Massimo limite e minimo limite di una funzione

Documenti analoghi
CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

Massimo e minimo limite di successioni

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

11. Misure con segno.

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Sviluppi e derivate delle funzioni elementari

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

1 - Estremo superiore ed estremo inferiore di insiemi

3. Successioni di insiemi.

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

13 LIMITI DI FUNZIONI

1 Successioni di funzioni

Successioni, massimo e minimo limite e compattezza in R

ANALISI 1 - Teoremi e dimostrazioni vari

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

Il teorema di Lagrange e la formula di Taylor

Complementi di Analisi Matematica Ia. Carlo Bardaro

Proprietà globali delle funzioni continue

DAI NUMERI NATURALI AI NUMERI RAZIONALI

1 Numeri reali. Esercizi.

8. Completamento di uno spazio di misura.

Limiti di successioni

LIMITI - ESERCIZI SVOLTI

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

ANALISI 1 1 QUINTA LEZIONE

17 LIMITI E COMPOSIZIONE

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Gli insiemi N, Z e Q. I numeri naturali

Limite di successioni

1 Successioni di funzioni

I teoremi della funzione inversa e della funzione implicita

Il Teorema di Mountain-Pass

Forme indeterminate e limiti notevoli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

14. Confronto tra l integrale di Lebesgue e l integrale di Riemann.

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

Proprietà commutativa e associativa per le serie

Continuità di funzioni

1 IL LINGUAGGIO MATEMATICO

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Esercizi per il corso Matematica clea

1 Funzioni reali di una variabile reale

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

3 LA RETTA REALE ESTESA

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Insiemi di numeri reali

Esistenza ed unicità per equazioni differenziali

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

COMPLETAMENTO DI SPAZI METRICI

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Programmazione Non Lineare

x 1 Fig.1 Il punto P = P =

17. Il teorema di Radon-Nikodym.

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

LIMITI. 1. Definizione di limite.

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

0.1 Spazi Euclidei in generale

La radice quadrata di 2

Esercizi riguardanti limiti di successioni e di funzioni

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Una semplice dimostrazione del teorema fondamentale dell algebra

Transcript:

Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r. Per ogni r > 0, poniamo ) ˆfp r) = sup E f p r). Definiamo il massimo limite di f in p come segue: max lim fx) = inf r>0 ˆf p r). Il massimo di limite di f in p esiste sempre in R). Osserviamo anche che esso si può vedere come il limite in 0 di ˆf p r). Infatti, se ˆf p r) non è costantemente + nel qual caso il massimo limite è anch esso + ) deve esistere σ > 0 tale che ˆf p r) è finito per ogni r positivo e minore di σ, e la funzione ˆf p : ]0, σ[ R, r ˆf p r) è crescente. Possiamo dunque scrivere max lim fx) = lim ˆfp r) = lim sup { fx) x A Ir p) \ {p} }. r 0 r 0 Per questo motivo si scrive a volte lim sup fx) anziché max lim fx). Il minimo limite di f in p si definisce in modo simile, e per esso valgono considerazioni analoghe a quelle appene viste per il massimo limite. Avremo pertanto fx) = sup inf { fx) x A Ir p) \ {p} } = lim inf { fx) x A Ir p) \ {p} }. r>0 r 0 Proposizione Per ogni f : A R, e ogni p DA), si ha fx) max lim fx). Per ogni r > 0, definiamo E f p r) come in ) e ˆf p r) come in ); poniamo inoltre ˇf p r) = inf E f p r). Per ogni r > 0, essendo E f p r), abbiamo ˇf p r) ˆf p r) e quindi fx) = lim ˇfp r) lim ˆfp r) = max lim fx). r 0 r 0

Esercizio Siano f, g : A R, e sia p DA). Mostrare che ) max lim ) fx) + gx) ) max lim fx) + gx) ) 3) k > 0 : max lim 4) k > 0 : 5) fx) = max lim fx) + max lim gx). fx) + gx). ) k fx) = k max lim fx). ) k fx) = k fx). fx) ). Esempio 3 Sia A = R\{0}, e sia f : A R definita da x sin. Si ha max lim fx) = x x 0 e fx) =. x 0 Infatti anzitutto si ha fx). Inoltre, per ogni r > 0, possiamo trovare n N maggiore di ; dunque, ponendo πr x = e 4n+)π x =, si ha 4n+3)π x < x = π + nπ < nπ < r, Essendo fx ) = e fx ) =, otteniamo che ˆf 0 r) = e ˇf 0 r) =. Ponendo g = f, si vede allo stesso modo che max lim gx) = e gx) =. x 0 x 0 ) Poiché f + g)x) = 0 per ogni x A, abbiamo evidentemente max lim fx) + gx) = ) fx)+gx) = 0: dunque nelle formule ) e ) dell Esercizio non si può mettere il segno di uguaglianza. Proposizione 4 Siano f, g : A R, e sia p DA). Se esiste ϱ > 0 tale che fx) gx) per ogni x A I ϱ p) \ {p}, allora anche max lim gx). fx) max lim gx) e fx) Dimostriamo solo l affermazione relativa al massimo limite perché l altra è analoga, oppure si può ricavare usando l Esercizio 5). Fissato r ]0, ϱ[, sia y E f p r) e sia x A I r p)\{p} tale che fx) = y. Allora y gx) E g pr) e quindi y sup E g pr) = ĝ p r). Ne consegue che anche ˆf p r) = sup E f p r) ĝ p r). Poiché r ]0, ϱ[ era arbitrario, concludiamo che max lim fx) max lim gx).

