ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3)

Documenti analoghi
ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

CAPITOLO 3 LA LEGGE DI GAUSS

Lezioni L3.a. 5. Teorema dei Campi Conservativi; 7. Teorema di Stokes; 9. Rot E=0. FISICA GENERALE II, Cassino A.A

RICHIAMI DI ELETTROMAGNETISMO

Esame Scritto Fisica Generale T-B

Definizione di Flusso

Primo Parziale Fisica Generale T-B

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

CAPITOLO 3 LA LEGGE DI GAUSS

Potenziale elettrostatico

Politecnico di Milano Fondamenti di Fisica Sperimentale (Prof. A. Farina) Seconda prova in itinere - 26/06/2012

1. Teorema di reciprocità

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Premesse matematiche. 2.1 Gradiente

Elettromagnetismo Formulazione differenziale

CAPITOLO 3 TEOREMA DI GAUSS

Verifiche sperimentali legge di Coulomb. capitolo 3

Prima prova d esonero del corso di Elettromagnetismo - a.a. 2012/13-12/4/2013 proff. F. Lacava, F. Ricci, D. Trevese

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

5,&+,$0, 68*/,23(5$725,9(7725,$/,

Definizione di Flusso

Applicazioni del teorema di Gauss

Verifiche sperimentali legge di Coulomb. c a p i t o l o

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

2 CORRENTE ELETTRICA STAZIONARIA (teoria)

Conduttori e dielettrici

= E qz = 0. 1 d 3 = N

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1

Applicazioni del Teorema di Gauss

totale Φ S (E) attraverso S * mediante la (3.I) è immediato, dato che la

6a_EAIEE EQUAZIONI D ONDA

QUARTO APPELLO FISICA GENERALE T-2, Prof. G. Vannini Corso di Laurea in Ingegneria Elettrica e dell Automazione

Alcune applicazioni del teorema di Gauss

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Corsi di Laurea in Ingegneria per l ambiente ed il Territorio e Chimica. Esercizi 1 FISICA GENERALE L-B. Prof. Antonio Zoccoli

Tesina di Fisica Generale II

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

Fisica Generale II (prima parte)

Ingegneria dei Sistemi Elettrici_4

Fenomeni di rotazione

CAPITOLO 1 ELETTROSTATICA

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Lezione 13 - La legge di Gauss

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

La legge di Gauss. Il flusso elettrico

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

Se ora compiamo un percorso finito avremo

Formulario Elettromagnetismo

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

Nome: Cognome: Matricola:

CAPITOLO 4 CONDUTTORI DIELETTRICI ENERGIA ELETTROSTATICA

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE

Conduttori e condensatori 1

CAMPI VETTORIALI (Note)

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

Lezione 12 - Azione a distanza

Applicazioni del teorema di Gauss

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA

Il Corso di Fisica per Scienze Biologiche

Elettromagnetismo Formulazione differenziale

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

1) ELETTROSTATICA NEL VUOTO riassunto Gauss

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte)

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Capacita` di un conduttore isolato

Capacità. Fisica sperimentale II

Flusso di un campo vettoriale

SOLUZIONE PROBLEMA 2. L unità di misura di k può quindi essere indicata come 234. oppure equivalentemente come

Prova scritta di Fisica Scienze e Tecnologie dell Ambiente. Soluzioni


CAPITOLO 4 CONDUTTORI E CONDENSATORI

Piu interessante per le applicazioni: Elettrostatica nei mezzi materiali. Legata a proprieta elettriche dei materiali, in particolare solidi

Conduttori. solidi: metalli/semiconduttori. Si muovono solo le cariche elementari. soluzioni elettrolitiche. Si muovono anche gli ioni (+ lenti)

E costituito da due conduttori isolati di varie forme che vengono chiamati piatti o armature del condensatore.

Lez.14 Bipoli dinamici. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 14 Pagina 1

METODI NUMERICI. Metodo delle differenze finite

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

Appunti sui conduttori in equilibrio elettrostatico. di Fabio Maria Antoniali

b. Per il teorema di Gauss, il flusso attraverso una superficie chiusa dipende solo dalle cariche in essa contenute, in questo caso q.

FISICA (modulo 1) PROVA SCRITTA 20/07/2015. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

1) ELETTROSTATICA NEL VUOTO

1 DISTRIBUZIONE CONTINUA DI CARICHE

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO.

