Statistica Sociale - modulo A
|
|
|
- Samuele Lupi
- 8 anni fa
- Visualizzazioni
Transcript
1 Statistica Sociale - modulo A [email protected]
2 i quartili IL TERZO QUARTILE per un carattere diviso in classi ESEMPIO: il boxplot
3 I QUARTILI I quartili sono tre indici che dividono la distribuzione ordinata in 4 parti uguali. Il primo quartile (Q 1 ) e il valore che lascia alla propria sinistra il 25% dei termini e il 75% alla destra. Il secondo quartile (Q 2 ) e il valore spacca in due parti uguali la distribuzione (il secondo quartile coincide con la mediana). Il terzo quartile (Q 3 ) e il valore che lascia alla propria sinistra il 75% dei termini e il 25% alla destra.
4 ESEMPIO Data la seguente distribuzione: 5, 6,2,2,1,5,10,12,3,2,5,6. Individuare i quartili. ORDINO LA DISTRIBUZIONE: Il primo quartile (Q 1 ) si trova nella seguente posizione: Q 1 = 0, = (1/4)12 = 3 Il primo quartile si trova in terza posizione e il valore e Q 1 = 2 Il secondo quartile (Q 2 ) si trova nella seguente posizione: n=pari n 2 = 12 2 = 6 e n = 7 Q 2 = = 5 Il terzo quartile (Q 3 ) si trova nella seguente posizione: Q 3 = 0, = (3/4)12 = 9 LaQ 3 si trova in posizione 9 e il valore e Q 3 = 6
5 IL PRIMO QUARTILE Q 1 I Q F Q1 1 F Q1 F Q1 1 a Q1 I Q1 e l estremo inferiore della classe dove cade Q 1 F Q1 1 e la frequenza relativa cumulata fino alla classe precedente a quella dove cade Q 1 ; F Q1 e la frequenza relativa cumulata della classe dove cade Q 1 a Q1 e l ampiezza della classe dove cade Q 1
6 IL SECONDO QUARTILE E LA MEDIANA IL TERZO QUARTILE Q 3 I Q F Q3 1 F Q3 F Q3 1 a Q3 I Q3 e l estremo inferiore della classe dove cade Q 3 F Q3 1 e la frequenza relativa cumulata fino alla classe precedente a quella dove cade Q 1 F Q3 e la frequenza relativa cumulata della classe dove cade Q 3 a Q3 e l ampiezza della classe dove cade Q 3
7 Data la distribuzione di frequenza per classi di addetti dell AREA X, calcolare i quartili. Q 1 = 0 + ( 0,25 0 0,35 0 )5 = 0, 71x5 = 3, 57 Q 2 = 6 + ( 0,50 0,35 0,15 0,53 0,35 )4 = 6 + ( 0,18 )4 = 9, 33 Q 3 = 11 + ( 0,75 0,53 0,22 )19 = 11 + ( )19 = 29, 17 0,76 0,53 0,23
8 Nella descrizione di un fenomeno, un indice di posizione fornisce informazioni riassuntive sulla distribuzione. La sintesi mediante una media e rappresentativa soltanto se le unita statistiche presentano modalita prossime a questa. Molto spesso, distribuzioni caratterizzate dall uguaglianza nei valori degli indici di posizione, possono riflettere situazioni molto diverse tra di loro. ESEMPIO Si consideri il peso (in Kg) di due gruppi di studenti (A e B). A = 60, 55, 70, 40, 90, 70, 76, 72, 56, 61 B = 65, 65, 65, 65, 65, 65, 65, 65, 65, 65 n i=1 x A = i n = n i=1 x B = i n = 10 i=1 x i = = i=1 x i 650 = 10 = 65
9 esprime la tendenza delle unita di un collettivo ad assumere diverse modalita del carattere. Un indice di variabilita (V(x)) presenta i seguenti requisiti: 1. V(X)= 0, se tutte le unita presentano la medesima modalita del carattere (distribuzione degenere); 2. V (X ) > 0 risulta crescente al crescere della diversita tra le modalita assunte dalle diverse unita ; 3. V (X + c) = V (x) + c: aggiungendo una costante c ai valori di X, la variabilita non cambia; 4. Se V (X ) V (Y ) allora il vettore X e piu variabile di Y.
