AMPLIFICATORI OPERAZIONALI DEFINIZIONI AMPLIFICATORE INVERTENTE AMPLIFICATORE NON INVERTENTE INTEGRATORE DERIVATORE SOMMATORE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AMPLIFICATORI OPERAZIONALI DEFINIZIONI AMPLIFICATORE INVERTENTE AMPLIFICATORE NON INVERTENTE INTEGRATORE DERIVATORE SOMMATORE"

Transcript

1 AMPLIFICATOI OPEAZIONALI DEFINIZIONI AMPLIFICATOE INVETENTE AMPLIFICATOE NON INVETENTE INTEGATOE DEIVATOE SOMMATOE 2 Buona parte dei circuiti elettronici è costituita da componenti integrati, composti ciascuno da numerosi elementi attii e passii miniaturizzati, e nei circuiti analogici questi integrati sono quasi tutti amplificatori operazionali. L Amplificatore Operazionale (Op Amp Operational Amplifiers) è essenzialmente, un amplificatore di tensione, aente le seguenti caratteristiche: alto guadagno; ingresso differenziale; alta impedenza di ingresso e bassa impedenza di uscita. Amplificatori Operazionali 1

2 3 Il termine di amplificatore operazionale deria dal fatto che, originariamente, tale dispositio enia usato nei calcolatori analogici per solgere operazioni matematiche (come somme, sottrazioni, moltiplicazioni, integrali, deriate, ecc...) su segnali elettrici. IprimiOp Amp furono realizzati negli anni 40 con tubi a uoto; tali dispositii erano oluminosi e richiedeano una noteole potenza di alimentazione. L aento del transistor bipolare consentì un noteole miglioramento con la realizzazione di Op Amp come moduli a componenti discreti. 4 Successiamente la realizzazione di Op Amp come circuiti integrati monolitici costituì una era e propria rioluzione nel campo dell elettronica analogica. Il primo di tali dispositii fu realizzato intorno agli anni 60 dalla Fairchild. Sempre la stessa casa introdusse sul mercato, nel 1968 l Op Amp μa741, che dienne ben presto uno standard industriale. Da allora il numero di Op Amp edicaseproduttriciècresciuto enormemente, tuttaia il 741 continua ad essere utilizzato. Amplificatori Operazionali 2

3 5 L amplificatore operazionale (Op Amp ) è un circuito integrato costituito da una rete di resistenze, capacità, diodi e transistori incapsulati in unico contenitore di plastica (di uso frequente è il dual in-line package (o DIP) da otto pin. L Op Ampo può essere definito funzionalmente come un amplificatore differenziale, cioè un dispositio attio a tre terminali che genera al terminale di uscita una tensione proporzionale alla differenza di tensione fornite ai due terminali di ingresso. 6 Le tensioni anno sempre riferite ad un potenziale comune, detto potenziale di massa. Quindi dato un punto di riferimento B (massa), se in un punto A si dice che c è una tensione pari a V a significa che tra A e B c è una differenza di potenziale paria V a. Amplificatori Operazionali 3

4 7 Il simbolo grafico, comunemente, utilizzato per rappresentare l OP Amp è il seguente: +V CC Con il simbolo si indica il canale inertente V 1 V + OUT Con il simbolo + V si indica il canale 2 -V non inertente EE 8 V 1 : tensione sull ingresso inertente +V CC +V CC e -V EE :tensioni di CC EE alimentazione V OUT : tensione di uscita V 1 V 2 + -V EE V OUT V 2 : tensione sull ingresso non inertente Amplificatori Operazionali 4

5 9 L Amplificatore Operazionale (Op Amp) è un circuito integrato di tipo lineare a due ingressi, detti inertente (-) e non inertente (+). Esso fornisce una tensione d uscita V OUT proporzionale alla differenza fra le due tensioni V(+) e V(-) applicate agli ingressi. La relazione fra ingressi e uscita è quindi la seguente: V OUT = A d [V(+) -V(-)] doe il coefficiente di proporzionalità A d è detto: guadagno differenziale di tensione V+ + + V OUT 0 V S concorde con gli ingressi V OUT positia V S V- VOLT V+ V S discorde con gli ingressi = V OUT negatiavs + V- V OUT 0 VOLT 10 Il circuito base di un amplificatore operazionale è l amplificatore differenziale. L amplificatore differenziale ha il compito di amplificare una differenza di tensione tra due punti di un circuito, indipendentemente dal loro singolo alore rispetto a massa. Come tutti gli amplificatori di tensione, anche l amplificatore differenziale dee presentare tra i due ingressi, indicati con + e -, un impedenza alta (idealmente infinita) mentre l uscita dee aere un impedenza bassa (idealmente nulla). Il circuito è caratterizzato da un guadagno differenziale, A d,che definisce i la sua capacità iàdi amplificare il segnale differenziale: id = Il potenziale medio dei due morsetti rispetto a massa, in genere non nullo, è inece detto segnale di modo comune: cm = ( )/2. Amplificatori Operazionali 5

