Problema 1: Una collisione tra meteoriti
|
|
|
- Timoteo Carletti
- 10 anni fa
- Visualizzazioni
Transcript
1 Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla prove re ore Marco e Luca, durane la viia guidaa ad un mueo cienifico ineraivo, oervano u un monior la imulazione della colliione ra due meeorii, effeuaa da un videogioco Sul monior ono rappreenae la raieoria del primo meeorie e il grafico della ua velocià in funzione del empo, morao in figura
2 Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla prove re ore In bae alle loro conocenze di maemaica, dicuono ul ipo di curva geomerica rappreenaa dal grafico e cercano di deerminarne l equazione, necearia per procedere nella imulazione Aiua Marco e Luca a deerminare l equazione che rappreena la curva, piegando il procedimeno eguio Dopo che Marco e Luca hanno crio ul erminale l equazione rovaa, il videogioco i complimena con loro e ul monior appare la eguene epreione: Viene quindi chieo loro di verificare e la funzione daa rappreena lo pazio percoro dal meeorie in funzione del empo (legge oraria del moo) Aiua Marco e Luca a verificare che la funzione appara ul monior rappreena la legge oraria del moo, piegando il procedimeno eguio A queo puno ul monior appare un econdo meeorie, la cui raieoria inereca quella del primo meeorie in un puno P Il videogioco chiede quale condizione deve eere verificaa affinché avvenga l Aiua Marco e Luca a ripondere in modo qualiaivo Marco e Luca ripondono correamene e il primo meeorie viene colpio dal econdo e devia dalla raieoria originaria modificando il uo moo Dopo l il monior indica che il primo meeorie i muove ora con la nuova legge oraria: Il videogioco chiede quindi di deerminare il empo in cui è avvenuo l Aiua Marco e Luca a: 4 deerminare il empo ; 5 udiare la legge oraria del primo meeorie nell inervallo ra 0 e ˑ econdi, evidenziando la preenza di evenuali puni di diconinuià e/o di non derivabilià e racciandone il grafico
3 wwwmaemaicamenei N De Roa La prova di maemaica al liceo PROBLEMA Puno SIMULAZIONE MATURITA SCIENTIFICA 05 La funzione velocià non è alro che un ramo di parabola con verice in V=(5,0) paane per il puno (0,5) di equazione v a b c con 0 0 Sapendo che l acia del verice è 5 e imponendo il paaggio per (0,5) e per il verice V=(5,0) i ricava: b 5 a b 0a a c 5 c 5 b 0 5a 5b c 0 5a 50a 5 0 c 5 v con 0 0 Perano l equazione della funzione velocià è 0 5 Puno In bae alle leggi della fiica, lo pazio percoro è pari all inegrale indefinio della velocià ovvero v d 0 5d 5 5 K con K R, 0 Supponendo che all iane iniziale i ha i ricava 0 Avremmo pouo procedere in eno invero a parire da rovare che coincideva con la velocià 0 5 Puno v con K ovvero , farne la derivaa e Per rovare l iane in cui urano è ufficiene rovare il puno di inerezione ra le due raieorie, rappreenani lo pazio percoro nel empo dai due meeorii, ovvero i raccia il grafico di ambedue nello eo riferimeno careiano e i individua la loro inerezione cioè quando Puno 4 Per urari all iane riolvere l equazione è neceario che, quindi per calcolare è neceario
4 wwwmaemaicamenei N De Roa La prova di maemaica al liceo Scarando i oiene che l iane dell o è 0 o 0 La oluzione 0 corriponde al cao in cui i meeorii ono a ripoo ovvero quando non hanno ancora percoro alcuno pazio Perano la oluzione acceabile è 0 Puno 5 Nell inervallo 0, 0,0, il primo meeorie ha quindi la eguene legge oraria: Tale funzione è empre coninua in quano è compoizione di funzioni coninua ed inolre perché lim 0 lim 0 lim lim 0 La derivaa, ovvero la velocià del moo orario è pari a 650 v Conrolliamo e la funzione velocià è coninua in 0, i ha: lim v 0 lim v 0 lim lim 4 0 perano la funzione velocià non è coninua in 0 e di coneguenza la legge oraria non è derivabile in 0 ; in praica 0, è un puno angoloo 5
5 wwwmaemaicamenei N De Roa La prova di maemaica al liceo La cubica f 5 5 nell inervallo [0,0] inereca l ae delle acie olo in (0,0), è 5 empre crecene ed ha un fleo in 5, 5 La funzione f in [0,0] è un ramo di parabola empre crecene Di eguio il grafico di
Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine
Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,
Metodo della Trasformata di Laplace (mtl)
Lezione 7 Meodo della raformaa di Laplace Lezione n.7 Meodo della raformaa di Laplace (ml). Inroduzione. Richiami ulla raformaa di Laplace. Proprieà della raformaa. Regola di derivazione.3 abella di raformae
Tema 3. Insiemi, elementi di logica, calcolo combinatorio, relazioni e funzioni
Tema 3 Iniemi, elemeni di logica, calcolo combinaorio, relazioni e funzioni 3.1 Queii di livello bae 3.1.1 Si coniderino i egueni enunciai: n è un muliplo di 3 o è un numero pari, e inolre è minore di
Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza
Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 003 Il candidato riolva uno dei due problemi e 5 dei 0 queiti in cui i articola il quetionario. PROLEMA Si conideri un tetraedro regolare T di vertici
USO DELL OSCILLOSCOPIO
Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.