10 E possibile distinguere tre categorie di indici di variabilita : 1. Indici di dispersione rispetto ad una media; 2. Indici di disuguaglianza a coppie (Mutua variabilita ); 3. Indici di mutabilita, che misurano lomegenita /eterogenieta tra le modalita di una distribuzione di frequenza. Nelle tre categorie sopraccitate, e possibile operare una ulteriore distinzione tra gli indici: a) Assoluti: utilizzano la stessa unita di misura della modalita della distribuzione, ma non consentono di fare confronti fra distribuzioni statistiche espresse in unita di misura diverse; b) Relativi: depurano la distribuzione dall unita di misura, per questo motivo sono particolarmente adatti per operare confronti fra distribuzioni. Si ottengono rapportando un indice assoluto al suo massimo o ad una Prof.ssa media. D.F. Iezzi
11 σ 2 = 1 n n i=1 (x i x) 2 ESEMPIO Si consideri il peso (in Kg) di due gruppi di studenti (A e B). A = 60, 55, 70, 40, 90, 70, 76, 72, 56, 61 B = 65, 65, 65, 65, 65, 65, 65, 65, 65, 65 σ 2 = = 169, 2 1 σ = n n i=1 (x i x) 2 = σ = 13
12 x i (x i x) (x i x) tot
13 x j n j x j n j (x i x) (x i x) 2 (x i x) 2 n j Totale σ 2 = = 1, 064 σ = 1, 031 x = = 2
14 SCOSTAMENTO SEMPLICE MEDIO DALLA MEDIA ARITMETICA S x = 1 n n i=1 x i x SCOSTAMENTO SEMPLICE MEDIO DALLA MEDIANA S x = 1 n n i=1 x i Me COEFFICIENTE DI VARIAZIONE CV = ( σ x )100
15 La descrizione di un carattere mediante un indice di posizione andrebbe sempre accompagnata da un indice di variabilita. Il grafico a scatola (o box-plot) un particolare tipo di diagramma che permette di rappresentare graficamente sia una media che la variabilita di una distribuzione. Gli elementi che lo caratterizzano sono: 1. una linea orizzontale interna alla scatola, che individua il valore dell indice di posizione (media o piu frequentemente mediana); 2. un rettangolo (box) la cui altezza misura la differenza contiene il 50% centrale della distribuzione, dal 1al 3quartile; 3. due segmenti (i baffi) che individuano gli intervalli in cui sono posizionati i valori rispettivamente minori di Q 1 e maggiori di Q 3
16 E possibile, inoltre, rappresentare con valori esterni ai baffi i valori anomali. Questi valori forniscono informazioni ulteriori sulla dispersione e sulla forma della distribuzione. Si possono individuare eventuali valori anomali, mediante le seguenti formule: - limite inferiore (baffo inferiore) = Q 1 αdi - limite superiore (baffo superiore) = Q 3 + αdi dove DI = Q 3 Q 1 differenza interquartilica. Con α costante positiva. I software di frequente fissano un valore di α pari a 1,5. Quando i valori adiacenti, superiore e inferiore, coincidono con gli estremi della distribuzione non comparir alcun valore fuori limite.