6 11 Simbolo circuitale di un amplificatore differenziale In un amplificatore differenziale ideale, il segnale di modo comune non ha alcun effetto sull uscita ed il segnale out è proporzionale al segnale differenza: out = A d id. 12 Gli amplificatori differenziali reali, purtroppo amplificano, in parte, anche il segnale di modo comune, e quindi il segnale all uscita del circuito è dato da: OUT = A d id + A cm cm. A cm è detto guadagno di modo comune. Un buon amplificatore differenziale dee aere alto guadagno differenziale, A d, e basso guadagno di modo comune, A cm. Supponiamo che id =50V mentre cm =500mV, per eitare che all uscita dell amplificatore lifi il trasferimento del segnale di modo comune oscuri completamente il segnale differenziale amplificato, il rapporto A d / A cm dee essere maggiore di 500 mv / 50 V =10 4. Amplificatori Operazionali 6

7 13 Il rapporto A d / A cm è un importante fattore di merito per un amplificatore differenziale ed è detto rapporto di reiezione di modo comune (Common Mode ejection atio). Gli amplificatori operazionali sono amplificatori differenziali integrati caratterizzati da amplificazioni differenziali eleate (solitamente compreso tra 10 4 e 10 6 ), CM fino a 110 db, resistenze d ingresso molto altre (anche superiori a ) e resistenze d uscita, al massimo, di qualche ohm. 14 Amplificatori Operazionali 7

8 15 16 Circuito equialente di un amplificatore operazionale La tensione in uscita da un amplificatore operazionale è direttamente proporzionale alla tensione differenziale in ingresso. Pertanto, un amplificatore operazionale può essere schematizzato come un generatore di tensione controllato in tensione. Amplificatori Operazionali 8

9 Per poter comprendere le affermazioni che seguiranno, nonché accettare come alide le formule utilizzate, occorre partire da un preciso presupposto, oero che l amplificatore operazionale dee essere considerato come ideale, cioè dee possedere le seguenti caratteristiche: 17 Parametro simbolo alore Guadagno di tensione A d infinito esistenza d ingresso in infinita esistenza d uscita out nulla eiezione di modo comune CM infinita Banda passante a catena aperta BW infinita oero, in altri termini, l operazionale dee -amplificare senza limiti i segnali applicati - non assorbire corrente all ingresso - aere una V out indipendente dal carico - amplificare solo la differenza [V(+) -V(-)] - saper gestire segnali ad alta frequenza E utile notare che dai parametri sopra descritti deria una proprietà molto importante, oero che, grazie all eleato guadagno, i due ingressi si possono ritenere pressoché equipotenziali. Nell operazionale ideale, inoltre, si escludono ariazioni dei parametri con la temperatura o con la tensione di alimentazione, si immagina che la tensione d uscita sia nulla se non i sono segnali in ingresso, che l uscita possa ariare istantaneamente e che non generi alcun rumore elettrico. Proprio basandoci sull operazionali ideale, ediamo ora le configurazioni di base, oero quelle che permettono di realizzare in pratica tutti i circuiti applicatii oggi utilizzati. In un amplificatore operazionale ideale la tensione d uscita può essere espressa come: OUT = A d ( ). In generale, si possono erificare tre possibili condizioni per la tensione d uscita. Se - = 0, out sarà in fase con la tensione d ingresso ( OUT = A d + ). Se + =0, out arà fase opposta a - ( OUT =-A d - ). Se sono presenti sia + sia - allora si arà: OUT =A d ( ). Pertanto, a seconda delle condizioni sulle tensioni in ingresso, i circuiti con amplificatori operazionali possono essere classificati in tre configurazioni fondamentali: amplificatori non inertenti; amplificatori inertenti; amplificatori differenziali. 18 Amplificatori Operazionali 9

10 19 Un amplificatore inertente può essere realizzato ponendo a massa l ingresso non inertente, collegando il terminale di uscita al terminale di ingresso inertente attraerso la resistenza F, e collegando il terminale inertente al generatore di segnale attraerso la resistenza 1. Dalla legge di Kirchhoff per le tensioni, si ha: s = 1 i s - id id = - F i f - OUT Per la legge di Kirchhoff per le correnti al terminale inertente, si ha: i s = i f + i i 20 Nell ipotesi di amplificatore operazionale ideale, A d = S = 1 i s - id ; id = - F i f - OUT e 1 i = 0, possiamo scriere: i s OUT 1 F ( i 0 i i ) 1 s f S i s se A d s id s OUT s is Ad 1 S OUT 1 F s 1 A F OUT F OUT s f 1 s 1 Amplificatori Operazionali 10