Teorema 5 Sia f : A R, e sia p DA). condizioni sono equivalenti: Per ogni numero reale M, le seguenti a) max lim fx) M. b) ε > 0 r > 0 f A I r p) \ {p} ) ], M + ε[. a) b) Supponiamo che b) sia falsa e mostriamo che è falsa a). L ipotesi dunque è che esista ε > 0 tale che per ogni r > 0 si abbia f A I r p) \ {p} ) ], M + ε[. Allora, per ogni r > 0, esiste x r A I r p) \ {p} tale che fx r ) M + ε. Da ciò segue che sup { fx) x A Ir p) \ {p} } M + ε e quindi max lim fx) M + ε > M. b) a) Se vale la b), allora per ogni ε > 0 esiste r > 0 tale che sup { fx) x A I r p) \ {p} } M + ε. Dunque si ha max lim fx) M + ε per ogni ε > 0, e quindi max lim fx) M per l arbitrarietà di ε. Corollario 6 Per ogni f : A R, e ogni p DA), si ha max lim fx) = se e solo se lim fx) =. Per il teorema precedente, max lim fx) = se e solo se M R ε > 0 r > 0 f A I r p) \ {p} ) ], M + ε[, il che evidentemente significa che lim fx) =. Abbiamo già notato ma vale la pena di sottolinearlo) che ad ogni asserzione che si può provare per il massimo limite ne corrisponde una simile per il minimo limite, che si dimostra analogamente oppure applicando l Esercizio 5). Ad esempio al Teorema 5 e al Corollario 6 corrispondono i seguenti. Teorema 7 Sia f : A R, e sia p DA). Per ogni numero reale M le seguenti condizioni sono equivalenti: a) fx) M. 3

b) ε > 0 r > 0 f A I r p) \ {p} ) ]M ε, + [. Corollario 8 Per ogni f : A R, e ogni p DA), si ha fx) = + se e solo se lim fx) = +. Il prossimo teorema è di fondamentale importanza, perché motiva le definizioni di massimo e minimo limite, stabilendo un collegamento con la definizione di limite. Teorema 9 Sia f : A R, e sia p DA); poniamo λ = fx) e Λ = max lim fx). Allora il limite di f in p esiste se e solo se λ = Λ e, in tal caso, lim fx) = λ = Λ. Supponiamo dapprima che lim fx) = l: dobbiamo dimostrare che max lim fx) = l e che fx) = l. Se l = oppure l = + ), ciò segue subito dal Corollario 6 o, rispettivamente, dal Corollario 8) tenendo conto della Proposizione : dunque possiamo supporre l R. Come già osservato, possiamo limitarci a dimostrare che max lim fx) = l. Sia dunque ε > 0. Per la definizione di limite, esiste δ > 0 tale che f A I δ p) \ {p} ) I ε l) ], l + ε[. Pertanto Λ l in virtù del Teorema 5. Mostriamo ora che non può essere Λ < l. Infatti, in tal caso si avrebbe anche Λ < M per un certo M < l. Ponendo ε = l M), per ipotesi troviamo ϱ > 0 tale che per ogni x A I ϱ p) \ {p} si ha l + M) = l ε < fx) < l + ε. D altra parte, applicando il Teorema 5, troviamo r > 0 tale che x A I r p) \ {p} si ha fx) < M + ε = l + M). Detto allora δ il minimo tra ϱ e r, per ogni x A I δ p) \ {p} otteniamo che fx) è contemporaneamente maggiore e minore di l + M): assurdo. Viceversa, sia λ = Λ e dimostriamo che lim fx) = Λ. Anche in questo caso possiamo supporre Λ R. Fissiamo ε > 0. Per il Teorema 5, esiste r > 0 tale che f A I r p) \ {p} ) ], Λ + ε[. Similmente, per il Teorema 7, esiste ϱ > 0 tale che f A I ϱ p) \ {p} ) ]Λ ε, + [. Prendendo quindi δ = min{r, ϱ}, per ogni x A I δ p) \ {p}, si ha Λ ε < fx) < Λ + ε. 4