17 ESEMPIO: Data la seguente distribuzione: 5, 6,2,2,1,5,10,12,3,2,5,6. Disegnare il boxplot. DI=6-2=4 - limite inferiore (baffo inferiore) = 2 1, 5x4 = 2 6 = 4 - limite superiore (baffo superiore) = 6 + 1, 5x4 = = 12 non ci sono valori anomali
La variabilità. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali
Dip. di Scienze Umane e Sociali [email protected] Introduzione [1/2] Gli indici di variabilità consentono di riassumere le principali caratteristiche di una distribuzione (assieme alle medie) Le
1/4 Capitolo 4 Statistica - Metodologie per le scienze economiche e sociali 2/ed Copyright 2008 The McGraw-Hill Companies srl
1/4 Capitolo 4 La variabilità di una distribuzione Intervalli di variabilità Box-plot Indici basati sullo scostamento dalla media Confronti di variabilità Standardizzazione Statistica - Metodologie per
Esercitazioni di statistica
Esercitazioni di statistica Boxplot e numeri indici Stefania Spina Universitá di Napoli Federico II [email protected] 14 Ottobre 014 Stefania Spina Esercitazioni di statistica 1/37 Definizioni La
Indici di variabilità relativa
Fonti e strumenti statistici per la comunicazione Prof.ssa Isabella Mingo A.A. 2014-2015 Indici di variabilità relativa Consentono di effettuare confronti sulla variabilità di fenomeni che presentano unità
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Statistica Descrittiva 3. Esercizi: 5, 6. Docente: Alessandra Durio
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Statistica Descrittiva 3 Esercizi: 5, 6 Docente: Alessandra Durio 1 Contenuti I quantili nel caso dei dati raccolti in classi
Esercitazioni di statistica
Esercitazioni di statistica Gli indici statistici di sintesi: Gli indici di centralità Stefania Spina Universitá di Napoli Federico II [email protected] 7 Ottobre 2014 Stefania Spina Esercitazioni
Statistica descrittiva
Statistica descrittiva Caso di 1 variabile: i dati si presentano in una tabella: Nome soggetto Alabama Dato 11.6.. Per riassumere i dati si costruisce una distribuzione delle frequenze. 1 Si determina
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Sintesi a cinque e misure di variabilità rispetto ad un centro Una catena di fast-food ha selezionato
Statistica Descrittiva Soluzioni 6. Indici di variabilità, asimmetria e curtosi
ISTITUZIONI DI STATISTICA A A 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona
MISURE DI SINTESI 54
MISURE DI SINTESI 54 MISURE DESCRITTIVE DI SINTESI 1. MISURE DI TENDENZA CENTRALE 2. MISURE DI VARIABILITÀ 30 0 µ Le due distribuzioni hanno uguale tendenza centrale, ma diversa variabilità. 30 0 Le due
Statistica. Alfonso Iodice D Enza
La per Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 1 Outline 1 La La per () Statistica 2 / 1 Outline La per 1 La 2 per () Statistica 2 / 1 Outline
La sintesi delle distribuzioni
Dip. di Scienze Umane e Sociali [email protected] Outline 1 Introduzione 2 3 4 Outline 1 Introduzione 2 3 4 Introduzione Analisi descrittiva monovariata: segue la raccolta dei dati e il calcolo
Questionario 1. Sono assegnati i seguenti dati
Questionario 1. Sono assegnati i seguenti dati 30 30 10 30 50 30 60 60 30 20 20 20 30 20 30 30 20 10 10 40 20 30 10 10 10 30 40 30 20 20 40 40 40 dire se i dati illustrati sono unità statistiche valori
Istituzioni di Statistica e Statistica Economica
Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono
Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua
Università di Cassino Esercitazioni di Statistica del 29 Gennaio 200 Dott. Mirko Bevilacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (kg) LAUREA SCARPA OCCHI CAPELLI M 79 65
Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche:
Istituzioni di Statistica 1 Esercizi su indici di posizione e di variabilità Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Durata (ore) Frequenza 0 100? 100 200
Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva
Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di
Esercizi Svolti. 2. Costruire la distribuzione delle frequenze cumulate del tempo di attesa
Esercizi Svolti Esercizio 1 Per una certa linea urbana di autobus sono state effettuate una serie di rilevazioni sui tempi di attesa ad una determinata fermata; la corrispondente distribuzione di frequenza
Esercitazioni di Statistica
Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni [email protected] Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4
STATISTICHE DESCRITTIVE Parte II
STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una
Esercitazioni di statistica
Esercitazioni di statistica Gli indici di variabilità Stefania Spina Universitá di Napoli Federico II [email protected] 8 Ottobre 2014 Stefania Spina Esercitazioni di statistica 1/43 Introduzione
Statistica. Alfonso Iodice D Enza
Statistica Il e Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 21 Outline Il e 1 2 3 Il 4 e 5 () Statistica 2 / 21 Il e Due distribuzioni aventi stessa posizione
STATISTICHE DESCRITTIVE
STATISTICHE DESCRITTIVE ARGOMENTI DELLA LEZIONE concetti introduttivi indici di tendenza centrale indici di dispersione indici di posizione 2 concetti introduttivi Unità statistiche elementi che costituiscono
Statistica Un Esempio
Statistica Un Esempio Un indagine sul peso, su un campione di n = 100 studenti, ha prodotto il seguente risultato. I pesi p sono espressi in Kg e sono stati raggruppati in cinque classi di peso. classe
La Variabilità statistica
La Variabilità statistica Una peculiarità dei caratteri rilevati nelle unità statistiche di un collettivo, è quella di presentare valori o attributi in tutto o in parte diversi. Si chiama variabilità (nel
Lezione n. 1 (a cura di Irene Tibidò)
Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria
Statistica descrittiva II
Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni
Valori Medi. Docente Dott.ssa Domenica Matranga
Valori Medi Docente Dott.ssa Domenica Matranga Valori medi Medie analitiche - Media aritmetica - Media armonica - Media geometrica - Media quadratica Medie di posizione - Moda -Mediana - Quantili La media
Statistica. Alfonso Iodice D Enza
Il e Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 19 Outline Il e 1 2 3 Il 4 e 5 () Statistica 2 / 19 Il e Due distribuzioni aventi stessa posizione
Capitolo 3 Sintesi e descrizione dei dati quantitativi
Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 3 Sintesi e descrizione dei dati quantitativi Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e tecnologie Alimentari" Unità
2. Variabilità mediante il confronto di valori caratteristici della
2. Variabilità mediante il confronto di valori caratteristici della distribuzione Un approccio alternativo, e spesso utile, alla misura della variabilità è quello basato sul confronto di valori caratteristici
Statistica descrittiva con R
Statistica descrittiva con R Monica Marabelli 6 Novembre 2015 Sintesi dei dati Le votazioni in matematica di 20 studenti della Yale University sono state le seguenti: 68 84 75 82 68 90 62 88 76 93 73 79
Le medie. Antonello Maruotti
Le medie Antonello Maruotti Outline 1 Medie di posizione 2 Definizione Moda La moda di un collettivo, distributio secondo un carattere qualsiasi, è la modalità prevalente del carattere ossia quella a cui
Fonte:
Fonte: http://www3.istat.it/servizi/studenti/valoredati/ prima sintesi dopo aver raccolto i dati punto di partenza per rappresentazione, lettura, interpretazione, elaborazione. caratteristiche: deve presentare
STATISTICA A K (63 ore)
STATISTICA A K (63 ore) Marco Riani [email protected] http://www.riani.it Soluzione esercizi 4 settimana + esercizi da svolgere 5 settimana 1 Rendimenti, in quintali per ettaro, d una certa varietà di frumento,
STATISTICA 1 ESERCITAZIONE 2
Frequenze STATISTICA 1 ESERCITAZIONE 2 Dott. Giuseppe Pandolfo 7 Ottobre 2013 RAPPRESENTAZIONE GRAFICA DEI DATI Le rappresentazioni grafiche dei dati consentono di cogliere la struttura e gli aspetti caratterizzanti
Indicatori di Posizione e di Variabilità. Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica
Indicatori di Posizione e di Variabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Statistica Medica Indici Sintetici Consentono il passaggio da una pluralità
Stesso valore medio per distribuzioni diverse
Fonti e strumenti statistici per la comunicazione Prof.ssa Isabella Mingo A.A. 014-015 Stesso valore medio per distribuzioni diverse u i X 11 X 1 X 13 A 1 1 B 8 1 C 0 1 D 3 3 1 E 19 34 1 F 0 41 1 Un uguale
Gli indici di variabilità
Le misure della variabilità 4/5 ottobre 2011 Statistica sociale 1 Gli indici di variabilità In tutti gli esempi visti nell ultima lezione, abbiamo visto che le grandezze considerate - pur nelle diverse
