Cosa è necessario per generare un segnale RM?

Documenti analoghi
L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

RM - riepilogo. Ricostruzione di immagini - Ricostruzione immagini in RM

L INDUZIONE ELETTROMAGNETICA. Un approfondimento sull'anello di Thomson e sulle correnti di Foucault

RM Formazione dell immagine

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica.

Apparecchiature RM. Dott. TSRM Luigi Imperiale Dipartimento di Scienze Radiologiche Ospedali Riuniti di Ancona

Risonanza magnetica: Codifica spaziale del segnale.

Risonanza magnetica nucleare

Formulario Elettromagnetismo

CAMPO MAGNETICO E FORZA DI LORENTZ

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Indice Generale. Descrizione della procedura. Principio di funzionamento della misura. Elaborazione dati e discussione dei risultati

RMN elementi di base

Proprietà elettriche della materia

Esercizi di magnetismo

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

EFFETTO MAGNETICO DELLA CORRENTE

CAP. VIII CRITERI DI PROGETTAZIONE E VERIFICA DI COMPONENTI REALI

... il campo magnetico..

Schema generale SALA COMANDI SALA MAGNETE SALA TECNICA

Programma di addestramento raccomandato per l esame con Correnti Indotte di 2 livello secondo EN 473

TASFORMATORI. I trasformatori sono macchine elettriche:

Materiali magnetici. dott. ing. Lucia FROSINI. Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Appunti di elettromagnetismo

Il magnetismo magnetismo magnetite

(a) ;

Fisica II. 7 Esercitazioni

Simbolo induttore. Un induttore. Condensatore su nucleo magnetico

Cavo Carbonio. Sergio Rubio Carles Paul Albert Monte

Magnete in caduta in un tubo metallico

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici

Fisica Generale II (prima parte)

Distribuzione di carica piana ed uniforme... 32

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

Imaging Anatomico Mediante Risonanza Magnetica (MRI)

Esempio di antenna a telaio, con spire rettangolari e circolari.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Torino Metologie per la riduzione dei campi e sistemi di schermatura: materiali, tecniche cenni di progettazione e casi reali

Elettrodinamica. 1. La corrente elettrica continua 2. I circuiti elettrici. Prof Giovanni Ianne

MISURATORE DI PORTATA ELETTROMAGNETICO

L induzione elettromagnetica - Legge di Faraday-Lentz

Nome Cognome...Classe Data.. 1

Le macchine in corrente continua sono composte da una parte fissa (statore o induttore) e da una parte rotante (rotore o indotto).

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.

Componenti elettronici

Elementi di elettricità e di magnetismo

Trasformatore. Parte 3 Caratteristiche costruttive (versione del )

Appendice Il trasformatore monofase

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

Induzione elettromagnetica

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Parliamo di efficienza d antenna di Gioacchino Minafò IW9DQW

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

Elettromagnetismo Formulazione differenziale

Allegato 3 TOMOGRAFO A RISONANZA MAGNETICA

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Compito di Fisica II del 14/09/2009

Transizioni liquido-solido: Aspetti cinetici

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

POLITECNICO DI TORINO

Freni dinamometrici. Corso di : Sperimentazione e collaudi

Conservazione della carica elettrica

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

LA CORRENTE ELETTRICA

Esperimentazioni di Fisica 1 Tracce delle lezioni di TERMOLOGIA

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

MOTO DI CARICHE IN CAMPI MAGNETICI

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

GENERATORI MECCANICI DI CORRENTE

I.P.S.I.A. Di BOCCHIGLIERO

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

SCHEDA DI OFFERTA QUALITA TECNICA

Il motore a corrente continua

CARATTERISTICHE TECNICHE DELLA NUOVA RISONANZA MAGNETICA DA 1,5 T. CIG n E69 CUP n. J49G

Invertitori trifase a tensione impressa

L ENERGIA E LA QUANTITÀ DI MOTO

VERIFICA L elettricità e il magnetismo

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il trasporto di energia termica: introduzione e trasporto conduttivo. Principi di Ingegneria Chimica Ambientale

Trasformatore monofase

PROPRIETÀ MAGNETICHE DELLA MATERIA

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche


Caratteristiche di trasferimento:

COLLAUDO DI UN TRASFORMATORE MONOFASE


isolanti e conduttori

Unità 8. Fenomeni magnetici fondamentali

1. Circuito equivalente di un trasformatore trifase

FILTRI DI USCITA REO Filtri elettrici di potenza per l automazione industriale

1.5 Calcolo di erenziale vettoriale Derivata ordinaria Gradiente Esempio n. 3 - Gradiente di 1

RM: PRINCIPI FISICI E IMAGING MORFOLOGICO

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da:

Transcript:

Cosa è necessario per generare un segnale RM? campo magnetico statico (B) unità di misura, tesla: 1 T =1 (N x A)/m gradienti di campo magnetico campo elettromagnetico a RF

Gli elementi fondamentali di un apparecchiatura RM sono MAGNETE GRADIENTI BOBINA TRASMITTENTE BOBINA RICEVENTE

Requisiti per i MAGNETI (1) stabilità temporale Scopo: minimizzare gli artefatti nelle immagini (GHOST) che possono essere generati da variazioni di campo magnetico dell ordine di 0.002microT. (Nel range di frequenze da 1 a 100Hz, la stabilità richiesta è dell ordine di parti per bilione (ppb))

Requisiti per i MAGNETI (2) omogeneità: si misura in ppm (1ppm = 0,000001) Scopo: minimizzare distorsioni geometriche e perdite di segnale Si può misurare come omogeneità peak to peak : tramite misura diretta sulla superficie del volume dell immagine e valutazione della massima variazione del campo surface rms : tramite calcolo della radice quadrata dei quadrati dei valori misurati sulla superficie volume rms : si ricava l intensità del campo magnetico nell intero volume dell immagine in modo indiretto, ovvero nel processo di acquisizione dell immagine si rilevano le frequenze di risposta provenienti dalle singole posizioni del volume. Valori tipici ~ 5-10ppm per 50cm DSV (Diameter Spherical Volume); esempio: RM1.5TGe 0.3ppm per DSV 40cm Qual è il rischio? Che le variazioni di campo dovute alle disomogeneità siano confrontabili con quelle imposte dalla presenza dei gradienti. Quindi la soglia di accettabilità dell omogeneità cresce: al calare del valore di B all aumentare dell intensità dei gradienti

Tipologie di MAGNETI - PERMANENTI (blocchi di materiale magnetizzato ad alta memoria magnetica) - RESISTIVI (spire di materiale conduttore percorse da elevate correnti) - SUPERCONDUTTIVI (spire di materiale conduttore percorse da elevate correnti mantenute a temperature prossime allo zero assoluto)

Magneti PERMANENTI RM OPEN RM SETTORIALE Ginocchio Caviglia Mano/polso/gomito

Come sono prodotti: DOMINI MAGNETICI, microscopiche regioni con momento magnetico NON nullo che poste in un B esterno intenso, si ALLINEANO con esso e rimangono tali anche quando si spegne B. i MATERIALI MAGNETICI permanenti sono detti anche «hard» dato che, una volta magnetizzati, conservano la magnetizzazione in modo quasi permanente. Al 1983 risale lo sviluppo di una nuova terra-rara (NdFeB neodimio-ferro-boro) oggi molto diffusa. Vantaggio: magnetizzabile ad alti valori per unità di volume; svantaggio: fortemente sensibile alla temperatura. I magneti realizzati con questo materiale presentano dei «pole pieces» (espansioni polari) in ferro per conformare il campo e dei gioghi sempre in ferro per sostenerle e per definire il percorso del flusso di ritorno del campo magnetico (al fine di aumentare l intensità del campo nel volume di immagine e ridurre il campo magnetico disperso). Variazioni con la temperatura: FERRO : ~ 100 ppm / C NdFeB : ~ 1000 ppm / C Sistema di controllo della temperatura: entro 0.1 C.

LIIMITAZIONI: ridotte intensità di campo (0.2-0.5 T), forte dipendenza dalla temperatura (0.12%/ C 120ppm per 0.1 C) gran parte dei magneti permanenti producono un B 0 verticale disegno delle bobine RF altro disegno dei magneti permanenti: H-frame, con «cornice in ferro» COERCITIVITA : forza necessaria ad un campo magnetico esterno per demagnetizzare il materiale vantaggi: confort per il paziente, campo magnetico disperso ridotto, bassi costi di mantenimento

Nozioni di base - carica elettrica in movimento campo magnetico - campo magnetico variabile passaggio di corrente elettrica in una bobina (induzione elettromagnetica) - grandezze vettoriali (direzione, verso, intensità)

DIREZIONE e VERSO del campo magnetico INDOTTO dal passaggio di corrente elettrica in un conduttore FILO SOLENOIDE