Esercizi sul moto del proiettile
Eercizi ul moto del proiettile Riolvi li eercizi ul quaderno utilizzando la oluzione olo per controllare il tuo riultato. 1 Un fucile è puntato orizzontalmente contro un beralio alla ditanza di 30 m. Il
ESAME DI STATO DI LICEO SCIENTIFICO
ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da
Meccanica Classica: Cinematica Formule
Tet di Fiica - Cinematica Meccanica Claica: Cinematica Formule Velocità media: m Accelerazione media: Formule da ricordare: x x x1 t t t1 1 a m t t t Motouniforme: x(t)x 0 + t oppure x t 1 Moto uniformemente
Trasformata di Laplace unilatera Teoria
Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe
ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s)
Preciione a regime: errore tatico ERRORE STATICO Alimentazione di potenza E() YRET() G() Y() H() Per errore tatico i intende lo cotamento, a regime, della variabile controllata Y() dal valore deiderato.
Struttura dei tassi per scadenza
Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:
Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità
Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime
Lezione 12. Regolatori PID
Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La
Circuito Simbolico. Trasformazione dei componenti
Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.
Trasformazioni di Galileo
Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo
ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico-Tecnologico Progetto Brocca
Eame di tato 00 ESAME D STATO D LCEO SCENTFCO 00 ndirizzo Scientifico-Tecnologico rogetto Brocca Tema di: FSCA tracrizione del teto e redazione oluzione di Quintino d Annibale Secondo tema L'etto oule
Università di Napoli Parthenope Facoltà di Ingegneria
Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel
Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE
PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione
Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - [email protected]
Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con
ANALISI STATISTICA DELLE VENDITE E METODI PER LA PREVISIONE
La previione delle vendie ANALISI STATISTICA DELLE VENDITE E METODI PER LA PREVISIONE Prof. Domenico SUMMO. Premea Un imprendiore, nell eplicare la propria aivià economica, non fa alro che prevedere quali
Esercizio 1 ( es 1 lez 11) La matrice è diagonalizzabile: verificare, trovando la matrice diagonalizzante, che A è simile a A.
Eserciio ( es le La marice è diagonaliabile: verificare, rovando la marice diagonaliane, che è simile a. Esisono re auovalori: mol.alg(- dim V - ; mol.alg( dim V ; mol.alg(- dim V -. Esise una marice simile
6. Tassi di sostituzione lordi e netti del sistema pensionistico obbligatorio e complementare
6. Tai di oiuzione lordi e nei del iema penioniico obbligaorio e complemenare 6.1. Premea Il capiolo è dedicao all analii dei ai di oiuzione del iema penioniico obbligaorio nell inero periodo di previione
Corso di Microonde II
POITECNICO DI MIANO Coro di Microonde II ezi n. 3: Generalità ugli amplificatori ineari Coro di aurea pecialitica in Ingegneria delle Telecomunicazi Circuiti attivi a microonde (Amplificatori) V in Z g
Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:
LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione
V AK. Fig.1 Caratteristica del Diodo
1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura
Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario
www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi
METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio
METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi
Esercizi di Matematica Finanziaria
Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)
Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale
CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la
La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1
La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa
Il condensatore. Carica del condensatore: tempo caratteristico
Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie
3. Catene di Misura e Funzioni di Trasferimento
3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici
Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia
Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui
Operazioni finanziarie. Operazioni finanziarie
Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli
Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti
Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre
Laboratorio di Algoritmi e Strutture Dati
Il problema Laboratorio di Algoritmi e Strutture Dati Docenti: M. Goldwurm, S. Aguzzoli Appello del 5 Aprile 005 Progetto Recinti Conegna entro il Aprile 005 Si tudia la reitenza di alcune pecie di piante