Rappresentazioni grafiche
Rappresentazioni grafiche Su una popolazione di n = 20 unità sono stati rilevati i seguenti fenomeni: stato civile (X) livello di scolarità (Y ) numero di figli a carico (Z) reddito in migliaia di (W )
Indici di Dispersione
Indici di Dispersione Si cercano indici di dispersione che: utilizzino tutti i dati {x 1, x 2,..., x n } siano basati sulla nozione di scarto (distanza) dei dati rispetto a un centro d i = x i C ad esempio,
Esercitazioni di Statistica
Esercitazioni di Statistica Rappresentazioni grafiche Prof. Livia De Giovanni [email protected] Esercizio 1 Si consideri la seguente distribuzione delle industrie tessili secondo il fatturato
LA MISURA IN PSICOLOGIA
Per conoscere la posizione che un valore occupa all interno di una distribuzione di frequenza si utilizzano VENGONO DETTI QUANTILI Questi indicatori richiedono che sia possibile operare su una distribuzione
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo [email protected] Indici di posizione variabilità e forma per caratteri qualitativi Il seguente data set riporta la rilevazione
tabelle grafici misure di
Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine
STATISTICA A-K (2014) Soluzione esercizi da svolgere prima settimana
STATISTICA A-K (2014) Soluzione esercizi da svolgere prima settimana Classificazione di 80 aziende in base a: X = numero di dipendenti Y = fatturato (in milioni di euro) X \ Y 0,5 1 1 2 2 4 4 20 Totale
Scale di Misurazione Lezione 2
Last updated April 26, 2016 Scale di Misurazione Lezione 2 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura II anno, II semestre Tipi di Variabili 1 Scale di Misurazione 1. Variabile
LA RAPPRESENTAZIONE E LA SINTESI DEI DATI
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LA RAPPRESENTAZIONE E LA SINTESI
Consideriamo la distribuzione per età di tre diversi collettivi di studenti
0 Confrontare più distribuzioni Corso di Laurea: Economia Aziendale Unità n 04 Consideriamo la distribuzione per età di tre diversi collettivi di studenti Gruppo A Gruppo B Gruppo C 5 5 3 5 3 5 4 5 5 5
Statistica Esercitazione. alessandro polli facoltà di scienze politiche, sociologia, comunicazione
Statistica Esercitazione alessandro polli facoltà di scienze politiche, sociologia, comunicazione Obiettivo Esercizio 1. Questo e alcuni degli esercizi che proporremo nei prossimi giorni si basano sul
BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i
BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili
PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.
PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari
VENGONO DETTI QUANTILI
Per conoscere la posizione che un valore occupa all interno di una distribuzione di frequenza si utilizzano Ü Ü DECILI Ü CENTILI VENGONO DETTI QUANTILI 1 VENGONO DETTI QUANTILI Questi indicatori richiedono
Corso di Statistica: ESERCITAZIONI
Corso di Statistica: ESERCITAZIONI Nicole Triunfo a.a: 2013/2014 Università degli Studi di Napoli Federico II Esercitazioni di STATISTICA Gli indici di posizione Gli indici di posizione Gli indici di posizione,
Nozioni di statistica
Nozioni di statistica Distribuzione di Frequenza Una distribuzione di frequenza è un insieme di dati raccolti in un campione (Es. occorrenze di errori in seconda elementare). Una distribuzione può essere
1/55. Statistica descrittiva
1/55 Statistica descrittiva Organizzare e rappresentare i dati I dati vanno raccolti, analizzati ed elaborati con le tecniche appropriate (organizzazione dei dati). I dati vanno poi interpretati e valutati
Dispensa di Statistica
Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza
Teoria e tecniche dei test. Concetti di base
Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi
La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci
La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2
Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi
PSICOMETRIA Voto X frequenza
1) Data la seguente distribuzione dei voti di laurea: PSICOMETRIA 2011-4 Voto X 100 101 102 103 104 105 106 107 108 109 110 frequenza 15 17 20 19 23 25 18 14 12 9 5 media = 104,32 e s 2 = 6.56 calcolare
1) Calcolare l indice di eterogeneità di Gini per i caratteri Qualifica Funzionale e Regime di Impiego.
