Generazione di segnali

Documenti analoghi
Generazione di segnali

FILTRI in lavorazione. 1

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

L amplificatore Williamson

Circuiti a transistor

Amplificatori operazionali

5. GENERATORI DI SEGNALI ANALOGICI

I transistor in alta frequenza

RISONANZA. Fig.1 Circuito RLC serie

Nome: Fabio Castellini Sesta esperienza Data: 19/05/2015 I FILTRI PASSIVI

Capacità parassita. Quindi ci si aspetta che la funzione di trasferimento dipenda dalla frequenza

Amplificatori in classe A con accoppiamento capacitivo

Misure su linee di trasmissione

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

Filtri passivi Risposta in frequenza dei circuiti RC-RL-RLC

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Componenti in corrente continua

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

Campi Elettromagnetici e Circuiti I Risposta in frequenza

Elementi di base delle vibrazioni meccaniche

Curva caratteristica del transistor

Page 1. ElapB2 08/12/ DDC 1 ELETTRONICA APPLICATA E MISURE. Generatori sinusoidali. Ingegneria dell Informazione.

ω 1 è la frequenza di taglio inferiore ω 2 = ω 1 = 0 ω 2 è la frequenza di taglio superiore Α(ω) Α(ω) ω ω 1 ω 2

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte E: Circuiti misti analogici e digitali Lezione n E - 5:

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Banda passante di un amplificatore

Elaborazione analogica dei segnali

3.1 Verifica qualitativa del funzionamento di un FET

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.

Circuiti a microonde attivi in regime di grandi segnali

Stabilità delle reti lineari

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (5.1)

Amplificatori alle alte frequenze

Michele Scarpiniti. L'Amplificatore Operazionale

Laboratorio di Telecomunicazioni

Ricavo della formula

Esercitazione 1 Filtro del I ordine Risposta ad un segnale sinusoidale Risposta ad un onda quadra

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

Le sonde Pagina in. - figura

Impiego dell oscilloscopio e del generatore di funzioni

Lezione A3 - DDC

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza

Le configurazioni della reazione

La corrente alternata

Esercitazione Multimetro analogico e digitale

Elettronica I Risposta in frequenza e guadagno in decibel

44) Applicando una tensione di 100 V su una resistenza di 0,050 KΩ, quanto sarà la potenza dissipata a) 20W b) 200W c) 2W

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

P4 OSCILLATORI SINUSOIDALI

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Oscillatori sinusoidali

OSCILLATORE A SFASAMENTO

CORSO%DI%% A.A.% % Sezione%03c% SPETTRO ACUSTICO FISICA%TECNICA%AMBIENTALE%

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Il rumore nei circuiti elettrici

Misure voltamperometriche su dispositivi ohmici e non ohmici

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

Tipi di amplificatori e loro parametri

Filtri a quarzo. 6 febbraio 2010

ESAME di STATO 2009 ISTITUTO PROFESSIONALE per l INDUSTRIA e l ARTIGIANATO

a.a. 2014/2015 Docente: Stefano Bifaretti

Progetto di un preamplificatore per microfono

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA

Modulazioni di ampiezza

Spettri e banda passante

Gli alimentatori stabilizzati

In elettronica un filtro elettronico è un sistema o dispositivo che realizza

Il TRANSISTOR. Il primo transistor della storia

Le radici della D(s) forniscono i poli della funzione di trasferimento T(s).

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità

Serie di Fourier. Se x(t) è periodica con periodo T e frequenza f=1/t, posso scriverla nella forma:

ELETTRONICA II. Prof. Dante Del Corso - Politecnico di Torino. Parte F: Conversione A/D e D/A Lezione n. 29- F - 6: Sistemi di acquisizione

Risposta temporale: esempi

Interazione tra strumenti e sistemi in misura: effetto di carico

Esercitazione 8 : LINEE DI TRASMISSIONE

Transistore bipolare a giunzione (BJT)

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

4 - Visualizzazione di forme d onda in funzione del tempo

Vo (f) V i (f) -90 f L. f H freq [Hz] k 10k 100k

Laboratorio di Telecomunicazioni

Elettronica generale - Santolo Daliento, Andrea Irace Copyright The McGraw-Hill srl

I transistor in alta frequenza

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI

Stabilità dei sistemi di controllo in retroazione

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono

Indice. Cap. 1 Il progetto dei sistemi elettronici pag. 1

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.

