014 dell'itis Rossi di Vicenza Grazie a chi ha dato un essenziale supporto per la stesura di tali dispense.

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI

COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI COME CALCOLARE LA COMBINAZIONE DI MINIMO COSTO DEI FATTORI In questa Appendice, mostreremo come un impresa possa individuare la sua combinazione di minimo costo dei fattori produttivi attraverso il calcolo

Dettagli

Lezione 5: Introduzione al calcolo integrale

Lezione 5: Introduzione al calcolo integrale Lezione 5: Introduzione al calcolo integrale PARTE 2 1 Integrazione per Sostituzione Utilizzando i metodi esposti nella Parte 1 di questa dispensa, non saremmo in grado di risolvere un integrale del tipo

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase Esercitazione 7 Dicembre 0 Potenze e rifasamento monofase Esercizio Con riferimento al circuito riportato in Fig, calcolare la potenze attiva P e la potenza reattiva Q erogate dal generatore o R C o 0

Dettagli

La legge di Ohm, polarizzazione.

La legge di Ohm, polarizzazione. La legge di Ohm, polarizzazione. In elettronica una delle prime e più basilari cose che serve fare è provocare una caduta di tensione, di voltaggio per intenderci; ovvero serve ridurre la quantità di corrente

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 000-000 M6.qxp 7-09-01 1005 Pagina 1 sercizi aggiuntivi Unità sercizi svolti sercizio 1 ipoli elettrici e loro collegamenti 1 Per il circuito di figura.1 calcolare la resistenza equivalente tra i morsetti

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Teoremi Thevenin/Norton

Teoremi Thevenin/Norton Teoremi Thevenin/Norton IASSUNTO Il carico Teorema di Thevenin Come calcolare V Th ed Th conoscendo il circuito Come misurare V Th ed Th Esempi Generatore di tensione ideale e reale Teorema di Norton Generatore

Dettagli

Teoremi delle re* lineari

Teoremi delle re* lineari Teoremi delle re* lineari circuito o rete lineare se con-ene solo elemen- lineari e generatori indipenden- elemento ele2rico lineare se il rapporto eccitazione-risposta e lineare generatore indipendente

Dettagli

Esercizi: circuiti dinamici con generatori costanti

Esercizi: circuiti dinamici con generatori costanti ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..

Dettagli