11 21 Poiché nel circuito amplificatore inertente la tensione al terminale inertente è pari a zero, si considera questo terminale come massa irtuale. L amplificatore Lamplificatore operazionale controlla la tensione di uscita in modo tale che la tensione - sia pari a zero. Benché il terminale inertente rappresenti una massa irtuale, questo terminale non è collegato direttamente a massa, oero non esiste un percorso per la corrente continua tra il terminale inertente e massa. Un errore molto comune nell analisi di circuiti con operazionali è quello di porre in cortocircuito questo terminale con la massa. icapitoliamo L analisi dell amplificatore operazionale in configurazione inertente può essere facilitata ricordando che l impedenza d ingresso di un operazionale ideale è infinita. L impedenza d ingresso infinita implica infatti una corrente d ingresso nulla. Grazie inoltre al guadagno g infinito tra i due ingressi non i è alcuna caduta di tensione e pertanto, essendo l ingresso non inertente a massa, anche la tensione all ingresso inertente sarà zero. Per tale motio si dice che l ingresso inertente rappresenta una massa irtuale, oero a tensione nulla, come l altro ingresso. Inoltre, poiché l impedenza d ingresso è infinita, la corrente attraerso Z 1 sarà uguale a quella in Z F. 22 Z F i F i 1 = i F V IN Z 1 0 V V OUT V IN i 1 Z 1 i (-) = 0 Z F V OUT Si noti che le impedenze Z possono essere delle semplici resistenze oppure delle reti reattie anche complesse: in entrambi i casi arranno le formule d ora in poi indicate Amplificatori Operazionali 11

12 23 i 1 i F Z F in sintesi: V IN Z 1 i 1 = V IN / Z 1 i F = -V OUT /Z F i (-) = 0 V OUT ma... i F = i 1 V (-) = 0 e quindi -V ingresso OUT / Z F = V IN /Z 1 da cui 50mV/di V OUT / V IN = - Z F / Z 1 e quindi inersione del segnale A f = - Z F / Z 1 uscita 2V/di guadagno di tensione ad anello chiuso 24 Lo schema di un amplificatore non inertente preede che la tensione in ingresso s sia applicata al terminale d ingresso non inertente. La tensione n x proporzionale a quella d uscita, è riportata al terminale inertente mediante il partitore di resistenze 1 e F. Applicando, alla maglia d ingresso, la legge di Kirchhoff per le tensioni, si ottiene: s = x + id Amplificatori Operazionali 12

13 25 La tensione differenza, id = s - x, è amplificata dall operazionale, la cui uscita è riportata indietro al terminale d ingresso inertente. Questo è dunque un circuito retroazionato. 26 Nell ipotesi di amplificatore operazionale ideale, i i =0, la tensione x può essere espressa in funzione della tensione n di uscita utilizzando l equazione del partitore di tensione formato dalle resistenze 1 e F. i i x OUT s id OUT 1F 1F Amplificatori Operazionali 13

14 27 OUT Ad id 1 1 OUT s id OUT s OUT 1F 1F Ad Con l ipotesi lipotesi di amplificatore operazionale ideale, A d,il termine OUT /A d 0. s 1 1 F OUT Si osseri che basta scegliere opportunamente le due resistenze, F e 1 per realizzare un amplificatore di tensione con il guadagno desiderato. A f OUT s 1 F 1 28 icapitoliamo Applicando il segnale da amplificare all ingresso non inertente e collegando le impedenze di retroazione fra uscita, ingresso inertente e massa, si ottiene lo schema riportato in figura, chiamato amplificatore non-inertente poiché il segnale d uscita risulta in fase con quello d ingresso. V IN 0 V Z F Z 1 i 1 = i F V OUT Per analizzarne il funzionamento occorre partire dai medesimi presupposti già isti per l inertente oero che, grazie alla resistenza d ingresso infinita, risulta i (-) = 0. Ne consegue che Z 1 e Z F sono percorse dalla medesima corrente. icordando poi che i due ingressi sono al medesimo potenziale (A d = infinito) si ha che la tensione ai capi di Z 1 è uguale al segnale d ingresso V IN ( Z 1 i 1 =V IN ). La tensione d uscita sarà quindi la somma delle tensioni ai capi di Z 1 e Z F, oero: V OUT = Z 1 i 1 + Z F i 1 = V IN + Z F (V IN /Z 1 ) = V IN (1 + Z F /Z 1 ) Si può quindi dedurre che il guadagno A f =V OUT OUT /V IN è dato da: A f = 1 + Z F / Z 1 Amplificatori Operazionali 14