Università di Cassino Esercitazione di Statistica del 9 novembre 2007 Dott.ssa Paola Costantini Considerando il DATASET DIPENDENTI: ID Stipendio N. di anni di Qualifica Età percepito servizio funzionale
Esercitazione 1.3. Indici di variabilità ed eterogeneità. Prof.ssa T. Laureti a.a
Corso di Statistica Esercitazione.3 Indici di variabilità ed eterogeneità Concentrazione Asimmetria Prof.ssa T. Laureti a.a. 202-203 Esercizio Si considerino i seguenti dati relativi al numero di addetti
Statistica descrittiva con R
Statistica descrittiva con R Silvia Parolo 21 Novembre 2014 Sintesi dei dati Le votazioni in matematica di 20 studenti della Yale University sono state le seguenti: 68 84 75 82 68 90 62 88 76 93 73 79
La variabilità. Antonello Maruotti
La variabilità Antonello Maruotti Outline 1 Omogeneità ed eterogeneità 2 Variabilità per caratteri quantitativi 3 Varianza 4 Intervalli di variabilità 5 Teorema di Chebyshev Definizione Variabilità Attitudine
Indici di variabilità ed eterogeneità
Indici di variabilità ed eterogeneità Corso di STATISTICA Prof. Roberta Siciliano Ordinario di Statistica, Università di apoli Federico II Professore supplente, Università della Basilicata a.a. 011/01
LE MISURE DI TENDENZA CENTRALE. Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva
LE MISURE DI TENDENZA CENTRALE Dott. Giuseppe Di Martino Scuola di Specializzazione in Igiene e Medicina Preventiva Individuare un indice che rappresenti significativamente un insieme di dati statistici
Variabilità e Concentrazione Esercitazione n 02
Variabilità e Concentrazione Esercitazione n 02 ESERCIZIO 1 Nella tabella di seguito sono riportati i dati relativi al tempo necessario a 8 studenti per svolgere un test di valutazione (in ore): Tempo
ESERCIZI DI RIEPILOGO 1
ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2
Statistica. Matematica con Elementi di Statistica a.a. 2015/16
Statistica La statistica è la scienza che organizza e analizza dati numerici per fini descrittivi o per permettere di prendere delle decisioni e fare previsioni. Statistica descrittiva: dalla mole di dati
Università del Piemonte Orientale. Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. Statistica Descrittiva Variabili numeriche
Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica Statistica Descrittiva Variabili numeriche Misure di tendenza centrale Media (aritmetica) Mediana Media
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 03-Medie, variabilità e dispersione vers. 1.0 (15 ottobre 2014) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005
STATISTICA I - CORSO DI LAUREA IN STATISTICA a.a. 2004/2005 Prova intermedia del 01 aprile 2005 Esercizio 1 La Tabella 1 contiene alcuni dati relativi a 14 aziende. Tabella 1 Dati (fittizi) su alcune aziende
ESERCIZI STATISTICA DESCRITTIVA
ESERCIZI STATISTICA DESCRITTIVA Frequenze assolute e relative Titolo di studio Frequenze assolute Frequenze relative Proporzioni Percentuali Senza titolo 30 0,025 2,5 Lic. elementare 509 0,424 42,4 Licenza
Distribuzioni Statistiche e Medie Esercitazione n 01
Distribuzioni Statistiche e Medie Esercitazione n 01 ESERCIZIO 1 In una clinica pediatrica si è registrato, nell'ultima settimana, il peso alla nascita dei neonati (in kg): Peso (in Kg) 2,7 1,8 4,6 2,9
Esercizio 1 Nella seguente tabella sono riportate le lunghezze in millimetri di 40 foglie di platano:
4. STATISTICA DESCRITTIVA ESERCIZI Esercizio 1 Nella seguente tabella sono riportate le lunghezze in millimetri di 40 foglie di platano: 138 164 150 132 144 125 149 157 146 158 140 147 136 148 152 144
Prof. Anna Paola Ercolani (Università di Roma) Lez Indicatori di dispersione
Consentono di descrivere la variabilità all interno della distribuzione di requenza tramite un unico valore che ne sintetizza le caratteristiche CAMPO DI VARIAZIONE DIFFERENZA INTERQUARTILE SCOSTAMENTO
REGRESSIONE E CORRELAZIONE
REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.
STATISTICA DESCRITTIVA - SCHEDA N. 2 VARIABILI QUANTITATIVE (RAPPRESENTAZIONI GRAFICHE E QUANTILI)
STATISTICA DESCRITTIVA - SCHEDA N. 2 VARIABILI QUANTITATIVE (RAPPRESENTAZIONI GRAFICHE E QUANTILI) Una variabile si dice quantitativa se è una grandezza misurabile. Per esempio: il peso, l altezza, il