Magneti RESISTIVI da cosa sono costituiti: bobine in RAME o ALLUMINIO percorse da corrente tipologie: AIR-core (fino a 0.2T) e IRON-core (con nucleo in ferro per aumentare l intensità di B 0 ). In questo caso si parla di materiale «soft» in quanto esso perde la magnetizzazione una volta spento il campo magnetico. Il materiale viene impiegato come «poli» del magnete resistivo all estremità della bobina, in analogia ai magneti permanenti B 0 proporzionale alla corrente (esempio: 200A, 1ohm, 0.15T con AIR-core) limitazioni: necessità di un alimentazione stabile (circa 100ppm per potenze 40-100kW, prevalentemente dissipata nella bobina sotto forma di calore) e di efficienti sistemi di raffreddamento (variazioni di T variazioni di conducibilità) svantaggi: limitata stabilità, consumi elevati, bassi campi

Perché usare campi magnetici più intensi? l SNR (rapporto segnale rumore) aumenta circa LINEARMENTE con l intensità del campo al crescere dell SNR si può migliorare la qualità dell immagine (risoluzione spaziale) e/o la rapidità di scansione

Magneti SUPERCONDUTTIVI CON QUALI MATERIALI SONO REALIZZATI? Bobine in materiale SUPERCONDUTTIVO (NbTi niobio-titanio o Nb 3 Sn niobio-stagno) percorse da corrente a temperature prossime allo zero assoluto (-273.15 C = 0 K): al di sotto di questa temperatura, detta CRITICA, tali materiali presentano una RESISTENZA ELETTRICA NULLA. Ogni materiale ha la propria temperatura caratteristica, esempio: NbTi 9 K. Il raffreddamento di questi materiali richiede l uso di elio liquido (4 K). Esistono anche cosiddetti «high temperature superconductor» che lavorano in condizioni di superconduttività anche a temperature superiori a quelle dell azoto liquido (77 K).

il FILO, i cui avvolgimenti formano la bobina, è realizzato incorporando molti piccoli filamenti di materiale superconduttore, approssimativamente del diametro di circa 0.1mm in una matrice di rame di circa 2mm di diametro. Se la temperatura è inferiore a quella critica, tutta la corrente percorre all interno dei filamenti, mentre in caso contrario si trasferisce alla matrice di rame cercando di ridurre i danni ai filamenti superconduttivi. Lo «STABILIZZATORE in RAME» riduce quindi le probabilità di QUENCH dovute a piccoli disturbi della bobina.

QUENCH: quando una qualsiasi parte dell avvolgimento per varie ragioni aumenta la propria temperatura al di sopra di quella critica, riscalda dapprima l intero magnete portando quindi alla TRASFORMAZIONE DI TUTTA L ENERGIA DEL MAGNETE IN CALORE, NEL GIRO DI POCHI SECONDI. Inizia l ebollizione dell elio, che passa dallo stato liquido a quello gassoso.

CONSUMI di LIQUIDO CRIOGENICO: le apparecchiature tipicamente hanno un rateo di boil-off («evaporazione»)di circa (0.03 0.1) litro/h pertanto, per ridurre i costi, alcune ditte hanno realizzato tecnologie sia per «ricondensare» l elio sia per minimizzare il trasferimento di calore dall ambiente verso il magnete (dette macchine «a zero boil-off»). Solitamente la macchina è composta da: un contenitore esterno in cui viene fatto il vuoto (per ridurre la convezione), una o più schermature termiche e un isolamento multistrato, un contenitore con il liquido criogenico e quindi il magnete.

Per quanto concerne le schermature e lo strato di isolamento, essi intercettano il calore proveniente dall ambiente esterno e sono realizzati in materiali con alta conducibilità termica, vedi alluminio, per minimizzare le differenze termiche all interno della schermatura. Questi materiali hanno tuttavia anche un alta conducibilità elettrica, pertanto risentono degli impulsi dei gradienti che determinano EDDY CURRENTS nella schermatura termica. Cosa sono le EDDY CURRENTS? La macchina a fianco (RM intraoperatoria) è realizzata in Nb 3 Sn che può lavorare a circa 10 K, permettendo quindi il raffreddamento con sistemi di conduzione piuttosto che l impiego di liquidi criogenici

Forza Elettromotrice Indotta Ogni volta che il flusso di campo magnetico concatenato con un circuito VARIA nel TEMPO, compare nel circuito stesso una Forza Elettromotrice Indotta. Le correnti così indotte tendono ad OPPORSI all azione che le ha prodotte. Quindi producono un campo magnetico che tende ad ANNULLARE la variazione del flusso di campo magnetico iniziale. Le correnti parassite (EDDY CURRENTS) generano dei campi magnetici che si oppongono all impulso di gradienti stessi che le hanno originate. Quando la risalita del gradiente è terminata, le eddy currents calano, pertanto la distorsione del campo che esse generano cambia nel tempo. La compensazione, eseguita in fase di taratura, avviene o con un secondo set di bobine, ovvero impiegando impulsi per i gradienti di campo distorti a priori, via HW o SW.

