Espressioni algebriche: espressioni razionali
|
|
|
- Norma Sarti
- 9 anni fa
- Visualizzazioni
Transcript
1 Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio: 5 6x + 3x 4 2x + x 7, x x 4, a 0 + a 1 x + a 2 x 2 + a n x n b 0 + b 1 x + b 2 x 2 + b m x m = P(x) Q(x) 2 3 x 2, x 2 + x 3 sono espressioni razionali sin x x 2, 2 x 1 non sono espressioni razionali x + 6
2 Espressioni algebriche: espressioni razionali osservazione: A differenza di monomi i polinomi, le espressioni algebriche non ammettono valori arbitrari di x esempio: Si consideri l espressione algebrica 2 x 5. Sostituendo alla variabile x il valore numerico x = 5, si ottiene 2 0. Quest operazione che non ha alcun significato! definizione: Il dominio di esistenza di un espressione razionale P(x) è l insieme di tutti i valori della variabile x per cui risulta Q(x) Q(x) 0 In altre parole, il dominio di esistenza indica quali valori numerici possiamo attribuire alla variabile x affinché l operazione numerica P(x) : Q(x) sia possibile. 2 esempio: Il dominio di esistenza dell espressione razionale x 5 è l insieme R \ {5} = {x R : x 5}.
3 Espressioni algebriche: espressioni razionali In generale, per determinare il dominio di esistenza bisogna risolvere l equazione (polinomiale) Q(x) = 0. Torneremo su questo argomento nelle prossime lezioni.
4 Espressioni algebriche: operazioni Come si definiscono le operazioni di somma/differenza e prodotto/divisione fra espressioni algebriche? Non c è nulla di nuovo: sono le solite operazioni fra numeri reali. Bisogna applicare le proprietà esercizio: Calcolare (3 x) (x + 23 ) x 2 + x x 2 = 1 + 3x 2 x 5 x = 1 + 3x 4 x 2 + x 1 2x + x 2 = 2 x (1 x) 1 3x + 3x 2 x 3 + x 1 2x + x 2 =
5 Espressioni algebriche: operazioni Iter consigliato per maneggiare le espressioni algebriche frazionarie: Fattorizzare i polinomi a denominatore (ed eventualmente a numeratore) Individuare il dominio di esistenza (è più facile dopo aver fattorizzato!) Semplificare (se possibile) Individuare il denominatore comune Scrivere l espressione con il denominatore comune Calcolare le somme/differenze (eventualmente) Fattorizzare il polinomio ottenuto a numeratore e procedere con ulteriori semplificazioni (se possibile)
6 Espressioni algebriche: fattorizzazione di polinomi Fattorizzare un polinomio = scomporlo nel prodotto di più polinomi di grado inferiore (e quindi più maneggevoli) Vedremo 3 tecniche per farlo: Raccoglimento a fattore comune Riconoscimento di prodotti notevoli Alcuni trinomi di secondo grado
7 Espressioni algebriche: fattorizzazione di polinomi Raccoglimento a fattore comune Si tratta di individuare quei termini che dividono ogni monomio presente e metterli in evidenza esercizio: Fattorizzare 4x 3 + 8x 2 32x = x (x + 1) (x 2) + x 2 (x 1) (2 x) = Talvolta è preferibile procedere per raccoglimenti parziali esercizio: Fattorizzare 2x 6y + 3xy x 2 =
8 Espressioni algebriche: fattorizzazione di polinomi Riconoscimento di prodotti notevoli quadrato del binomio: a 2 ± 2ab + b 2 = (a ± b) 2 cubo del binomio: a 3 ± 3a 2 b + 3ab 2 ± b 3 = (a ± b) 3 differenza di quadrati a 2 b 2 = (a + b) (a b) somma/differenza di cubi a 3 ± b 3 = (a ± b) (a 2 ab + b 2 ) esercizio: Fattorizzare x x = 9x 4 16 = x 6 1 = κ 6 6κ 4 x + 12κ 2 x 2 8x 3 = x 3 8 x 2 + 2x =
9 Espressioni algebriche: fattorizzazione di polinomi Alcuni trinomi di secondo grado ax 2 + bx + c = a (x x + ) (x x ) dove x ± = b ± b 2 4ac 2a sono le radici dell equazione di secondo grado ax 2 + bx + c = 0. In pratica, dovrò calcolare il discriminante = b 2 4ac: se > 0, calcolo le radici dell equazione e applico la formula se = 0, applicando la formula ritrovo il quadrato del binomio se < 0 il trinomio assegnato è irriducibile esercizio: Fattorizzare x 2 3x + 2 = x 2 + 6x + 9 = 3x 2 + 2x 1 = x 2 3x + 10 = 2x 4 3x =
10 Espressioni algebriche: esercizi di riepilogo esercizio: Semplificare ( 1 x + 2 x ) x 2 x 3 8 = 4 x ( x x ) x x 2 : 1 x 2 + x 2 = ( 2x 3 9x x 9 x 2 + 9) : 2x 3 = + 1 x 2 ( 3x x + 3 x + 9 x 3 + 2x 2 15x 1 ) x 2 = 9