ANALISI E DESCRIZIONE DI UN CIRCUITO PER LA MODULAZIONE DIGITALE PSK

Valutazione della capacità dissipativa di un sistema strutturale

Esercitazione Oscilloscopio

I.T.I.S. Max Planck Verifica di Elettronica Oscillatori classe 5 A/Tel a.s. 2013/14 COGNOME E NOME Data: 27/11/2013

DINAMO DATORE DI SET. B2x - Presentazione del gruppo di lezioni B MOTORE ELETTRONICA DI CONTROLLO. B2x - Presentazione del gruppo di lezioni B

Transcript:

Capitolo 14 Generazione di segnali 14..2 Il moltiplicatore di Q Mentra la reazione negativa, come visto al cap. 2, può essere usata per ridurre la dipendenza del guadagno di un amplificatore dalla frequenza, la reazione positiva può essere utilizzata per produrre l effetto opposto. Figura 14.1: mplificatore selettivo composto da un amplificatore a larga banda seguito da un filtro passa-banda formato da un circuito risonante LRC. Nella fig. 14.1 l amplificatore è seguito da un circuito risonante serie LC che forma con la resistenza R un partitore selettivo. Se si suppone indipendente dalla frequenza, almeno nell intorno della frequenza di risonanza del circuito LC, il guadagno complessivo del circuito sarà G = V o V i = R ( R + j 2πfL 1 2πfC ) = 1 + jq ( f f f f ) (14.1) dove f = 1/(2π LC) è la frequenza di risonanza del circuito LC e Q = 2πf L/R il fattore di merito alla risonanza in presenza della resistenza R. Per f = f f << f l espressione tra parentesi può essere approssimata da e quindi ( f f ) = f 2 f 2 f f f o f G = V o V i = = (f f o)(f + f ) f f 2 f f (14.2) 1 + 2jQ f/f (14.3) 14-1

14-2 CPITOLO 14. GENERZIONE DI SEGNLI 1.75 (V o 2 / Vi ) 2.5.25 W = 1/Q B W = f / Q.5 1 1.5 2 f / f Figura 14.2: Curva di selettività di un circuito risonante con Q = 1. La curva in verde è stata calcolata con l espressione approssimata 14.3, quella in rosso con l espressione esatta 14.1. La larghezza della curva a metà altezza è pari a W = 1/Q, corrispondente larghezza di banda B W = f /Q. In fig. 14.2 è riportato l andamento di G 2 = V o /V i 2 per Q = 1 e = 1, calcolato con l approssimazione 14.2-14.3 e con l espressione esatta 14.1. In fig. 14.3 il circuito è stato modificato realizzando un anello a reazione positiva che riporta all ingresso il segnale V o e lo somma a V i. Figura 14.3: L amplificatore di fig. 14.1 con il segnale V all uscita, filtrato dal circuito risonante LRC, sommato al segnale di ingresso in modo da formare un anello con reazione positiva. Secondo quanto visto nel cap. 2, fino a che < 1, l eq. 2.2 fornisce correttamente la risposta del circuito ad un segnale sinusoidale stazionario: G = G 1 βg = 1 + 2jQ f/f = (14.4) 1 + 2jQ 1 f/f 1 + 2jQ f/f Riscrivendo questo risultato nella forma G = 1 1 1 + 2j Q 1 f f (14.5)