1 a generazione 2 a generazione

CONTENIMENTO del CAMPO MAGNETICO DISPERSO: inizialmente si realizzò un approccio di «schermatura passiva» con l adozione di quantitativi di ferro attorno al magnete e/o nelle pareti delle sale RM, successivamente si passo alla «schermatura attiva», quindi con l aggiunta di altre bobine superconduttive, le quali sono percorse da una corrente nel verso opposto rispetto a quella che percorre la bobina principale, generando pertanto un campo magnetico che si oppone a quello principale, limitandone quindi la dispersione.

RAMPING: si tratta dell installazione della corrente nel magnete che avviene attraverso uno switch (piccolo avvolgimento di materiale superconduttivo immerso in un materiale conduttore) aperto portandolo ad una temperatura superiore alla sua temperatura critica e facendolo quindi passare in una condizione di resistenza elettrica non nulla, con il passaggio di gran parte della corrente nella bobina supercoduttiva piuttosto che nello switch.

OMOGENEITA : al fine di massimizzare l omogeneità di campo compensando le variazioni tra progetto e installato (geometria della bobina, interazione magnetica tra ambiente esterno e B 0 ) si esegue l operazione di SHIMMING che può essere passivo (con l applicazione di materiale ferromagnetico, tipicamente in fase di installazione della macchina) o attivo (con l impiego di apposite bobine, resistive o superconduttive) STABILITA : si possono verificare piccole perdite dovute a resistenze infinitesime della bobina che provocano perdite del campo magnetico dell ordine di poche ppm/anno.

RM CHIUSA RM OPEN

RM OPEN Vantaggi soluzione per pazienti claustrofobici o corpulenti esami di piccole parti del corpo (estremità) Tipologie a BASSO campo magneti permanenti - braccio a C 0.23 T ad ALTO campo magneti superconduttivi o resistivi - tunnel corti ed estremità ampiamente svasate - braccio a C 0.7 T 0.6 T

E per LOCALIZZARE il segnale RM: attivazione dei GRADIENTI

Bobine di GRADIENTE (lavorano a T ambiente)

Parametri principali Intensità del gradiente : mt/m (30-50 mt/m), massima variazione di campo magnetico per unità di lunghezza Slew rate (tempo risalita gradiente): (mt/m/msec) (150 mt/m/ms) Duty cycle: quanto rapidamente l amplificatore riesce a generare l impulso di gradiente Eddy currents: correnti elettriche PARASSITE generate nei materiali metallici sottoposti a CAMPI MAGNETICI VARIABILI che generano campi magnetici che si oppongono alla variazione del campo di gradiente

Geometria delle bobine: Gradiente Z

Geometria delle bobine: Gradienti X e Y

Evoluzioni nel tempo: 1. introduzione di bobine che sfruttano superfici 2. introduzione di bobine di gradiente AUTOschermate, per ridurre le correnti parassite; esse, a parità di corrente, producono gradienti meno intensi, ma tuttavia il beneficio risulta netto. Esiste anche un ultima generazione di bobine, perfettamente schermate, tali che più bobine sono raggruppate in un unico elemento e non più tre distinti.

Le bobine planari sono quelle impiegate nei magneti OPEN. Tipicamente le bobine del gradiente Z consistono in due dischi o avvolgimenti comunque di forma quadrata posizionati nei lati opposti, in corrispondenza dei due poli magnetici.

GRADIENTI e QUALITA dell IMMAGINE I gradienti influenzano alcuni parametri dell immagine: spessore minimo di strato valore minimo del tempo di echo tempo minimo di ripetizione di una sequenza FOV minimo (per una matrice costante) dimensioni massime di una matrice (a FOV costante) distorsione geometrica (correttezza della localizzazione del segnale)

INTENSITA dei GRADIENTI e QUALITA dell IMMAGINE N.B.: esiste un limite nella risoluzione delle frequenze per codificare le posizioni (differenza tra due frequenze «contigue»)

Considerare il caso con FOV definita. Dati di partenza: 1) valore del gradiente 2) dimensione del FOV 3) risoluzione in frequenza del sistema ( ω) Da (1) e (2) si ricava la VARIAZIONE di B da un estremo all altro del FOV ( Β) (per l equazione di Larmor) l intervallo in frequenza da un estremo all altro del FOV ( ω TOT ). Pertanto il numero di righe e/o colonne MAX viene dato dal rapporto tra l intervallo di frequenza e la risoluzione di frequenza. N righe = N colonne = ( ω TOT )/( ω ω ω)