15 29 Si noti che - in base alla formula ottenuta - il guadagno non potrà mai essere inferiore all unità, e se si desidera ottenere un guadagno unitario occorre porre Z F = 0 oppure Z 1 infinita (oiamente si possono soddisfare, contemporaneamente entrambe le condizioni). V IN A f = 1 + Z F / Z 1 Z 1 Z F i 1 = i F V OUT Questa configurazione i n presenta un impedenza d ingresso infinita ed una resistenza d uscita pressoché nulla. Per questo motio l amplificatore noninertente iene spesso usato come buffer per isolare la sorgente di segnale dal carico, in modo da eitare effetti di carico indesiderati. ingresso 50mV/di segnale amplificato uscita 2V/di Un integratore è un circuito la cui uscita è proporzionale all integrale del segnale di ingresso. Un circuito che esegue la funzione di integrazione può essere realizzato tramite un amplificatore operazionale in configurazione inertente doe la resistenza F nell amplificatore è sostituita con un condensatore C F. Amplificatori Operazionali 15

16 i IN 1 Q C dqcd dq d C dt dt d OUT ic C dt i i C d C d dt dt C IN OUT IN F OUT 1 1 F d OUT 1 IN dt C 1 F 1 t ( ) d (0) OUT IN OUT C 1 F 0 t Un deriatore è un circuito la cui uscita è proporzionale alla deriata rispetto al tempo del segnale di ingresso. Il circuito deriatore può essere ottenuto semplicemente scambiando il condensatore con la resistenza nel circuito integratore. Amplificatori Operazionali 16

17 OUT d i ; ic C dt F IN OUT d IN FC dt i C i Nel circuito sommatore c e una resistenza di feedback F e numerosi segnali di ingresso 1, 2,, n ognuno applicato ad un corrispondente resistore i quali sono 1, 2,, n connessi al terminale inertente dell amplificatore operazionale. La legge di Ohm dice che le correnti i1, i2,, i n sono date da: n i, i,, in n itotale i1i2 in if 1 2 n n Amplificatori Operazionali 17

18 i f n n OUT F if id id i OUT F f 0 (ipotesi di Op Amp ideale) f f f OUT 1 2 n 1 2 n Amplificatori Operazionali 18

7. AMPLIFICATORI AMPLIFICATORE 7.1 PARAMETRI TIPICI TIPOLOGIE PRINCIPALI RAPPRESENTAZIONE LOGICA RAPPRESENTAZIONE CIRCUITALE AMPLIFICATORE DI POTENZA

7. AMPLIFICATORI AMPLIFICATORE 7.1 PARAMETRI TIPICI TIPOLOGIE PRINCIPALI RAPPRESENTAZIONE LOGICA RAPPRESENTAZIONE CIRCUITALE AMPLIFICATORE DI POTENZA 7. AMPLIFICATOI AMPLIFICATOE Dispositio analogico attio che amplifica il alore di un segnale elettrico (tensione, corrente o potenza) preserandone la forma. E rappresentato circuitalmente come tripolo

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale APPUNTI DI ELETTONICA AMPLIFICATOE OPEAZIONALE L amplificatore operazionale ideale Lo schema seguente è lo schema circuitale dell amplificatore operazionale (A.O.): vd v v A ( v v ) dove: è la tensione

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Componenti in corrente continua

Componenti in corrente continua Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplificatori operazionali - - O ( - - ) (*) >> (*) nella zona ad alto guadagno Per amplificatori operazionali (OP-MP) si intende quella categoria di dispositii integrati che presentano due morsetti di

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano Lezione 2: Amplificatori operazionali Prof. Mario Angelo Giordano L'amplificatore operazionale come circuito integrato è uno dei circuiti lineari maggiormente usati. L'amplificatore operazionale è un amplificatore

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

L Amplificatore Operazionale

L Amplificatore Operazionale L Amplificatore Operazionale Buona parte dei circuiti elettronici è costituita da componenti integrati, composti ciascuno da numerosi elementi attivi e passivi miniaturizzati, e nei circuiti analogici

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Amplificatori elementari con carico attivo MOSFET E connesso a diodo

Amplificatori elementari con carico attivo MOSFET E connesso a diodo Amplificatori elementari con carico attio MOSFET E connesso a diodo i ( ) = K g = µ C W L I V t m n OX G. Martines MOSFET DE connesso a diodo GS = 0, il transistore può funzionare in regione di triodo