CAPITOLO 2 POTENZIALE ELETTROSTATICO

Fisica Generale B. 2. Elettrostatica dei Conduttori Metallici. Isolanti o Dielettrici. Induzione Elettrostatica. Conduttori

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Lezione 5: Elettrostatica. Seminario didattico

Capitolo 5. Primo principio della Termodinamica nei sistemi aperti

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013)

Transcript:

ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo, e la densità di corrente J è pure identicamente nulla. Sotto queste ipotesi, le equazioni per il campo elettrico possono essere riscritte come segue: E = 0, (1) D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: D legame = ε E, (3) J = γ E. (4) La (1) e la (2) possono, come è già stato visto, essere espresse in forma integrale: Γ E d l = 0, (5) D nds = Q. s La (2) e la (6) sono la formulazione della ben nota legge di Gauss, rispettivamente in forma locale ed integrale. La (1) e la (5) esprimono l irrotazionalità del vettore E, che definisce quindi un campo conservativo. In virtù di quanto visto sui campi conservativi, il campo elettrico può essere espresso come gradiente di un opportuno potenziale scalare: (6) E = v (7) La funzione scalare v viene detta potenziale elettrico, ed è definito a meno di una costante. Tale indeterminazione viene eliminata fissando il valore del potenziale di un punto del dominio. Normalmente viene posto uguale a zero il potenziale all infinito. L integrale di E lungo una linea qualsiasi contenuta nel dominio non dipende dalla linea stessa, ma unicamente dal valore che il potenziale elettrico assume agli estremi di integrazione: B A E dl = v v. (8) A Per la definizione di campo elettrico, il primo membro della (8) è il lavoro fatto dalle forze elettriche su una carica unitaria. Imponendo che il potenziale all infinito sia nullo, la quantità: v A A B = E dl rappresenta il lavoro che il campo elettrico compirebbe portando una carica unitaria dalla posizione A all infinito. Elettrostatica - 1

Calcolo del campo elettrostatico Sia data una regione dello spazio τ, delimitata dalla superficie S, dalle (2), (7) è immediato ricavare l equazione che permette di calcolare il potenziale elettrico una volta note le distribuzioni di carica, che costituiscono, nel caso elettrostatico, le sorgenti del campo elettrico: 2 v = ρ ε. (9) La (9) è l equazione di Poisson per il potenziale elettrico. Nelle regioni in cui la densità di carica è nulla, dalla (2) segue che il campo elettrico è solenoidale, ed obbedisce quindi all equazione di Laplace: 2 v = 0. (10) Affinché sia definita la soluzione dell equazione (9) è necessario assegnare le opportune condizioni al contorno su tutta la superficie S che racchiude il dominio di calcolo: si parla quindi di Condizioni al contorno di Dirichlet, quando è assegnato il potenziale su tutto il contorno. Un problema così formulato viene detto problema di Dirichlet; Condizioni al contorno di Neumann, quando è assegnata la derivata normale del potenziale su tutta la superficie di contorno del dominio. Per ricavare una soluzione formale dell equazione (9), si calcola il campo elettrico dovuto ad una carica puntiforme q, immersa in un mezzo infinito, lineare ed isotropo (fig. 1). In virtù della completa simmetria sferica che il problema presenta, è possibile supporre che il potenziale sia costante su superfici sferiche aventi come centro il punto P q in cui la carica q è situata. In altre parole il potenziale, e quindi il campo elettrico, sono unicamente funzione della variabile r, definita come distanza del generico punto dalla carica stessa. Il campo elettrico E è esprimibile come gradiente del potenziale elettrico, che in coordinate sferiche porta a scrivere: v 1 v 1 v E = ir + iθ + iϕ. r r θ r senθ ϕ Ma, poiché il potenziale elettrico è unicamente funzione di r: v E( r) = i r r. Il campo elettrico ha quindi unicamente direzione radiale. Dalla legge di Gauss in forma integrale si ottiene, utilizzando come superficie di integrazione S una sfera avente il centro nel punto P q : 2 dq 4πr E( r) = i ε r, che tenendo conto della (11) fornisce l equazione differenziale: v q =. 2 r 4πεr La (12), integrata tenendo conto della condizione di annullamento del potenziale all infinito, fornisce la soluzione: v ( r) q =. 4πεr (11) (12) (13) Elettrostatica - 2