11 Equazioni di 1 grado ax + b = 0 dove a e b sono numeri reali fissati x è l incognita del problema esempio: 3x + 2 = 0 2x = 1 5x = 0 Formula risolutiva x = b a se a 0 c è un unica soluzione (eq. determinata) x = b a se a = 0 e b 0 non ci sono soluzioni se a = 0 e b = 0 ogni valore di x è soluzione (eq. impossibile) (eq. indeterminata)
12 Disequazioni di 1 grado ax + b > 0 ax + b < 0 ax + b 0 ax + b 0 esempio: 3x + 2 > 0 2x < 1 5x 0 Formula risolutiva per ax + b > 0 se a > 0 soluzione: x > b a o x ( b a, + ) se a < 0 soluzione: x < b o x (, b a a ) se a = 0 e b > 0 soluzione: ogni valore di x o x R se a = 0 e b 0 soluzione: nessun valore di x o x
13 Equazioni di 2 grado dove ax 2 + bx + c = 0 a, b e c sono numeri reali fissati (a 0) x è l incognita del problema esempio: 3x 2 + x 2 = 0 x 2 + 2x = 1 5x 2 + x = 0 Formula risolutiva x ± = b ± b 2 4ac 2a se = b 2 4ac > 0 ci sono due soluzioni: x + = b + b 2 4ac, x = b b 2 4ac 2a 2a se = b 2 4ac = 0 c è una soluzione: x = b 2a se = b 2 4ac < 0 non ci sono soluzioni
14 Disequazioni di 2 grado ax 2 + bx + c > 0 ax 2 + bx + c < 0 ax 2 + bx + c 0 ax 2 + bx + c 0 esempio: 3x 2 + x 2 > 0 x 2 + 2x 1 5x 2 + x < 0 Formula risolutiva per ax 2 + bx + c > 0 se a > 0 soluzione: x < x o x > x + o, anche, x (, x ) (x +, + ) se a < 0 soluzione: x + < x < x o, anche, x (x +, x ) Motivazione: Dalle formule di fattorizzazione sappiamo che ax 2 + bx + c = a (x x ) (x x + ). La formula risolutiva si ottiene dunque attraverso la regola del segno. Risolvere x 2 + 6x 9 0
15 Alcune equazioni/disequazioni particolari Sistemi di disequazioni: la soluzione del sistema è data dall intersezione fra le soluzioni delle singole disequazioni { x esercizi: 2 { 9 0 x 2 2x + 1 > 0 x + 1 > 0 x x 2 0 Equazioni e disequazioni biquadratiche: sostituzione t = x 2 esercizi: x 4 + x 2 12 = 0 x 4 4x 2 0 Equazioni e disequazioni di grado abbassabile: mediante fattorizzazione si risolvono mediante la si risolvono esercizi: x 3 4x 3 5x = 0 4x 5 x 3 < 0
16 Equazioni frazionarie
17 Disequazioni frazionarie
UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI
UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI N. ore previste 35 Periodo di realizzazione SETTEMBRE OTTOBRE 2017 in termini di competenze, abilità e conoscenze Monomi Polinomi Prodotti
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
ESERCITAZIONE 10 : EQUAZIONI E DISEQUAZIONI
ESERCITAZIONE 10 : EQUAZIONI E DISEQUAZIONI e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 11 Dicembre 2012 Esercizio
Polinomi. Corso di accompagnamento in matematica. Lezione 1
Polinomi Corso di accompagnamento in matematica Lezione 1 Sommario 1 Insiemi numerici 2 Definizione di polinomio 3 Operazioni tra polinomi 4 Fattorizzazione Corso di accompagnamento Polinomi Lezione 1
LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche
LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09 Classe II E - corso Tecnologico Scomposizioni in fattori dei polinomi Scomposizione di un polinomio in fattori Concetto di scomposizione Raccoglimento
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
DIVISIONE TRA POLINOMI E SCOMPOSIZIONI
DIVISIONE TRA POLINOMI E SCOMPOSIZIONI Esegui la seguente divisione fra polinomi e scrivi quoziente e resto.. b b 8b b 5 : b 5 5. x x x : x. 6 x x x : x x Q b b R 5; Q x x x ; R x 7 9 Q x x x ; R x Esegui
Identità ed equazioni
Matematica e-learning - Identità ed equazioni Prof. [email protected] A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI
CLASSE 1 B AFM 1. L ARITMETICA E L ALGEBRA DEI NUMERI I numeri naturali: che cosa sono, a cosa servono. Operazioni con i numeri naturali e loro proprietà: addizione, sottrazione, moltiplicazione, divisione,
raggruppiamo il quadrato di binomio dividiamo per 0 effettuiamo i calcoli a secondo membro Distinguiamo i tre casi: 2 ± 2 ; 2 = 0 ; + si ottiene, =
Equazioni di II grado Equazione di II grado completa Un equazione di II grado è un equazione che, ridotta a forma normale, è del tipo ++=0 con 0. Per risolverla occorre calcolare il discriminante dell
ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.