Dettagli

Elettronica analogica: cenni

Elettronica analogica: cenni Elettronica analogica: cenni VERSIONE 23.5.01 valle del componente di acquisizione dati nella struttura funzionale di un sistema di misura: misurando x y y z sens elab pres ambiente w abbiamo già considerato

Dettagli

L amplificatore operazionale

L amplificatore operazionale L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile

Dettagli

Schemi e caratteristiche dei principali amplificatori a BJT

Schemi e caratteristiche dei principali amplificatori a BJT Schemi e caratteristiche dei principali amplificatori a BJT Sommario argomenti trattati Schemi e caratteristiche dei principali amplificatori a BJT... 1 Amplificatore emettitore comune o EC... 1 Amplificatore

Dettagli

CAP. 2 AMPLIFICATORI OPERAZIONALI

CAP. 2 AMPLIFICATORI OPERAZIONALI CAP. AMPLIFICATOI OPEAZIONALI SOMMAIO: Amplificatore operazionale ideale Amplificatore inertente e non-inertente Progetto di un amplificatore Non-idealità Circuiti amplificatori Integratori e deriatori

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Diodi e transistor sono spesso utilizzati in circuiti ad elementi discreti, insieme a R, C, L. Il diodo è spesso utilizzato nei circuiti

Diodi e transistor sono spesso utilizzati in circuiti ad elementi discreti, insieme a R, C, L. Il diodo è spesso utilizzato nei circuiti Diodi e transistor sono spesso utilizzati in circuiti ad elementi discreti, insieme a R, C, L. Il diodo è spesso utilizzato nei circuiti raddrizzatori per convertire la corrente alternata, fornita dalla

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

! "#$%"#&'&" ( ) *( +, ''-'. / (0 *123,4 5, %, 1,%""" / / (*6 7, 48 5,8 9-1,'$$:

! #$%#&'& ( ) *( +, ''-'. / (0 *123,4 5, %, 1,% / / (*6 7, 48 5,8 9-1,'$$: ! "#$%"#&'&" ( ) *( +, ''-'. 1 / (0 *13,4 5, %, 1,%""" / / (*6 7, 48 5,8 9-1,'$$: / ' % 0. ; < # 8=< 8= 3 ' < %. 0 5? 6? 9?

Dettagli

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione:

figura 4.20 La formula generale del rivelatore, valida per segnali d ingresso sinusoidali, è data dall espressione: 4.12 Il circuito rivelatore La funzione svolta da un circuito rivelatore è simile al processo di raddrizamento svolto da un diodo così come illustrato nel paragrafo 2.3; la differenza sostanziale tra un

Dettagli

Laboratorio II, modulo Amplificatori operazionali (cfr.

Laboratorio II, modulo Amplificatori operazionali (cfr. Laboratorio II, modulo 2 20152016 Amplificatori operazionali (cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html) Amplificatori operazionali Amplificatori operazionali sono disegnati come triangoli

Dettagli

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). Il MOSFET (Metal Oxide Semiconductor Field Effect Transistor). a figura 1 mostra la sezione di una porzione di fetta di silicio in corrispondenza di un dispositio MOSFET a canale n. In condizioni di funzionamento

Dettagli

MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET

MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET Elettronica Applicata a.a. 2015/2016 Esercitazione N 4 MISURA DELLA TENSIONE DI OFFSET DI UN AMPLIFICATORE OPERAZIONALE COMPENSAZIONE DELL OFFSET Elettronica applicata Prof. Ing. Elena Biagi Sig. Marco

Dettagli

1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1

1 Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli R 2. v out R 1 Prova scritta di fine corso di Meccanica Applicata alle Macchine, modulo da 5CFU Amplificatore a transconduttanza per pilotaggio in corrente di minuscoli motori DC Il circuito mostrato in figura è uno

Dettagli

Circuiti d ingresso analogici

Circuiti d ingresso analogici ircuiti d ingresso analogici - ircuiti d ingresso analogici - Il riferimento per i potenziali Schemi single-ended e differenziali I segnali elettrici prodotti dai trasduttori, oppure preleati da un circuito

Dettagli

Richiami di Elettronica (parte III)

Richiami di Elettronica (parte III) ppunti di Misure Elettriche ichiami di Elettronica (parte III) mplificatore differenziale... Descrizione quantitatia e qualitatia generale...4 Fattori di merito...5 mplificatori operazionali...6 Configurazione

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i

Dettagli

L Amplificatore Operazionale

L Amplificatore Operazionale L mplificatore perazionale ommario L amplificatore perazionale: Introduzione agli.. Caratteristiche degli.. ideali mplificatore Inertente e NN Inertente Inseguitore Differenziale (mpl. da strumentazione)