Massimo limite e minimo limite di una successione Rileggendo le definizioni di massimo limite e di minimo limite nel caso di una successione s n ) n N, possiamo osservare che max lim s n = inf sup s n = lim sup k N n>k s n e n>k s n = sup k N inf s n = n>k lim inf s n. n>k Sia infatti r > 0; posto k = int, per ogni n N si ha n > se e solo se n > k: quindi r r E+ r) s = { } s n n > r = { sn n > k }. Inoltre i Teoremi 5 e 7 si possono riscrivere, rispettivamente, come segue. Teorema 0 Data una successione s n ) n N e un numero reale M, vale la disuguaglianza max lim s n M se e solo se per ogni ε > 0 si ha definitivamente s n < M + ε. Teorema Data una successione s n ) n N e un numero reale M, vale la disuguaglianza s n M se e solo se per ogni ε > 0 si ha definitivamente s n > M ε. Chiamiamo maggiorante definitivo per una successione s n ) n N ogni µ R tale che s n µ definitivamente. Analogamente si definisce un minorante definitivo. Nel prossimo teorema, occorre utilizzare la convenzione che sup = e inf = +. Teorema Il massimo limite di una successione s n ) n N è l estremo inferiore dei maggioranti definitivi e il minimo limite è l estremo superiore dei minoranti definitivi). Al solito, omettiamo di dimostrare la parte fra parentesi. Sia Λ = max lim s n, e sia µ un maggiorante definitivo. Allora per ogni ε > 0 si ha s n < µ + ε definitivamente, e quindi Λ µ per il Teorema 0. Pertanto Λ è un minorante dell insieme dei maggioranti definitivi. Sia ora M > Λ: completiamo la dimostrazione trovando un maggiorante definitivo minore di M. Sia infatti m un numero reale maggiore di Λ e minore di M, e sia ε > 0 tale che Λ m ε: applicando il Teorema 0 si vede subito che s n < m definitivamente. Corollario 3 Il massimo limite Λ e il minimo limite λ di una successione limitata s n ) n N sono entrambi finiti. 5

Indichiamo con a e b rispettivamente un minorante e un maggiorante di s n ) n N. Essendo a un minorante definitivo abbiamo λ a; analogamente Λ b. Ora per la Proposizione si ha λ Λ: dunque sia λ che Λ appartengono ad [a, b]. Teorema 4 Sia s mk ) k N sottosuccessione di s n ) n N. Allora max lim s m k s n. s m k max lim s n e Anche in questo caso ci limitiamo a dimostrare l affermazione riguardante il massimo limite. Sia A l insieme dei maggioranti definitivi per s n ) n N, e sia B l insieme dei maggioranti definitivi per s mk ) k N. Se µ A, esiste ν N tale che s n µ per ogni n > ν; dunque, per ogni k > ν, essendo m k k, abbiamo s mk µ: pertanto ν B. Abbiamo così provato che A B; di conseguenza si ha inf A inf B, e la tesi segue dal teorema precedente. Teorema 5 Sia l il massimo limite il minimo limite) di una successione s n ) n N. Esiste una sottosuccessione s mk ) k N di s n ) n N tale che lim s m k = l. Sia l = max lim s n: se l =, la tesi segue subito dal Corollario 6. Supponiamo ora l R, lasciando come esercizio la dimostrazione del caso l = +. In virtù della Proposizione e dei Teoremi 9 e 4, basterà costruire un estratta il cui minimo limite sia maggiore o uguale a l. Anzitutto notiamo che, per ogni k N, il Teorema ci assicura che l k non è un maggiorante definitivo, cioè non si ha s n l definitivamente, e quindi si ha s k n > l k frequentemente: in altre parole l insieme D k = { n N s n > l } è infinito. Posto k dunque m = min D, e m k+ = min{ n D k+ n > m k } per ogni k N, la successione di numeri naturali m k ) k N così ottenuta è strettamente crescente; inoltre, per ogni k N, si ha s mk > l. Applicando la Proposizione 4 e il Teorema 9, si ottiene allora: k s m k l ) = lim l ) = l. k k Corollario 6 Il massimo limite il minimo limite) di una successione coincide con il massimo rispettivamente, il minimo) in R dell insieme di tutti i possibili limiti delle sue estratte. 6