Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza per radicali: se ho n f ( ) ( ) f ; se ho n f ( ) essere positivo o negativo);, con n pari, allora l argomento deve essere maggiore o uguale a zero, cioè, con n dispari, allora non ho condizioni di esistenza per l argomento (può se ho n f ( ) allora f ( ) ; n ( ) f non può mai essere uguale ad un numero negativo. Esempio Sia data l equazione Allora C.E. -
Allora le soluzioni del sistema che mi da il campo di esistenza sono. Per risolvere un equazione irrazionale il procedimento consiste nel trasformare tale equazione da irrazionale in razionale, in modo tale che l incognita non compaia più come argomento del radicale. Per poter ottenere quanto detto si deve elevare ad una opportuna potenza sia primo che secondo membro dell equazione una o più volte, ma seguendo questo procedimento può capitare che l equazione così ottenuta non sia più equivalente a quella data, cioè l equazione razionale può contenere soluzioni che non sono proprie dell equazione originaria. Infatti, data la seguente uguaglianza ( ) g( ) f Se elevo al quadrato primo e secondo membro, ottengo [ f ( ) ] [ g( ) ] L equazione così ottenuta contiene pertanto le soluzioni del testo iniziale, ma, ricordando i prodotti notevoli: [ f ( ) ] [ g( ) ] [ f ( ) ] [ g( ) ] [ ( ) g( ) ][ f ( ) g( ) ] f da cui segue f ( ) g( ) Prima soluzione f ( ) g( ) f ( ) g( ) Seconda soluzione f ( ) g( ) Cioè l equazione [ f ( ) ] [ g( ) ] contiene anche le soluzioni di f ( ) g( ) testo iniziale., che è diversa dal Osservazione: in genere l innalzamento al quadrato dei due membri di un equazione trasforma l equazione data in un altra equazione non equivalente. Risoluzione di equazioni irrazionali Primo metodo
Per risolvere un equazione irrazionale possiamo procedere come segue: i) si determina il dominio dell equazione, cioè le condizioni di esistenza per l incognita; ii) si eleva ad una opportuna potenza sia primo che secondo membro dell equazione una o più volte sino ad ottenere un equazione razionale; iii) si risolve l equazione così ottenuta; iv) si verifica che i risultati siano compatibili con quanto ottenuto ad primo punto relativamente al campo di esistenza, accettando le soluzioni compatibili e scartando quelle che non lo sono. Secondo metodo i) si eleva ad una opportuna potenza sia primo che secondo membro dell equazione una o più volte sino ad ottenere un equazione razionale; ii) si risolve l equazione così ottenuta; iii) si verifica l accettabilità delle soluzioni ottenute sostituendole nel testo dell equazione irrazionale originaria per stabilire quali soluzioni dell equazione razionale sono o non sono soluzioni dell equazione irrazionale originaria. Osservazione il primo metodo ha come svantaggio il fatto di dover risolvere una disequazione o un sistema di disequazioni per calcolare le condizioni di esistenza e ha come vantaggio il fatto di che alla fine non è richiesto nessun calcolo per verificare l accettabilità delle soluzioni; il secondo metodo ha come vantaggio il fatto di non dover risolvere disequazioni per determinare le condizioni di esistenza, ma ha lo svantaggio che alla fine sono richiesti calcoli per verificare l accettabilità delle soluzioni. In genere viene utilizzato maggiormente il secondo metodo per risolvere le equazioni irrazionali. Esempi Caso : equazione intera con un solo radicale
( ) ( ) 6 Verifica 6 6 6 6 6 6 6 6 6 accettabile Caso : equazione intera con due radicali quadratici 6 6 ( ) ( 6) 6 ± Verifica 6 8
8 8 accettabile ( ) 6 accettabile Caso : equazione intera con tre o quattro radicali quadratici ( ) ( ) ( )( ) 7 6 6 ( 6) ( ) ( ) 6 6 8 8 6, ± ± Verifica
accettabile 6 non accettabile Caso : equazione irrazionale fratta Primo metodo: porto a primo membro tutte le radici e svolgo tra loro denominatore comune, tale operazione mi permette di eliminare i radicali a numeratore ( )( ) C.E. sempre verificato ( ) ( ) ( ) ( ) [ ( )] ( ( ) )
( ) 8 8 ( 8 ) ( 8 ) 9 8 6 6 6 6 9 6 9 9 6 Verifica 9 6 9 6 9 6 9 6 9 6 6 9 6 6 9 6 6 6 6 8
accettabile Secondo metodo: razionalizzo i radicali, svolgo denominatore comune e poi elevo a potenza per eliminare la radice. ( ) ( ) poi si procede come visto in precedenza. Osservazioni i) Nel secondo caso è opportuno separare le radici, una a primo membro, l altra a secondo membro, così elevando alla seconda non ho un doppio prodotto radicale e l equazione diventa subito razionale; ii) Nel terzo caso è indifferente se tenere due radicali a primo o a secondo membro, bisogna tener presente che quando elevo alla seconda ho un doppio prodotto radicale i conseguenza del quadrato di binomio che si deve svolgere, successivamente, tutti i termini senza radice si portano da una parte, il termine con la radice dall altra, si eleva ancora a potenza per ottenere così un equazione razionale; iii) Indici diversi 6 l indice comune tra e è 6, pertanto elevo alla sesta per eliminare 6 ( ) ( ) 6 6 ( ) ( 6 ) entrambe le radici. poi si procede come visto in precedenza; iv) Radici multiple