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI RETROAZIONE (FEEDBACK) S in + + G S out! S out = G!( S in + "S ) out S out = G 1! "G S G in! = G 1" #G G! = G 1 "

Dettagli

Amplificatori. (versione del ) Amplificatore

Amplificatori.  (versione del ) Amplificatore mplificatori www.die.ing.unibo.it/pers/mastri/didattica.htm (ersione del 8--0) mplificatore Un amplificatore è un dispositio a due porte in grado di aumentare l ampiezza del segnale s i (t) applicato alla

Dettagli

6. Generatori di corrente controllati

6. Generatori di corrente controllati 6. Generatori di corrente controllati 6.1 Generatori con un solo operazionale In molte applicazioni è utile poter disporre di generatori di corrente controllati in tensione. Un modo semplice, ad esempio,

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

Convertitori da tensione a impulsi

Convertitori da tensione a impulsi Misure basate sul conteggio di impulsi Conertitori da tensione a impulsi - Conertitori da tensione a impulsi - Conertitore tensione-frequenza Schema di principio Il conertitore tensione-frequenza consente

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590 CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una

Dettagli

OSCILLATORE A SFASAMENTO

OSCILLATORE A SFASAMENTO Elettronica Applicata a.a. 2013/2014 Esercitazione N 5 OSCILLATORE A SFASAMENTO Fabio Cioria Andrea Giombetti Giulio Pelosi (fabio.cioria@insono.com) (giombetti@unifi.it) (giulio.pelosi@insono.it) www.echommunity.com/courses.htm

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

Curva caratteristica del transistor

Curva caratteristica del transistor Curva caratteristica del transistor 1 AMPLIFICATORI Si dice amplificatore un circuito in grado di aumentare l'ampiezza del segnale di ingresso. Un buon amplificatore deve essere lineare, nel senso che

Dettagli

V - + V o. = E V d. V d = V + - V - (E ) V +

V - + V o. = E V d. V d = V + - V - (E ) V + 4 L'AMPLIFICATORE OPERAZIONALE 40 4 L'amplificatore operazionale (ultimo aggiornamento: 9 Marzo 2001) L'amplificatore operazionale e un elemento circuitale largamente utilizzato nei circuiti elettronici

Dettagli

Teoria dei circuiti reazionati

Teoria dei circuiti reazionati Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi

Dettagli

Amplificatore differenziale con operazionale: studio e simulazione

Amplificatore differenziale con operazionale: studio e simulazione Amplificatore differenziale con operazionale: studio e simulazione A cura del prof: Ing. Fusco Ferdinando Indice STUDIO TEORICO pag.3 PROVA SIMULATA pag.9 PROVA PRATICA IN LABORATORIO pag.14 RIFERIMENTI

Dettagli

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq

12. F.d.T. con uno ZERO nell'origine ed un POLO non nell origine: Derivatore invertente reale. Per prima cosa troviamo Z 1. Quindi: eq Appunti di ELETTONIA lassi QUINTE Integratori e Derivatori attivi:.d.t., diagrammi di Bode, risposte nel tempo A.S. 999-000 - martedì 7 dicembre 999 Pagina n. 53..d.T. con uno EO nell'origine ed un POLO

Dettagli

GLI AMPLIFICATORI OPERAZIONALI

GLI AMPLIFICATORI OPERAZIONALI Elettronica & Telecomunicazioni GLI AMPLIFICATORI OPERAZIONALI Alunni Marcone Luigina Martire Settimio Classe V B Anno Scolastico 1999/2000 GLI AMPLIFICATORI OPERAZIONALI Alunni: Marcone Luigina, Martire

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Generatori di Tensione Continua

Generatori di Tensione Continua Corso Sensori e ivelatori - Ponte di Wheatstone Generatori di Tensione Continua I generatori di tensione continua sono utilizzati per: generare tensioni di riferimento; generare correnti di riferimento;

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1) Capitolo 5 Amplificazione 5.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

I.P.S.I.A. di BOCCHIGLIERO

I.P.S.I.A. di BOCCHIGLIERO I.P.S.I.A. di BOCCHIGLIERO a.s. 2012/2013 classe IV Materia: Elettronica Telecomunicazioni ed Applicazioni Amplificatore operazionale ideale Alunne: Pedace Giusy Santoro Ida Rizzuti Filomena prof. Ing.