SLEW RATE dei GRADIENTI e QUALITA dell IMMAGINE

Bobine RF Funzioni del sistema RF: (1)fase di TRASMISSIONE: eccitazione degli spin (2)fase di RICEZIONE: raccolta del segnale di «echo» Phased Array

Bobine RF trasmittenti Cosa trasmettono? Con quale obiettivo? Dell impulso RF si sfrutta la componente magnetica: si applica un campo magnetico B 1 perpendicolare a B 0

Macroscopicamente dopo l applicazione dell impulso RF Flip angle angolo di inclinazione di M 0 sul piano x,y Flip parziale Flip a 90

Bobine RF trasmittenti Creano il campo B 1 che ruota il vettore M B 1 è perpendicolare a B 0, con frequenza uguale a quella di risonanza nucleare e con intensità necessaria per ottenere, nel tempo desiderato, il voluto ribaltamento dell angolo di precessone degli spin (tale valore dipende anche dalle condizioni al contorno-struttura della bobina e dall ambiente circostante). In particolare: Flip angle angolo di inclinazione di M 0 rispetto al piano x,y in particolare (con τ durata dell impulso): θ = γ B 1 τ

Bobine RF trasmittenti Le bobine possono essere POLARIZZATE: LINEARMENTE: B 1 ha un orientamento fisso, ortogonale a B 0 (bobine LINEARI) CIRCOLARMENTE: B 1 ruota perpendicolarmente a B 0 ad una frequenza uguale a quella di Larmor. Queste bobine richiedono un alimentazione in due componenti di uguale ampiezza ma con una differenza di fase di 90, si parla di «ECCITAZIONE in QUADRATURA» (bobine in QUADRATURA) A parità di flip angle, le bobine lineari richiedono il doppio della potenza di quelle in quadratura, le quali pertanto sono più diffuse.

Trasmissione Trasmissione

(1) SINTETIZZATORE: genera un segnale sinusoidale continuo alla frequenza di Larmor (2) MODULATORE: genera l impulso RF con un ampiezza di banda finita (3) AMPLIFICATORE: monitorizza la potenza dell impulso RF (4) SWITCH (T/R): accoppia lo splitter alla corretta catena (T o R) a seconda della fase (5) SPLITTER: fornisce due componenti di uguale ampiezza e shiftate in fase di 90 (6) BOBINA in QUADRATURA: alimentata dalle due componenti, genera il campo B 1

Le bobine di trasmissione sono SCHERMATE ELETTROMAGNETICAMENTE rispetto alle bobine dei gradienti. Scopo: evitare che l energia delle onde RF si dissipi nelle bobine di gradiente. Possibile inconveniente: induzione di eddy currents nella schermatura, per cui essa deve essere «trasparente» ai gradienti di campo.

RICEZIONE Come si comporta il vettore magnetizzazione SOMMA?

Moto SPIRALIFORME Il vettore cambia DIREZIONE e INTENSITA, ma non FREQUENZA

Bobine RF di ricezione Rilevano la componente trasversa del vettore M quando esso precede nel piano x,y La forma fisica della bobine determina il suo volume sensibile: direzione campo B 0, CC : bobina a sella direzione campo B 0, LL o AP : bobine a forma solenoidale

Caratteristiche principali che determinano la scelta costruttiva delle bobine RF: OMOGENEITA ed EFFICIENZA, ma spesso i loro andamenti sono antitetici. Per bobine che lavorano esclusivamente in una modalità, si predilige l omogeneità nella trasmissione e l efficienza nella ricezione.

La forma di bobina di volume più usata è quella a GABBIA di UCCELLO - bird cage

Vantaggi Bobine di superficie multicanale aumento SNR per minore distanza bobina-volume riduzione dei tempi di acquisizione Svantaggio minore campo di vista

Richieste del mercato - maggior contenuto diagnostico dell immagine (aumento di rapporto segnale-rumore e risoluzione spaziale) - riduzione dei tempi di esecuzione dell esame - maggior comfort per il paziente

Rapporto segnale-rumore SNR Spessore di strato 8mm 4mm 2mm

Soluzioni - elevati campi magnetici - intensi gradienti di campo magnetico - elevati slew rate - algoritmi di elaborazione - bobine di superficie multicanale - imaging 3D

Altri impieghi.. Radiologia interventistica e imaging intraoperatorio

Modalità di acquisizione delle immagini : 2D e 3D Vantaggi del 3D imaging: 5mm 2D 1mm 3D assenza di vuoti o spazi tra le slices aumento di SNR (eccitazione di un volume piuttosto che una singola slice e assenza di crosstalk tra le slices)