B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
Equazioni di secondo grado parametriche
Equazioni di secondo grado parametriche Data un equazione parametrica di secondo grado, determinare per quali valori di k:. l equazione ha due soluzioni reali; Porre 0. da ora in poi, nei punti seguenti,
3 Equazioni e disequazioni.
3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti
IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19
IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19 Classe 1L MODULO 1: I NUMERI NATURALI. Cap 1. 1. Le operazioni definite nell insieme dei numeri naturali
PROGRAMMAZIONE ANNUALE
ISTITUTO di ISTRUZIONE SUPERIORE NICOLA MORESCHI SETTORE ECONOMICO Amministrazione, finanza e marketing Relazioni internazionali per il marketing Sistemi informativi aziendali LICEO SCIENTIFICO Viale San
Istituto d Istruzione Superiore Francesco Algarotti
Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione
Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.
Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo
Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.
Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere
( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =
1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.
U.D. N 05 La fattorizzazione dei polinomi
Unità Didattica N 05 La fattorizzazione dei polinomi 51 U.D. N 05 La fattorizzazione dei polinomi 01 La messa in evidenza totale 0 La messa in evidenza parziale 03 La differenza di due quadrati 04 Somma
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni
CALCOLO LETTERALE. Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere:
CALCOLO LETTERALE Le espressioni letterali sono espressioni contenenti operazioni fra numeri e lettere: 5x. x + y ab + c, In generale le lettere rappresentano numeri generici. Ad esempio, se vogliamo convertire
Intersezione tra retta e parabola e tangenti
L equazione di una parabola è in generale: y = ax 2 + bx +c mentre quella di una retta y = mx + q Per trovare i punti di intersezione tra una retta e una parabola si parte dalla considerazione che i punti
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
Un polinomio è un espressione algebrica data dalla somma di più monomi.
1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine
LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI
LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI Anno scolastico 2016/2017 Docente: Stefania Petronelli Matematica classe I sez. Internazionale L. Sasso La matematica a colori 1 ed. azzurra Petrini Gli insiemi:
Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco
Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi
1) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni.
Il calcolo letterale. BM 2; NLM 57 ) Ricorda: Le lettere sostituiscono i numeri e puoi svolgere le medesime operazioni. a + a = a + b = a a = a b = a. a = a. b = a : a = a : b = a. a. a = a -n = a -n.
DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2
DIPARTIMENTO DI MATEMATICA A.S. 00-05 EQUAZIONI DI GRADO SUPERIORE AL 1. EQUAZIONI RISOLVIBILI MEDIANTE SCOMPOSIZIONE. EQUAZIONI BINOMIE. EQUAZIONI TRINOMIE. EQUAZIONI RECIPROCHE 1. EQUAZIONI RISOLVIBILI
Le espressioni letterali
Calcolo letterale Le espressioni letterali Sono espressioni contenenti numeri reali e lettere. A=(B+b)h/2 A=2(b+h) Le lettere rappresentano numeri reali. La stessa lettera assume sempre lo stesso valore.
Programma di Matematica. Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO IL CALCOLO LETTERALE
Programma di Matematica Classe 1 B odont / d anno scolastico 2009/10 Insegnante: Maria Teresa DI PRIZIO IL CALCOLO NUMERICO I numeri naturali e numeri razionali Definizione di numero naturale e le quattro
DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):
P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono
3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.