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di Convertitore D/A Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di trasformare un dato digitale in una grandezza analogica, in generale una tensione. Naturalmente vi deve essere

Dettagli

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica:

Se la Vi è applicata all ingresso invertente si avrà un comparatore invertente con la seguente caratteristica: I comparatori sono dispositivi che consentono di comparare (cioè di confrontare ) due segnali. Di norma uno dei due è una tensione costante di riferimento Vr. Il dispositivo attivo utilizzato per realizzare

Dettagli

A.S. 2015/16 CLASSE 5 AEE MATERIA: LABORATORIO DI T.P.S.E.

A.S. 2015/16 CLASSE 5 AEE MATERIA: LABORATORIO DI T.P.S.E. A.S. 2015/16 CLASSE 5 AEE MATERIA: LABORATORIO DI T.P.S.E. UNITA DI APPRENDIMENTO 1: AMPLIFICATORI OPERAZIONALI Essere capace di progettare le principali configurazioni circuitali con op-amp. Caratteristiche

Dettagli

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza C. Del Turco 2007 Indice : Cap. 1 I componenti di base (12) 1.1 Quali sono i componenti di base (12) 1.2 I resistori (12)

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 1: ELETTRONICA II Prof. Dante Del Corso - Politecnico di Torino Parte E: Circuiti misti analogici e digitali Lezione n. 19 - E - 1: Comparatori di soglia Comparatori con isteresi Circuiti misti analogici

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 2 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 9.5) e quello invertente (par.

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 5 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA DATI: VIn = 20mV

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale

Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo

Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo SCH 32 Convertitore tensione/frequenza Obiettivi Strumenti e componenti Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo R1 = 1,2 KΩ; R2 = 3,6 KΩ; R4 = 180 Ω; R5 =

Dettagli

2Schemi a blocchi. 2.1 Introduzione. 2.2 Definizione di schema a blocchi

2Schemi a blocchi. 2.1 Introduzione. 2.2 Definizione di schema a blocchi 2Schemi a blocchi 2.1 Introduzione Un sistema di controllo è costituito da più componenti collegati in modo da poter svolgere un determinato compito e una determinata funzione. Questi componenti possono

Dettagli

Analisi dell instrumentation amplifier e suo uso in misure di Fisica

Analisi dell instrumentation amplifier e suo uso in misure di Fisica Analisi dell instrumentation amplifier e suo uso in misure di Fisica Alessandro Pistone Indice 1 Introduzione 1 L instrumentation amplifier 1.1 Amplificatore differenziale..................... Amplificatore

Dettagli

Amplificatore Operazionale Ideale: Amplificatore Invertente: Amplificatore NON-Invertente: out. out

Amplificatore Operazionale Ideale: Amplificatore Invertente: Amplificatore NON-Invertente: out. out Amplificatore Operazionale deale: Amplificatore nertente: i o A Z Z out i Amplificatore NONnertente: i o A Z Z out i Esercizio : Utilizzando il prcipio di sorapposizione degli effetti, ricaare una espressione

Dettagli

Amplificatori a Transistori con controreazione

Amplificatori a Transistori con controreazione Amplificatori a Transistori con controreazione Esempi di amplificatori inertenti (CS e CE) con controreazione. G. Martines 1 G. Martines 2 Modello equialente a piccolo segnale e guadagno di tensione be

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

In elettronica un filtro elettronico è un sistema o dispositivo che realizza Filtri V.Russo Cos è un Filtro? In elettronica un filtro elettronico è un sistema o dispositivo che realizza delle funzioni di trasformazione o elaborazione (processing) di segnali posti al suo ingresso.

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Coppia differenziale MOS con carico passivo

Coppia differenziale MOS con carico passivo Coppia differenziale MOS con carico passivo tensione differenziale v ID =v G1 v G2 e di modo comune v CM = v G1+v G2 2 G. Martines 1 Coppia differenziale MOS con carico passivo Funzionamento con segnale

Dettagli

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n 1 3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene

Dettagli

4 Amplificatori operazionali

4 Amplificatori operazionali 4 Amplificatori operazionali 4.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Analisi del circuito di stabilizzazione in ampiezza dell'oscillatore a ponte di Wien

Analisi del circuito di stabilizzazione in ampiezza dell'oscillatore a ponte di Wien Stabilizzazione dell'mpiezza nell'oscillatore a Ponte di Wien leopoldo rossetto - 5 sett. 00 nalisi del circuito di stabilizzazione in ampiezza dell'oscillatore a ponte di Wien ota: nel testo sono riportati

Dettagli

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1

= A v1 A v2 R o1 + R i2 A v A v1 A v2. se R i2 R o1 Amplificatori a due stadi STADIO 1 STADIO 2 R s R o1 R o2 v s + _ vi1 R i1 + A v1 v i1 _ v i2 R i2 + Av2vi2 _ vo2 RL A v v o2 v i1 = A v1 A v2 R i2 R o1 + R i2 A v A v1 A v2 se R i2 R o1 A.Nigro Laboratorio

