Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate (il pezzo el caso della toritura, l utesile ella fresatura e foratura). Per otteere ua determiata velocità di taglio, è ecessario quidi scegliere il umero di giri del madrio i fuzioe sia della velocità prescelta sia del diametro dell elemeto rotate. Se la macchia è dotata di u variatore cotiuo del moto di taglio, è possibile otteere tutti i umeri di giri e pertato si può realizzare comuque la velocità di taglio idoea alla lavorazioe. Se, al cotrario, la macchia è dotata di u variatore discotiuo del moto di taglio, o è possibile otteere, per ogi diametro, la velocità di taglio ottimale, ma ci si deve accotetare di u valore prossimo a quello desiderato. È possibile però far sì che tutti i diametri toribili dalla macchia siao comuque lavorabili co ua velocità di taglio compresa etro u itervallo predetermiato; per otteere questa particolarità i umeri di giri devoo assumere valori be precisi. ediamo quidi come si ricavao tali valori. Idichiamo co u geerico umero di giri e co - il umero di giri precedete. U geerico diametro D può essere torito co u umero di giri -, otteedo ua velocità di taglio cmi o co u umero di giri realizzado ua velocità c (figura ). c cmi π D π D L itervallo cmi - c deve rimaere costate quidi, dividedo membro a membro le relazioi precedeti, si ha: c c mi cost. ϕ A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
c c 2 c mi - D figura D Da questa relazioe si ha ache: ed essedo e - due umeri geerici, si può osservare che: ogi umero di giri si ottiee moltiplicado il umero di giri precedete per ua costate ϕ. I valori di formao cioè ua progressioe geometrica di ragioe ϕ. I particolare si ha, idicado co il umero di giri più piccolo e co quello più elevato: ϕ 0 2 ϕ 3 2 ϕ ϕ 2 4 3 ϕ ϕ 3... - ϕ ϕ α- da cui, oti i valori estremi dei umeri di giri e cambio, si può calcolare la ragioe della progressioe: e detto N il umero di rapporti che costituisce il N ϕ () ed è quidi possibile calcolare il valore del umero di giri itermedi. Il frazioameto dei valori di viee fatto seguedo i termii della serie dei umeri ormali di Reard (serie di Reard). I umeri ormali soo valori covezioalmete arrotodati della serie i progressioe geometrica che ha per ragioe R40. 5 0 20 40 ; 0; 0; 0 Calcolado i valori delle ragioi precedetemete omiate, si ha: 5 0,5849; 0 e vegoo idicati rispettivamete co R5, R0, R20, 0 0,2589; 20 0,220; 40 0,0593 Si può quidi otare che fra due termii cosecutivi della serie si hao icremeti percetuali di circa il 60% per la serie R5, il 25% per la serie R0; il 2% per la serie R20 e 6% per la R40. A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
Esempio Si vuole costruire u cambio dotato di 8 velocità di rotazioe da giri/mi a 230 giri/mi i progressioe geometrica. Determiare il umero di giri itermedi. I dati soo quidi: giri/mi 230 giri/mi possibilità di cambio N 8 Dalla relazioe () si ha: ϕ α 7 230,58 i umeri di giri soo pertato: giri/mi 2,58 79 80 giri/mi 3,58 2 24,8 25 giri/mi 4,58 3 97,2 200 giri/mi 5,58 4 3,6 30 giri/mi 6,58 5 492 490 giri/mi 7,58 6 777,9 780 giri/mi 8,58 7 229 230 giri/mi Il diagramma polare si preseta come i figura 2: 4 c [m/mi] 400 230 giri/mi 3 300 2 780 giri/mi 200 490 giri/mi 00 30 giri/mi 200 giri/mi 25 giri/mi 80 giri/mi giri/mi 0 0 20 40 60 80 00 D 20 figura 2 A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
Diagramma aritmico Il diagramma polare preseta l icoveiete di o essere molto chiaro ella parte vicio all asse delle ordiate, ossia per valori piccoli di D. Per redere la lettura più facile viee usato u diagramma doppio-aritmico. t α π D Trasformado i forma aritmica l'espressioe: si ha: Per ogi valore di si ha: e quidi l'equazioe π D c π c + D π cost. π c + D rappreseta, su u diagramma aritmico c D, ua retta icliata di 45 (perché il coefficiete agolare di D è, e quidi α 45 ), e tale da staccare sull asse delle ordiate u segmeto pari al termie oto π. t - 2 π π D π 2 A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii
Per ogi valore di si ha ua retta di questo tipo e sul diagramma si ha u fascio di rette parallele, ogua delle quali rappreseta u certo valore di. Il diagramma aritmico dell esempio precedete si preseta come i figura 3. c [m/mi] 0 00 230 780 490 0 5 30 200 25 80 D [mm] 5 0 00 figura 3 Se i valori dei umeri di giri soo i progressioe geometrica, si può otare che le rette icliate a 45 del fascio, soo equidistati. Ifatti, detti u umero di giri geerico e - il precedete, si ha: π π ϕ - π + D + D + D c + ϕ essedo ϕ cost. ache ϕ è costate, per cui le rette che rappresetao i umeri di giri - e distao di ua quatità pari a ϕ. Aaamete per tutti gli altri umeri di giri. A. Padolfo, G. Degli Esposti Tecoie meccaiche di processo e di prodotto 202 RCS RCS Libri S.p.A., Milao - Calderii