1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
PROGRAMMA DI MATEMATICA
PROGRAMMA DI MATEMATICA Classe 1 A /1 B GRAFICA anno scolastico 2015-2016 La teoria degli insiemi Il concetto di insieme, il simbolo di appartenenza, la rappresentazione grafica di Eulero- Venn, la rappresentazione
Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona
Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado
Le quattro operazioni
Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,
Polinomi Prodotti notevoli. Esempi di polinomi
Pagina 1 Polinomi Definizione: Dicesi polinomio la somma algebrica di due o più monomi. I monomi si dicono i termini del polinomio. Un polinomio formato da due termini dicesi binomio, da tre termini trinomio,
PROGRAMMAZIONE MATEMATICA classe seconda economico/turistico:
PROGRAMMAZIONE MATEMATICA classe seconda economico/turistico: UDA n. 0 Statistica descrittiva (ripasso da attuare in un qualsiasi momento dell a.s.) Prerequisiti Padronanza del calcolo nei vari insiemi
Programma di matematica classe II sez. F a.s
Programma di matematica classe II sez. F a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il primo biennio vol.2 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------
Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?
Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc
Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2
Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione
Il calcolo letterale
Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A.
Precorso di Matematica Maria Margherita Obertino Università degli Studi di Torino Di.S.A.F.A. Scomposizione dei polinomi in fattori primi ( 2.4 del testo) Equazioni di primo grado ( 3.1 del testo) Equazioni
Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini
Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,
U.D.1: POLINOMI conoscere le regole della scomposizione in fattori di un polinomio (raccoglimento totale e parziale, prodotti notevoli).
Docente Materia Classe Cristina Frescura Matematica 2B Programmazione Consuntiva Anno Scolastico 2011-2012 Data 6 giugno 2012 Obiettivi Cognitivi Obiettivi minimi U.D.1: POLINOMI conoscere le regole della
LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO
LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni
SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale)
Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti
Esami di Idoneità/Integrativi. Liceo delle Scienze Umane / Economico Sociale / Linguistico
Esami di Idoneità/Integrativi Liceo delle Scienze Umane / Economico Sociale / Linguistico Materia: MATEMATICA Alla Classe seconda Contenuti essenziali TEORIA DEGLI INSIEMI Rappresentazioni Sottoinsiemi
CONTENUTI. Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti. I grado II grado
CONTENUTI Ci proponiamo un ripasso di argomenti sicuramente svolti nelle scuole superiori e quindi noti a tutti EQUAZIONI I grado II grado intere fratte intere fratte EQUAZIONI ALGEBRICHE generalità Dicesi
DIVISIONE TRA POLINOMI IN UNA VARIABILE
DIVISIONE TRA POLINOMI E SCOMPOSIZIONE Prof. Erasmo Modica [email protected] DIVISIONE TRA POLINOMI IN UNA VARIABILE L algoritmo della divisione tra polinomi è analogo a quello della divisione ordinaria
SCOMPOSIZIONE IN FATTORI PRIMI Di un Polinomio
SCOMPOSIZIONE IN FATTORI PRIMI Di un Polinomio 1 Ripassiamo i prodotti notevoli NOME TIPO SVILUPPO Quadrato di un binomio ( a + b ) 2 a 2 + 2ab + b 2 Cubo di un binomio ( a + b ) 3 a 3 + 3a 2 b +3ab 2
Le eguaglianze algebriche: Identità ed Equazioni
Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza
MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO
MATEMATICA SCOMPOSIZIONE E FRAZIONE ALGEBRICHE GSCATULLO 1 Scomposizione e frazioni algebriche Scomposizione in Fattori Scomporre in fattori un polinomio significa scriverlo sotto forma di un prodotto
Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese
Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere
14 : : : : 3 15 : 5. 2) Fra le seguenti espressioni indica, motivando la risposta, i monomi:
COMPITI DELLE VACANZE DI MATEMATICA CLASSI PRIME A.F.M. A.S. 0/5 ) Calcola le seguenti espressioni: 5 0 : 7 : 8 : : 5 : 5 5 6 0 : : : : : b) 7 9 5 5 5 7 0 5 9 b) 6 66 :6 :6 :6 : : : : 5 d) 7 : 9 6 7 8
Disequazioni di II grado
Disequazioni di II grado Scomposizione di un trinomio di 2 grado La scomposizione del trinomio di 2 grado ax 2 + bx + c dipende dal discriminante. Se questo è positivo esistono radici reali e distinte
PROGRAMMA a.s CLASSE 1 O
N. ORE SVOLTE : 123 CLASSE 1 O 1) MATEMATICA.VERDE A- I NUMERI di M. Bergamini, A. Trifone, G. Bororzzi. 2) MATEMATICA.VERDE C-IL CALCOLO LETTERALE di M. Bergamini, A. Trifone, G. Bororzzi. GLI INSIEMI
Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler
Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal
Gli insiemi e le relazioni. Elementi di logica
capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni.
1. ESPRESSIONE LETTERALE Si dice espressione letterale una espressione formata da numeri, lettere e segni. 2. MONOMIO 2a + b -3 due a più b meno tre 3x 2 x + 5 3 ics al quadrato ics + 5 MONOMI Si dice