Dispositivi e Sistemi Meccanici. 11 Esercizi. Politecnico di Torino CeTeM. Esercizio 11
Poliecnico i Torino ete Dipoiivi e Siemi eccanici Eercizi Eercizio Un moore o è collegao a un argano A i ollevameno econo lo chema in figura. Sull albero moore è ineria una frizione conica Fr, che ramee
Capitolo IV L n-polo
Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire
Ulteriori Esercizi su Grafi. Ugo Vaccaro
Progeazione di Algorimi Anno Accademico 0 0 Uleriori Eercizi u Grafi. Ugo Vaccaro N.B. Si ricorda che ogni algorimo và accompagnao da una argomenazione ul perchè calcola correamene l oupu e da un analii
Sintesi tramite il luogo delle radici
Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle
La macchina a ciclo Rankine
Lezione XIV - 7/0/00 ora 8:0-0:0 - Maine a vapore, ilo Rankine ed eerizi - Originale di Amoretti Miele. La maina a ilo Rankine Il problema di realizzare un ilo termodinamio e produa la maima uantità di
velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)
V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo
VALORE EFFICACE DEL VOLTAGGIO
Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra
Università di Napoli Parthenope Facoltà di Ingegneria
Universià di Napoli Parhenope Facolà di Ingegneria Corso di Comunicazioni Eleriche docene: Prof. Vio Pascazio 2 a Lezione: 13/03/2003 Sommario Schema di un Sisema di TLC Schema di un Sisema di TLC digiale
Laboratorio di Algoritmi e Strutture Dati
Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che
MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)
MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae
Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo
Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1
Pianificazione di traiettorie nello spazio cartesiano
Corso di Roboica 1 Pianificazione di raieorie nello spazio caresiano Prof. Alessandro De Luca Roboica 1 1 Traieorie nello spazio caresiano le ecniche di pianificazione nello spazio dei giuni si possono
Si analizza la lavorazione attuale per ricavare dati sulla durata utensile. A questo scopo si utilizza la legge di Taylor:
Esercizio D2.1 Torniura cilindrica eserna Un ornio parallelo è arezzao con uensili in carburo e viene uilizzao per la sgrossaura di barre in C40 da Φ 32 a Φ 28. Con un rapporo di velocià corrispondene
La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante
Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per
CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo
ESERCIZI DI FISICA CHAPTER 1 CINEMATICA 1.1. Moto Rettilineo Velocità media: vettoriale e calare. Exercie 1. Carl Lewi ha coro i 100m piani in circa 10, e Bill Rodger ha vinto la maratona (circa 4km)
( ) ( ) Verifica di matematica classe 5 a A LST
Verifica di matematica classe 5 a A LST - Dopo aver dato le definizioni di asintoto orizzontale, verticale ed obliquo, determina il Dominio e scrivi le equazioni degli asintoti della seguente funzione.
ESERCIZI CINEMATICA IN UNA DIMENSIONE
ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km
Il progetto allo SLU per la flessione semplice e composta
Il progetto allo SLU per la leione emplie e ompota Nomenlatura σ R h y.n. σ 0,8y b σ T /0 Ipotei i bae onervazione elle ezioni piane La eormazione in ogni punto ella ezione è proporzionale alla itanza
2. LA DIFFUSIONE - CONCETTI BASE
LA DIFFUSIONE . LA DIFFUSIONE - CONCETTI BASE Molte reazioni e molti procei di rilevante importanza nel trattamento dei materiali i baano ul traporto di maa. Queto traporto può avvenire o all interno di
Successioni ESEMPI: Matematica con Elementi di Statistica, Anna Torre a.a. 2013-2014
Successioni Vi sono fenomeni naturali e situazioni concrete che presentano sviluppi significativi in tempi discreti. Vale a dire è naturale che i controlli per quei dati fenomeni o per quelle date situazioni
UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013
UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova
Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità
Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.
Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini
Auomazione Indusriale AA 2002-2003 Prof. Luca Ferrarini Laboraorio 1 Obieivi dell eserciazione Sviluppare modelli per la realizzazione di funzioni di auomazione Comprensione e uilizzo di Ladder Diagrams
Liceo Scientifico Statale Leonardo Da Vinci
Liceo Scientifico Statale Leonardo Da Vinci Via Possidonea 14, 89125 Reggio Calabria Dirigente Scolastico:Preside Prof.essa Vincenzina Mazzuca Progetto multimediale di matematica e fisica per le terze