q r dv E r P 0 fig. 1 fig. 2 Nel caso in cui una carica Q sia distribuita su un volume, con una densità di carica ρ, il potenziale elettrico in un generico punto P 0 dello spazio si ottiene integrando i contributi delle cariche infinitesime dq = ρ dτ (Vedi fig. 2). Si può quindi scrivere: 1 dq 1 ρ v( P ) r r d 0 = = 4πε 4πε τ. Q V Elettrostatica dei conduttori e dei dielettrici Come si è detto, affinché si possa parlare di elettrostatica deve essere verificata l assenza di correnti elettriche in tutto lo spazio. Dalla (4) si deduce che deve essere verificata una delle due seguenti condizioni : γ = 0, E 0; γ 0, E = 0. (14.a) (14.b) La prima delle due condizioni si verifica nei materiali isolanti, mentre la seconda nei materiali conduttori. Nei conduttori quindi, essendo nullo il campo elettrico, è anche costante il potenziale elettrico. Le superfici esterne dei conduttori sono quindi superfici equipotenziali, e la componente di campo elettrico tangenziale è nulla. Utilizzando la legge di Gauss si ottiene un altra importante proprietà per i conduttori in regime elettrostatico: si consideri infatti una qualsiasi superficie chiusa e completamente interna al conduttore. Applicando la (6) e tenendo conto del fatto che il campo elettrico è nullo su tutta la superficie segue immediatamente che risulta nulla anche la carica contenuta all interno della superficie. Data l arbitrarietà della superficie, si deduce che le eventuali cariche libere su un corpo conduttore si dispongono sulla sua superficie esterna. Si consideri ora una superficie chiusa cilindrica come quella mostrata in fig. 3, avente base infinitesima S ed altezza δl infinitesimo di ordine superiore rispetto a S. Una delle basi è contenuta nel corpo conduttore, l altra è esterna. Poiché, data la natura infinitesimale di S, campo elettrico e densità di carica possono essere considerati costanti, ed il campo elettrico all interno del conduttore è nullo in regime elettrostatico, applicando la (6) si ottiene: D = σ, σ E =, ε (15) Elettrostatica - 3

γ = 0, E 0 n S ε δ l γ 0, E = 0 Fig. 3 dove ε è la costante dielettrica del mezzo isolante in cui il conduttore è immerso. E possibile inoltre invertire il ragionamento: se infatti il campo elettrico è non nullo sulla superficie del conduttore, esiste su di esso una distribuzione superficiale di carica. Γ d Γ b Γ c Γ a Fig. 4 Problema generale dell elettrostatica Il problema generale dell elettrostatica consiste nel determinare il campo elettrico in tutto lo spazio quando per alcuni conduttori presenti sono fissati i rispettivi potenziali, mentre per gli altri sono fissate le cariche totali possedute. E possibile dimostrare che, nel caso in cui il potenziale soddisfi le condizioni di regolarità all infinito, la soluzione del problema generale dell elettrostatica è unica. Senza scendere nel dettaglio, siamo interessati a conoscere l andamento qualitativo delle linee di campo elettrico e di induzione elettrica. In base alla (14.b), le regioni occupate dall isolante sono le uniche in cui il campo elettrico può essere diverso da zero. Supponendo che in tali regioni non sia presente alcuna distribuzione di carica, è possibile affermare che il campo elettrico è ivi solenoidale ed irrotazionale, e che il potenziale elettrico è governato dall equazione di Laplace. Poiché il campo elettrico è solenoidale, le linee di campo non possono avere né sorgenti né vortici, ma possono: a) andare da un conduttore ad un altro; b) andare da un conduttore all infinito; c) partire da un conduttore e richiudersi sullo stesso; d) richiudersi su se stesse. Elettrostatica - 4

Le ultime due ipotesi sono però da scartare per l irrotazionalità del campo elettrico. Si supponga infatti che la linea di campo segua la curva Γ c mostrata in fig. 4. Utilizzando la (8) si otterrebbe: E dl = 0, Γ C relazione assurda, dal momento che il primo membro è diverso da zero perché l integrando ha sempre lo stesso segno lungo Γ c. Allo stesso modo è possibile dimostrare che non possono esistere linee di campo che si chiudono su se stesse, come Γ d in fig. 4. Le uniche linee di campo possibili sono quelle del tipo a) e b). Le linee di campo come Γ a collegano due conduttori, in cui si assume che esista una distribuzione di carica non nulla. Si consideri ora un tubo di flusso di campo di induzione elettrica che, come illustrato in fig. 5, va dal conduttore 1 al conduttore 2. Si noti che, per la (15), l esistenza di un tubo di flusso siffatto implica la presenza di cariche elettriche sulla superficie dei conduttori. Tale tubo individua sulla superficie esterna del conduttore 1 la curva chiusa Γ 1, e sul conduttore 2 la curva Γ 2. Si costruisca la superficie chiusa costituita dalla superficie laterale del tubo di flusso e da due superfici S 1, interna al conduttore 1 ed S 2, interna al conduttore 2, che si appoggiano rispettivamente a Γ 1 e Γ 2. Il flusso del campo elettrico attraverso la superficie chiusa così definita è nullo, perché il campo è nullo sulle superfici S 1 ed S 2, ed è parallelo alla superficie del tubo di flusso. Ne segue che, per la legge di Gauss (eq. 6), la carica totale racchiusa all interno della superficie è nulla. Pertanto, indicando con q 1 e q 2 le cariche sulle superfici Σ 1 e Σ 2 (porzioni delle superfici dei due conduttori delimitate dalle curve Γ 1 e Γ 2 tratteggiate in Fig. 5), si ha che q 1 = q 2. E quindi possibile affermare che le cariche intercettate sulle superfici di due corpi conduttori da un tubo di flusso del vettore campo elettrico avente inizio su un conduttore e termine sull altro sono uguali e di segno opposto. Tale affermazione costituisce l enunciato del teorema delle superfici corrispondenti. Nel caso in cui due conduttori siano disposti in modo tale che tutte le linee di campo uscenti da uno si richiudono sull altro e viceversa, le cariche totali sui due conduttori sono uguali e di segno opposto. L insieme di due conduttori siffatti viene definito condensatore. I due conduttori che costituiscono il condensatore sono detti armature del condensatore. Σ 1 S 1 Γ 1 S 2 Γ 2 Σ 2 Fig. 5 Schermo elettrostatico Si consideri ora il caso di un conduttore contenente al suo interno una cavità (Fig. 6). Poiché il potenziale è costante sul conduttore, la superficie che delimita la cavità è equipotenziale. All interno della cavità il campo elettrico deve essere nullo. Se infatti, per assurdo, ammettessimo l esistenza di un campo elettrico, le linee di campo dovrebbero necessariamente o chiudersi su se stesse, o partire Elettrostatica - 5

da e terminare su due punti posti sulla superficie interna del conduttore cavo. Ma queste due ipotesi, in base alle considerazioni qualitative sull andamento del campo elettrico riportate nel precedente paragrafo, sono da scartare. Si desume quindi che il campo elettrico è nullo in tutta la cavità, che viene in questo modo schermata dai campi elettrici esterni, e che il potenziale risulta costante. Un conduttore siffatto viene quindi detto schermo elettrostatico. E 0 E=0 Fig.6 Gli schermi elettrostatici sono utilizzati in numerosi dispositivi elettrici, per evitare che campi elettrici esterni interferiscano con il loro normale funzionamento. Generalmente una gabbia di rete metallica (gabbia di Faraday) con maglie non troppo larghe costituisce con buona approssimazione uno schermo elettrostatico. Condensatori Come già visto, tra le due armature di un condensatore si verifica un perfetto accoppiamento elettrostatico, che non è turbato dalla presenza di eventuali altri conduttori. Le cariche che si formano sulle armature di un condensatore sono uguali e di segno opposto: Q 2 = - Q 1 = Q. Un ottima approssimazione di condensatore è costituita da due conduttori posti a distanza tra loro molto piccola rispetto alla distanza da un qualsiasi altro conduttore (vedi fig. 7). In questo modo è possibile considerare il problema elettrostatico delle due armature del condensatore, trascurando l influenza di altri conduttori. La grandezza C, detta capacità del condensatore, viene definita come rapporto tra il valore assoluto della carica posseduta da ciascuna armatura e la differenza di potenziale tra le armature stesse: + + + - + + + + ++ - - - - - - fig. 7 fig. 8 Elettrostatica - 6

C = Q. (16) v La capacità di un condensatore dipende unicamente dalla sua geometria e dalla costante dielettrica del mezzo. Il condensatore viene indicato con il simbolo circuitale riportato in fig. 8. Calcolo della capacità di un condensatore piano. σ - σ σ E 1 E 1 v 1 v 2 S c 2 S c 1 x d fig. 9 fig. 10 Le armature di un condensatore piano sono costituite da due conduttori piani e paralleli, di superficie S e posti tra loro a distanza d, come illustrato in fig. 9. Trascurando gli effetti di bordo, è possibile supporre che sulle due armature la carica sia distribuita con densità superficiale uniforme ρ S e - ρ S. Per calcolare il campo di una singola armatura, si faccia riferimento alla fig. 10. Per simmetria, il campo elettrico è diretto perpendicolarmente alla superficie carica. Si applichi allora la 6 alla superficie chiusa cilindrica S c1, che contiene carica totale nulla. Il flusso di campo elettrico attraverso le superficie laterale del cilindro è nulla, perché tale superficie è parallela al campo elettrico stesso. Se ne deduce che il flusso di campo elettrico attraverso le due basi del cilindro è uguale, e che quindi il campo elettrico non è funzione della distanza dalla superficie carica. Applicando ora la (6) alla superficie S c2, e ragionando in maniera analoga si ottiene: E = σ 1 2ε. Il campo generato dal condensatore è dato dalla sovrapposizione dei campi dovuti alle due armature, e vale zero nelle regioni esterne ad esse e: σ E = ε nella regione interna. Dalla (7) si ha inoltre v E = x, che integrata fornisce: σ d v 1 v 2 =. ε Ricordando che Q = ρ, applicando la definizione di capacità si ottiene: S s C Q εs = =. (17) v d Elettrostatica - 7

Elettrostatica - 8