( ) elevo alla seconda per eliminare le radici più esterne. ( ) ( ) ( ) poi si procede come visto in precedenza. Disequazioni irrazionali Definizione: una disequazione si definisce irrazionale se è costituita da radicali il cui argomento contiene l incognita. Una disequazione irrazionale si dice quadratica se contiene soltanto radicali quadratici. Analizzeremo disequazioni del tipo f ( ) < g( ) e f ( ) > g( ), dove f ( ) e g ( ) rappresentano dei polinomi. Le considerazioni riguardo l esistenza della radice, il segno del polinomio g ( ), il verso della disuguaglianza ci portano alla conclusione che per le condizioni di esistenza e per la disuguaglianza espressa dalla disequazione, risolvere una disequazione irrazionale è equivalente a risolvere dei sistemi di disequazioni. Un sistema infatti ha come condizione per le sue soluzioni che verifichino contemporaneamente determinate condizioni regolate da opportune disequazioni. Primo caso ( ) g( ) f < ( la radice ha verso di sé il minore ) Risolvere una disequazione irrazionale del tipo ( ) g( ) equivalente di tre disequazioni: Infatti si richiede: f f < corrisponde a risolvere un sistema f ( ) g( ) > ( ) < [ g( ) ] i) prima disequazione: l argomento della radice f ( ) deve essere positivo;
ii) iii) seconda disequazione: considerato che la radice restituisce un valore positivo deve essere g ( ) > ; infatti analizzando la disequazione ( ) g( ) f < risulta che a primo membro si ha una quantità positiva che può essere minore soltanto di una quantità a sua volta positiva, pertanto se g ( ) fosse negativo la disequazione assegnata non potrebbe mai essere verificata (si avrebbe infatti una disuguaglianza, ad esempio, del tipo < che è ovviamente impossibile); terza disequazione: si cercano i valori, compatibili con la prima e la seconda disequazione che soddisfano la disequazione assegnata. Il fatto poi di mettere a sistema le tre disequazioni significa ottenere quei valori per l incognita che soddisfano la disequazione assegnata, tenendo conto delle condizioni di esistenza. Secondo caso ( ) g( ) f > ( la radice ha verso di sé il maggiore ) Risolvere una disequazione irrazionale del tipo ( ) g( ) due disequazioni e unire le soluzioni così ottenute: f > corrisponde a risolvere due sistemi di f g( ) ( ) > [ g( ) ] f g Infatti si deve distinguere tra i possibili valori positivi e negativi per il secondo membro g ( ), infatti: ) primo sistema prima disequazione g ( ) seconda disequazione: la radice, che rappresenta valori positivi, deve essere maggiore di un valore positivo rappresentato appunto da g ( ), per trovare gli intervalli che soddisfano la disequazione assegnata ( ) g( ) ( ) ( ) < f > possiamo elevare al quadrato entrambi i membri per ottenere una disequazione senza radici, cioè ( ) [ g( ) ] f >, quest ultima disequazione, inoltre è più restrittiva della condizione di esistenza per la radice f ( ) scrivere f ( ) > [ g( ) ], infatti possiamo, quindi la condizione di esistenza per la radice è contenuta nella seconda disequazione, pertanto non è necessario in questo caso procedere allo studio della condizione f ( ) >
) secondo sistema prima disequazione g ( ) < seconda disequazione: poiché il secondo membro è negativo basta individuare dove sia definita la radice in quanto essa restituisce un valore positivo, pertanto a primo membro si ha una quantità positiva che è sempre maggiore di una quantità negativa, pertanto dove g ( ) assume valori negativi è sufficiente cercare i valori per cui ( ) Lo studio dei due casi per g ( ), cioè: g ( ) g ( ) < f. esaurisce le possibilità da considerare, rimane ora il fatto di determinare le soluzioni, unendo le soluzione parziali dei due sistemi. Per unire le soluzioni parziali si procede come segue: ) si traccia una linea orizzontale; ) su di essa si tracciano tutti i valori che compaiono nelle soluzioni del primo e del secondo sistema; ) si riportano le soluzioni del primo e del secondo sistema (utilizzando le serpentine) sulla line orizzontale; ) l insieme tratteggiato rappresenta le soluzioni finali della disequazione f ( ) > g( ) assegnata. Osservazione Nel caso in cui un valore in cui gli intervalli si uniscono fosse compreso per un intervallo ed escluso per l altro intervallo, nelle soluzioni finale esso è compreso, vale a dire che gli intervalli si saldano senza interruzioni. (cioè tra valore escluso e valore compreso, vince il valore compreso ). Esempio [ ;] ],7] [ ;7] Esempio 8 > Risoluzione 8 >
( ) < > 8 8 Primo sistema > 8 > < 6, ± ± 6 - - - - - - - - - - - - Soluzioni < < Il sistema è impossibile Secondo sistema < 8
< 8 > 8, 9 ± 8 69 9 ± 9 9 - - - - - - - - - - - - 9 9 9 9 Soluzioni 9 9. Pertanto le soluzioni della disequazione iniziale sono l unione delle soluzioni del primo sistema(cioè ) e del secondo sistema 9 9.