Dettagli

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA UNITA DI APPRENDIMENTO 1: RETI ELETTRICHE IN DC E AC Essere capace di applicare i metodi di analisi e di risoluzione riferiti alle grandezze

Dettagli

ITIS H. HERTZ A.S. 2009/2010 Classe IV Corso Serale - Progetto Sirio Programmazione preventiva del Corso di ELETTRONICA

ITIS H. HERTZ A.S. 2009/2010 Classe IV Corso Serale - Progetto Sirio Programmazione preventiva del Corso di ELETTRONICA ITIS H. HERTZ A.S. 2009/2010 Classe IV Corso Serale - Progetto Sirio Programmazione preventiva del Corso di ELETTRONICA OBIETTIVI FORMATIVI GENERALI DELLA DISCIPLINA L allievo deve essere in grado di:

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Circuiti elettronici per la elaborazione analogica delle informazioni

Circuiti elettronici per la elaborazione analogica delle informazioni Circuiti elettronici per la elaborazione analogica delle informazioni La maggior parte dei segnali applicati agli ingressi di un sistema elettronico provengono da dispositivi chiamati sensori i quali,

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

APPUNTI SULL AMPLIFICATORE OPERAZIONALE IDEALE

APPUNTI SULL AMPLIFICATORE OPERAZIONALE IDEALE PPUNTI SULL MPLIFICTOE OPEZIONLE IDELE DVIDE TMBUCHI Sommario. In queste dispense vengono sintetizzate le principali configurazioni di utilizzazione di un amplificatore operazionale. Si analizzano le proprietá

Dettagli

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO 1 CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO Il diodo come raddrizzatore Un semiconduttore contenente una giunzione p-n, come elemento di un circuito elettronico si chiama diodo e viene indicato

Dettagli

CAPITOLO 3 AMPLIFICATORI OPERAZIONALI

CAPITOLO 3 AMPLIFICATORI OPERAZIONALI 70 CAPITOLO 3 AMPLIFICATOI OPEAZIONALI Siamo adesso pronti per intraprendere lo studio di un elemento di grande importanza: l amplificatore operazionale. I primi amplificatori operazionali eniano costruiti

Dettagli

Raddrizzatore monofase a doppia semionda con filtro capacitivo

Raddrizzatore monofase a doppia semionda con filtro capacitivo Raddrizzatore monofase a doppia semionda con filtro capacitivo Nel caso di carichi lineari, a parità di potenza attiva erogata, la corrente (sinusoidale) assorbita dalla sorgente è minima quando la corrente

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

Elettronica = Elaborazione e trasmissione di. Grandezza Fisiche Trasduttori Segnali Elettrici (V,I)

Elettronica = Elaborazione e trasmissione di. Grandezza Fisiche Trasduttori Segnali Elettrici (V,I) Elettronica = Elaborazione e trasmissione di Segnale Potenza Grandezza Fisiche Trasduttori Segnali Elettrici (V,I) Informazione contenuta nella variazione rispetto ad un livello di riferimento Segnali

Dettagli

4.13 Il circuito comparatore

4.13 Il circuito comparatore 4.13 Il circuito comparatore Il circuito comparatore è utile in tutti quei casi in cui si debba eseguire un controllo d ampiezza di tensioni continue; il dispositivo si realizza, generalmente, con un microamplificatore

Dettagli

Gli alimentatori stabilizzati

Gli alimentatori stabilizzati Gli alimentatori stabilizzati Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua ( cioè costante nel tempo), necessaria per poter alimentare un dispositivo elettronico

Dettagli

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica:

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica: SISTEMI TRIFASE 3_FASE I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell energia elettrica. Il sistema trifase è applicato in campo industriale o comunque

Dettagli

p.i. Davide Cosciani OpAmp: come e perché

p.i. Davide Cosciani OpAmp: come e perché p.i. Davide Cosciani OpAmp: come e perché 2007 Analisi per punti OpAmp, ovvero Amplificatore Operazionale L'amplificatore operazionale (OpAmp) è il componente elettronico più versatile che esiste, ed è

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Retta di carico (1) La retta dipende solo da entità esterne al diodo. Corso Fisica dei Dispositivi Elettronici 1

Retta di carico (1) La retta dipende solo da entità esterne al diodo. Corso Fisica dei Dispositivi Elettronici 1 Retta di carico (1) La retta dipende solo da entità esterne al diodo. Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Retta di carico (2) Dipende solo da entità esterne al transistor. Corso

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli