TERMODINAMICA CHIMICA E SPONTANEITA DELLE REAZIONI



Documenti analoghi
TERMODINAMICA E TERMOCHIMICA

relazioni tra il calore e le altre forme di energia.

Energia cinetica. ChimicaGenerale_lezione14 2

Termodinamica: studio dei trasferimenti di energia

Termochimica. Tutte le trasformazioni della materia, chimiche e fisiche, sono accompagnate da variazioni di energia.

Capitolo 16 L energia si trasferisce

La termochimica. Energia in movimento

Definizioni: sistema ambiente sistema isolato sistema chiuso sistema adiabatico stato di un sistema. Termodinamica

La termochimica. Energia in movimento

TERMODINAMICA CHIMICA

Termodinamica e termochimica

Termodinamica. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

Termodinamica e termochimica

Spesso le reazioni chimiche sono accompagnate da. Le reazioni che sviluppano calore sono dette reazioni esotermiche

Limiti del criterio della variazione entropia

Termodinamica chimica

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Corso di Studi di Fisica Corso di Chimica

Chimica Generale ed Inorganica: Programma del Corso

PCl5 (g) <====> PCl3(g) + Cl2(g)

Sistemi termodinamici. I sistemi aperti e chiusi possono essere adiabatici quando non è consentito lo scambio di calore

Dinamica delle reazioni chimiche (attenzione: mancano i disegni)

La Termodinamica è la disciplina che si occupa dello studio degli scambi di energia e di materia nei processi fisici e chimici

Energia e trasformazioni spontanee

SECONDO PRINCIPIO DELLA TERMODINAMICA

TERMODINAMICA 28/10/2015 SISTEMA TERMODINAMICO

Termochimica. La termochimica si occupa dell effetto termico associato alle reazioni chimiche. E i = energia interna molare H i = entalpia molare

Termodinamica e Termochimica

SECONDO PRINCIPIO DELLA TERMODINAMICA

Dalle soluzioni alla chimica del carbonio

SCIENZA DEI MATERIALI. Chimica Fisica. VI Lezione. Dr. Fabio Mavelli. Dipartimento di Chimica Università degli Studi di Bari

SECONDO PRINCIPIO DELLA TERMODINAMICA

Esploriamo la chimica

Termochimica : studio della variazione di entalpia nelle reazioni chimiche

QUANTITA TOTALE DI ENERGIA SI CONSERVA

Il primo principio della termodinamica

Termochimica : studio della variazione di entalpia nelle reazioni chimiche e nelle transizioni di fase

Programma: a che punto siamo? Sistema, equilibrio e fase Tre concetti fondamentali. Definizione di sistema in termodinamica

Corso di Studi di Fisica Corso di Chimica

CORSO DI CHIMICA. Esercitazione del 7 Giugno 2016

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire.

Il I principio della termodinamica. Calore, lavoro ed energia interna

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

A+B"C+D. Stato finale 2. Stato finale 1. Stato iniziale

Il primo principio della termodinamica

TERMODINAMICA E TERMOCHIMICA

ESERCIZI ESERCIZI. 1) Il valore della costante di equilibrio K p. 4) Per la reazione di equilibrio: CO (g) + 1/2 O 2 (g) è CO 2 (g) p CO2 a.

L EQUILIBRIO CHIMICO 11.V VERIFICA SE HAI CAPITO 11.A PRE-REQUISITI ESERCIZI 11.B PRE-TEST 11.C OBIETTIVI 11.1 INTRODUZIONE: L EQUILIBRIO DINAMICO

Chimica generale ed inorganica per Scienze Biologiche (corso A)

L equilibrio chimico

I principio della termodinamica: E tot = 0 = E sistema + E ambiente. E=q+w

Reazioni lente e reazioni veloci

Entropia, energia libera ed equilibrio

I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test...

ESERCIZIO 1 Q = 6991, kj

Generica equazione chimica:

ASPETTO TERMODINAMICO

Legge di Hess. Legge di Hess: per una reazione suddivisa in più stadi, il H totale è la somma delle variazioni di entalpia dei singoli stadi

Chimica: energia e velocità di reazione

Termodinamica II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reazioni ed Equazioni Chimiche

Termodinamica I. Primo Principio della Termodinamica

Termochimica. Capitolo 6

Reazioni chimiche e stechiometria

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di i energia coinvolte in un processo fisico o chimico

Chimica Generale ed Inorganica

Il primo principio della termodinamica Argomenti

Lezione di Combustione

SISTEMI CHIMICI Si definiscono sistemi chimici le sostanze (reagenti e prodotti) che partecipano alle trasformazioni fisiche e chimiche della materia.

TERMODINAMICA I PRINCIPIO DELLA TERMODINAMICA DU = Q - W

Reazioni ed Equazioni Chimiche. Coefficienti stechiometrici :

Equilibrio chimico. Equilibri dinamici Legge azione di massa, Kc, Kp, Equilibri eterogenei Principio di Le Chatelier

Reversibilità delle Reazioni Chimiche

Termodinamica. studia le modificazioni subite da un sistema a seguitodel trasferimento di energia sotto forma di calore e lavoro.

Energia e reazioni chimiche. Cap , 19-21, 27-30, 47-48, 50, 59-62

Termodinamica. Termodinamica TERMODINAMICA. Termodinamica. Variabili di stato. Principi della Termodinamica

TERMODINAMICA. CONVENZIONE STORICA Q > 0 assorbito dal sistema W>0 fatto dal sistema Q < 0 ceduto dal sistema W<0 fatto sul sistema

Il secondo principio della Termodinamica

Fondamenti di Chimica T-A T A (A-K) Calcolo n moli e rendimento reazione

Processi spontanei. -Passaggio di calore da un corpo caldo ad uno freddo -Mescolamento di due gas -Svolgimento di una reazione fortemente esotermica

Equilibri chimici. Consideriamo la seg. reazione chimica in fase omogenea: aa + bb î cc + dd Definiamo, in ogni istante della reazione:

TERMODINAMICA. Scienza che studia le relazioni tra il calore e le altre forme di energia coinvolte in un processo fisico o chimico

ESERCIZI DI TERMODINAMICA. costante di equilibrio della reazione. costante di equilibrio della reazione

Organismi viventi ed energia

CorsI di Laurea in Ingegneria Aereospaziale-Meccanica-Energetica. FONDAMENTI DI CHIMICA Docente: Cristian Gambarotti. Esercitazione del 03/11/2010

3 H 2 (g) + N 2 (g) 2 NH 3 (g)

STECHIOMETRIA. (s) + 3 CO (g) 2 Fe (s) + 3 CO 2

Equilibri Eterogenei. Insegnamento di Chimica Generale CCS CHI e MAT

Calcolo del numero di moli dei reagenti: P.M. HCl= 36 uma. 36 g/mol. n HCl = 1,9 g = 0,0528 moli

Cap. 7 - Termochimica. Le variazioni di energia relative ai processi chimici

Corso di Studi di Fisica Corso di Chimica

L entalpia H. Primo principio della termodinamica La convenzione per i segni. Corso di Studi di Fisica Corso di Chimica

Entropia, energia libera ed equilibrio. Capitolo 17

L equilibrio chimico

La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite)

3) La reazione tra Mg metallico e CO 2 è 2Mg + CO 2(g) 2 MgO(s) + C (grafite)

Lezione n. 4. Lavoro e calore Misura di lavoro e calore Energia interna. 04/03/2008 Antonino Polimeno 1

CAPITOLO 3: SECONDO PRINCIPIO

Termochimica. La termochimica e la cinetica. Termochimica. Termochimica. Con il termine sistema s intende l oggetto di indagine.

Transcript:

TERMODINAMICA CHIMICA E SPONTANEITA DELLE 9.A PRE-REQUISITI 9.B PRE-TEST 9.C OBIETTIVI 9.4 IL SECONDO PRINCIPIO DELLA TERMODINAMICA E L ENTROPIA - VALUTAZIONE DELLA SPONTANEITA DI UNA REAZIONE 9.V VERIFICA SE HAI CAPITO ESERCIZI 9.1 INTRODUZIONE 9.2 IL PRIMO PRINCIPIO DELLA TERMODINAMICA 9.3 ENTALPIA - ESOTERMICHE ED ENDOTERMICHE 9.3.1 LEGGI DI HESS E LAVOISIER LAPLACE

9.A PRE-REQUISITI Prima di iniziare a lavorare su questa Unità, dovresti essere in grado di: definire la materia ed i suoi attributi fondamentali; spiegare il significato dei passaggi di stato; spiegare il significato della reazione chimica e del simbolo di reazione; conoscere in termini generali le principali forme di energia; calcolare i rapporti in peso di reagenti e prodotti che partecipano ad una reazione chimica; definire il concetto di mole ed applicarlo a calcoli. 9.B PRE-TEST In una torcia ossi-acetilenica ha luogo la reazione: C 2 H 2 (g) + 5/2 O 2 2CO 2 (g) + H 2 O (g) Sapendo che alla temperatura di 25 C l entalpia standard di combustione dell acetilene è H comb = - 1300 kj/mol, calcola alla stessa temperatura la quantità di calore che si libera nella combustione di 0,260 kg di C 2 H 2. Soluzione 9.C OBIETTIVI Al termine di questa Unità dovrai essere in grado di: definire un sistema, specificando le caratteristiche di sistemi aperti, chiusi e isolati; distinguere fra processi esotermici ed endotermici; definire le grandezze termodinamiche energia interna, entalpia, entropia ed energia libera; definire le condizioni standard per i processi termodinamici; enunciare il primo ed il secondo principio della termodinamica; enunciare la legge di Hess e la legge di

Lavoisier-Laplace e comprenderne il significato; comprendere il significato dell entalpia di formazione delle sostanze; comprendere in termini generali il criterio termodinamico per valutare la spontaneità di una reazione. 9.1 INTRODUZIONE La termodinamica applica concetti di portata generale a sistemi all equilibrio, valutando le variazioni di energia che accompagnano trasformazioni di vario genere ed apportando un contributo fondamentale nella comprensione di questi fenomeni; d altra parte, essa non dà indicazioni sui meccanismi o sulla velocità di reazione, studiati nell ambito della cinetica chimica. La porzione limitata di materia che viene studiata è un SISTEMA, mentre gli INTORNI sono le parti dell universo con cui il sistema può interagire, attraverso trasferimenti di materia e di energia. Esistono diversi tipi di sistemi: Un sistema aperto scambia energia e materia con l ambiente esterno Un sistema chiuso scambia energia ma non materia con l ambiente esterno Un sistema isolato non scambia né energia né materia con l ambiente esterno Lo STATO di un sistema viene definito dai valori che assumono un certo numero di variabili, come, ad esempio, temperatura, pressione, volume e concentrazione delle specie presenti; ogni proprietà che assume un valore univoco quando lo stato del sistema è definito rappresenta una FUNZIONE DI STATO di quel sistema. Sono funzioni di stato, ad esempio, l energia interna (E), l entalpia (H) e l energia libera (G). Lo stato di un sistema può variare in seguito ad un

processo fisico o chimico; la corrispondente variazione di una funzione di stato del sistema non dipende dal cammino percorso, ma soltanto dallo stato iniziale e da quello finale. Possiamo quindi determinare la variazione ( ) di una certa funzione dovuta ad una determinata trasformazione. 9.2 IL PRIMO PRINCIPIO DELLA TERMODINAMICA L energia, comunemente definita come la capacità di compiere lavoro, può manifestarsi in varie forme (ad esempio, calore, lavoro meccanico, ecc.). Tra i diversi tipi di lavoro, si fa spesso riferimento al lavoro compiuto da un gas che si espande a P costante, passando da un volume V 1 ad un volume V 2 : W = P (V 2 - V 1 ) = P V Scambio di energia sistema ambiente esterno Lo scambio di energia tra un sistema l ambiente esterno avviene attraverso calore e lavoro. Il PRIMO PRINCIPIO DELLA TERMODINAMICA esprime la conservazione dell energia: E = q -w la variazione di energia interna del sistema ( E) è data dal calore ceduto/acquistato e dal lavoro compiuto; riguardo al segno di q e di w, convenzionalmente:

q > 0 se assorbito dal sistema q < 0 se ceduto dal sistema w > 0 se compiuto dal sistema w < 0 se compiuto dall intorno sul sistema ESEMPIO In una reazione esotermica, un sistema cede al suo intorno 8,243 J (1,970 cal). Durante la reazione si formano dei gas che sollevano un pistone compiendo un lavoro di 4,184 J (1,000 cal). Calcola E. Il calore viene ceduto dal sistema al suo intorno, quindi è negativo: q = - 8,243 J (- 1,970 cal) Il lavoro viene compiuto dal sistema sull intorno ed è positivo: w = 4,184 J (1,000 cal) E = q -w = - 8,243 J - 4,184 J = 12,427 J = - 1,970 cal - 1,000 cal = - 2,970 cal 9.3 ENTALPIA - ESOTERMICHE ED ENDOTERMICHE In base al primo principio della termodinamica, se si opera a V costante (cioè V = 0), e non si considerano tipi di lavoro diversi da P V, non viene compiuto lavoro meccanico, e la variazione di energia interna coincide con il calore assorbito o ceduto dal sistema. Operando, invece, a P costante, come spesso accade, P V non è nullo e risulta utile introdurre una nuova funzione, chiamata ENTALPIA (H). H, che è una funzione di stato, viene valutata in termini di H tra stato iniziale e finale.

ENTALPIA H = E + PV Variazione di entalpia (processi a P costante) H = E + P V E = q - P V (I principio t.d) q p = H (calore di reazione a P = costante ) q v = E (calore di reazione a V = costante ) ESOTERMICHE La reazione è accompagnata da sviluppo di calore, la temperatura dei prodotti supera la temperatura ambiente ed il calore prodotto viene ceduto all ambiente circostante (contenuto termico dei prodotti minore di quello dei reagenti, H < 0). Processo esotermico Reagenti La TERMOCHIMICA è il ramo della termodinamica che studia gli scambi di energia associati alle trasformazioni fisiche e chimiche; le equazioni termochimiche specificano la quantità di calore ceduta o acquistata dal sistema. Distinguiamo due tipi di reazioni: Entalpia H < 0 Prodotti

ENDOTERMICHE Affinché la reazione possa avvenire è necessario fornire energia dall esterno, in quanto il contenuto energetico dei prodotti e maggiore rispetto a quello dei reagenti ( H > 0). ESEMPIO Calcola il calore che si sviluppa quando 4,20 l di H 2 reagiscono con eccesso di N 2 alla pressione di 200,0 atm e alla temperatura di 523 K, ponendo per la formazione dell ammoniaca H = - 46,19 kj/mol. Entalpia Processo endotermico Prodotti H > 0 Reagenti Calcoliamo le moli di H 2 che reagiscono, attraverso l equazione di stato dei gas perfetti: PV 200,0 x 4,20 n = = = 19,6 mol di H 2 RT 0,0821 x 523 Dalla stechiometria della reazione (1/2 N 2 + 3/2H 2 NH 3 ) si osserva che sono necessarie 3/2 moli di H 2 per ottenere una mole di NH 3. Allora, partendo da 19,6 moli di H 2 si ottengono: 3/2 : 1 = 19,6 : x x = 19,6 x 2/3 = 13,1 moli di NH 3 Il calore sviluppato sarà: q = 13,1 mol x 46,19 kj mol -1 = 605 kj

9.3.1 LEGGI DI HESS E LAVOISIER LAPLACE Per confrontare e combinare valori di H relativi a reazioni diverse sono state scelte delle condizioni di riferimento. STATI STANDARD GAS: il gas puro a P = 1 atm e T = 298 K LIQUIDI: liquido puro a P = 1 atm e T = 298 K SOLIDI: forma allotropica stabile a P = 1 atm e T = 298 K agli elementi nei loro stati standard si attribuisce H = 0 Le variazioni di entalpia che si riferiscono a trasformazioni tra stati standard vengono indicati con H ; esistono tabelle in cui sono riportati, ad esempio, i H relativi alla formazione di un composto a partire dagli elementi ( H di formazione, H form ), alla combustione completa ( H combus ), a passaggi di stato ( H fusione, H evaporazione, ecc.). Dato che anche le trasformazioni fisiche (passaggi di stato) comportano variazioni di energia, nelle equazioni termochimiche è necessario indicare lo stato fisico di tutti i reagenti e prodotti; per la stessa ragione, se un solido può esistere in più di una forma allotropica, questa va specificata. Ad esempio: 2C graf + 3H 2 (g) + 1/2O 2 (g) C 2 H 5 OH (l) H = - 277,7 kj C graf carbonio nella forma allotropica grafite H 2 (g) idrogeno allo stato gassoso O 2 (g) ossigeno allo stato gassoso C 2 H 5 OH (l) alcool etilico allo stato liquido Le equazioni termochimiche possono essere maneggiate seguendo alcune leggi fondamentali:

1. LEGGE DI LAVOISIER- LAPLACE: il calore richiesto per decomporre una sostanza è uguale al calore sviluppato nella sua formazione. Quindi, invertendo il senso della reazione, va invertito anche il segno del H. Ad esempio: H 2 (g) H 2 O (l) H 2 O (l) H 2 (g) H = - 285,8 kj H = + 285,8 kj 2. LEGGE DI HESS: il calore sviluppato in un processo chimico a pressione costante è indipendente dal fatto che il processo avvenga in uno o più stadi. Questa legge deriva dal fatto che l entalpia è una funzione di stato e che le sue variazioni dipendono unicamente dagli stati iniziale e finale e non dal cammino percorso. Applicando queste leggi è possibile ricavare quei calori di reazione che non possono essere misurati direttamente, a partire da reazioni di cui sono noti i H. ESEMPIO Calcola il H di formazione dell ossido di carbonio dagli elementi, sapendo che per CO 2 (g) H form = - 393,5 kj/mol e che per l ossidazione di CO (g) a CO 2 (g) H = - 283,9 kj/mol. La reazione di cui vogliamo calcolare H è: C graf CO (g) I valori di H di cui disponiamo si riferiscono alle reazioni: C graf + O 2 (g) H = - 393,5 kj CO (g) H = - 283,9 kj che possono essere combinate per dare la reazione di formazione di CO 2 in due stadi:

C graf CO (g) H = x CO (g) H = - 283,9 kj C graf + O 2 (g) + CO (g) + CO (g) H = x - 283,9 kj = - 393,5 kj La reazione-somma, semplificando CO, corrisponde alla reazione di formazione di CO 2, il cui H è noto. Il H incognito è dato da: x = - 393,5 kj + 283,9 kj = - 109,6 kj/mol 9.4 IL SECONDO PRINCIPIO DELLA TERMODINAMICA E L ENTROPIA - VALUTAZIONE DELLA SPONTANEITÀ DI UNA REAZIONE Una trasformazione chimica o fisica è generalmente spontanea se attraverso di essa l energia del sistema viene resa minima; a temperature non troppo elevate, molte reazioni esotermiche, che comportano una diminuzione di energia interna, sono spontanee. Tuttavia, soprattutto ad alte temperature, vi sono anche reazioni endotermiche spontanee. Ciò porta ad ipotizzare che nella valutazione della spontaneità di una reazione vada considerato un altro fattore, oltre alla diminuzione del contenuto energetico. Questo può essere identificato con la tendenza dei sistemi a raggiungere uno stato di maggior disordine; tale disordine può essere espresso da una funzione termodinamica chiamata ENTROPIA (S). Essa è una funzione di stato e le variazioni S dipendono unicamente dagli stati iniziale e finale. La condizione di aumento di disordine che caratterizza le trasformazioni spontanee può essere espressa come: S > 0 SECONDO PRINCIPIO DELLA TERMODINAMICA

Nella valutazione della SPONTANEITÀ di una reazione è quindi necessario integrare questi due aspetti, cioè la minimizzazione dell energia e la massimizzazione dell entropia. Solo in alcuni casi essi sono entrambi favorevoli ( H < 0, S > 0); più frequentemente, essi agiscono in opposizione (termine entalpico favorevole, termine entropico sfavorevole, o viceversa) e la spontaneità del processo dipende dal prevalere dell uno o dell altro termine. L effetto combinato dei due fattori è espresso da una nuova funzione termodinamica, l ENERGIA LIBERA (G). Energia libera di Gibbs (G) G = H - TS G = H - (TS) G = H - T S (P e T costanti) G < 0 spontaneo G = 0 reversibile G > 0 non spontaneo Una diminuzione di energia libera può, quindi, derivare sia da una diminuzione di H che da un aumento di S; le reazioni endotermiche spontanee sono più frequenti a temperature elevate in quanto, al crescere di T, aumenta il peso del termine entropico.

9.V VERIFICA SE HAI CAPITO 9.V.1 In base al significato della funzione termodinamica entalpia, distingui tra le seguenti reazioni quelle esotermiche da quelle endotermiche: 2CO (g) + C graf G > 0 C graf + O 2 (g) G < 0 CaO (s) + CO 2 (g) CaCO 3 (s) G = - 130,2 kj N 2 (g) + 3H 2 (g) 2NH 3 (g) G = - 25,06 kj 2C graf + 3H 2 (g) + 1/2O 2 (g) C 2 H 5 OH (l) H = - 277,7 kj H 2 O (l) H 2 (g) H = + 285,8 kj C graf + O 2 (g) H = - 393,5 kj CO (g) H = - 283,9 kj PCl 5 (g) PCl 3 (g) + Cl 2 (g) H = + 81,8 kj 9.V.2 Basandoti sul criterio di spontaneità per una reazione chimica, individua tra le seguenti reazioni quelle spontanee:

Soluzione Pre-Test moli di acetilene = 260 g / 26,038 g mol -1 = 9,98 mol Nella combustione di 1 mole di C 2 H 2 si sviluppa una quantità di calore pari a 1300 kj; il calore sviluppato nella combustione di 9,98 mol di acetilene è: H = moli (C 2 H 2 ) x H comb = = 9,98 mol x (-1300 kj mol -1 ) = - 12974 kj.