14.1. RUMORE NEI GENERTORI DI SEGNLE 14-3 si vede che il circuito con reazione positiva presenta un guadagno ed un fattore di merito moltiplicati entrambi per il fattore (1 ) 1 rispetto a quelli che avrebbe ad anello aperto. Questo naturalmente sarà vero anche per tutte le altre caratteristiche del circuito che venivano attenuate dalla reazione negativa e che invece verranno esaltate: distorsione, dipendenza dai valori dei parametri etc. 14.1 Rumore nei generatori di segnale Nel circuito di fig. 14.3, per che tende asintoticamente ad 1, guadagno G e fattore di merito Q ad anello chiuso vanno entrambi ad infinito. In questa condizione idealmente il circuito, avendo guadagno infinito, può fornire una tensione di uscita V o anche in presenza di una tensione di ingresso V i nulla e quindi diventare un generatore di segnali. Infatti, nel piano complesso del diagramma di Nyquist il tracciato del guadagno d anello che compare nella eq. 14.4 per = 1 passa esattamente per il punto {-1,}. Questo indica la presenza di due zeri coniugati sull asse jω, che difatti si trovano in corrispondenza dei punti ±2jπf o, come la coppia S 3, S3 in fig. 12.4. In base a questa analisi la tensione all uscita del circuito sarà un oscillazione perfetta V cos(2πf o t + ϕ), con ampiezza di picco V costante. Nella realtà le cose sono più complicate. 14.1.1 Rumore di fase Prima di tutto, non è possibile costruire una rete in cui sia stabilmente esattamente 1. Qualunque minima deriva del valore di porterà i due zeri da ±2jπf o a ±ɛ±2jπf o, con la comparsa quindi di un termine di smorzamento positivo o negativo e ±ɛt che farà crescere o decadere l oscillazione. Questo problema può essere risolto dotando il circuito di un sistema attivo di regolazione che, osservando l ampiezza del segnale V o all uscita, intervenga aumentando o diminuendo leggermente il valore di non appena V o accenna a diminuire o ad aumentare. Nella pratica molto spesso questo risultato viene raggiunto impostando > 1 per livelli di segnale piccoli e lasciando poi crescere l ampiezza della tensione V o dell oscillazione fino a che la saturazione dell amplificatore non riduce il valore effettivo di ad 1. Ogni deriva successiva del valore di verrà compensata da una leggera variazione di V o. Nell analisi che segue sarà necessario supporre che la rete sia lineare, quindi si supporrà di avere un sistema di regolazione attivo, come accennato prima, anche se poi nella pratica si utilizza il secondo metodo. Normalmente la distorsione introdotta dalla saturazione si mantiene a livelli sufficientemente bassi da non alterare sensibilmente i risultati. Il secondo problema è costituito dal fatto che nel circuito di fig. 14.3 non si può porre semplicemente V i =. Qualunque circuito fisico, per quanto perfetto, contiene sempre numerose sorgenti di rumore, prima di tutto il rumore Johnson legato a tutte le componenti resistive del circuito e poi le varie sorgenti di rumore legate ai meccanismi fisici di funzionamento dei dispositivi attivi, diodi e transistor. Si può tenere conto dell effetto complessivo di tutte queste sorgenti di rumore inserendo all ingresso dell amplificatore, al posto del generatore V i o in serie a questo, un generatore equivalente di rumore U n che riproduca all uscita l effetto complessivo di

14-4 CPITOLO 14. GENERZIONE DI SEGNLI tutti i generatori di rumore presenti. La presenza di questo rumore farà sì che il segnale all uscita non possa più essere considerato un segnale monocromatico puro, cioè una sinusoide perfetta, ma abbia una composizione spettrale più complessa. In ogni istante il valore effettivo della tensione v o (t) differirà in più o in meno dal valore teorico v o (t) = V cos(2πft + ϕ), come se l oscillazione stesse leggermente ritardando o anticipando: la fase del segnale non sarà più esattamente 2πft+ϕ, ma 2πft+ϕ+δ, con δ variabile aleatoria. Da qui il termine rumore di fase per questo effetto. 1 In presenza di un generatore di rumore U n al posto di V i, l eq. 14.4 diventa U o = 1 + j2q f/f U n (14.6) In questa equazione U n non è l ampiezza di una tensione nel senso abituale, ma una densità spettrale di tensione e sarà quindi espressa in V/ Hz. Di conseguenza anche U o sarà adesso una densità spettrale di tensione, espressa nelle stesse unità; ad ogni intervallo di frequenza df corrisponde un contributo quadratico alla tensione efficace di rumore dv 2 n = U 2 ndf. La potenza P o presente in uscita al circuito sulla resistenza R sarà data dal contributo di tutte le componenti spettrali presenti nel segnale U o. Dalla eq. 14.6: P o = Utilizzando la relazione Uo 2 (f) R df = 1 Un 2 2 R (1 ) 2 + 4Q 2 ( f/f df (14.7) 2 ) dx a 2 + b 2 x 2 = 1 ( ) b ab arctan a x con x = f f = f, dx = df, a = (1 ) e b = 2Q /f si ottiene 2 P o = U 2 n 2 R = U 2 n 2 R [ ( )] 1 + 2Q arctan (1 )2Q /f f (1 ) f f 2(1 )Q π (14.8) In generale sarà veramente molto vicina ad 1, per cui si può sostituire nell ultima equazione 2 1 e poi risolvere per (1 ): (1 ) = π 2 f Q U 2 n RP o (14.9) Il rapporto tra la densità spettrale U 2 n del rumore all ingresso dell amplificatore e la potenza P o del segnale all uscita che viene riportato all ingresso come reazione positiva, insieme alle caratteristiche f e Q del circuito risonante che fa da filtro, determinano quanto piccolo sia il valore di (1 ). 1 nche la quantità V viene modulata nel tempo dal rumore, ma poichè i due effetti si sommano in modo inseparabile, vengono cumulativamente indicati con ( il termine ) rumore di fase. 2 2Q Poichè 1 è veramente molto piccolo, si ha arctan π 1 2

14.1. RUMORE NEI GENERTORI DI SEGNLE 14-5 Sostituendo l espressione 14.9 nella 14.6, e ponendo a numeratore 1, si ottiene la densità spettrale di potenza del segnale: P (f) = U 2(f) R = Un/R 2 (1 ) 2 + (2Q f/f ) 2 = P o 1 πf 2 1 + ( f/f 2 ) 2 (14.1) L equazione 14.1 descrive una curva a campana con una semilarghezza a metà altezza data da: f 2 = π 4 f 2 Q 2 U 2 n RP o (14.11) Supponendo di avere, per esempio, un circuito con f = 1 MHz, Q = 1, R = 1 Ω, P o = 1 mw (pari a V o = 1 V RMS ) e che la resistenza R sia l unica fonte di rumore presente nel circuito, si ha U 2 n = 4kT R = 4 1.38 1 32 3 1 = 1.66 1 18 V 2 /Hz f 2 = π 4 116 1.66 1 18 12 1 2 1 2 = 1.3 1 4 Hz (14.12) In una situazione più realistica, supponendo che il rumore effettivo sia di qualche db superiore al puro rumore Johnson della resistenza, ad esempio 1 db, si ha f 2 = 1.3 1 3 Hz In grafico si otterrebbe lo stesso andamento di fig. 14.2, ma con un picco veramente molto molto stretto. È quindi ragionevole associare con ottima precisione tutta la potenza del segnale alla frequenza centrale f, la portante, di ampiezza V o : P o = Vo 2 /R. La potenza associata a frequenze che distano da f anche solo di pochi Hz è quasi evanescente. -5 dbc -1-15 -2 1 Hz 1 khz 1 MHz f = f - f Figura 14.4: Spettro del rumore di fase del generatore di segnale descritto nell esempio 14.12.

14-6 CPITOLO 14. GENERZIONE DI SEGNLI Le cose però appaiono molto diverse se gli stessi dati sono osservati su una scala logaritmica. In fig. 14.4 viene riportata la funzione 14.1 espressa in unità dbc, cioè come rapporto tra la potenza associata ad una larghezza di banda convenzionale di 1 Hz a distanza f dalla portante e la potenza della portante (che praticamente coincide con la potenza totale). La lettera c in dbc sta per carrier (portante). Quindi dbc = decibel rispetto alla portante. Con questa definizione ( ) [ ] U 2 dbc [P (f)] = 1 log o (f) π 1 1 = 1 log 1 RP o f 2 1 + ( f/f 2 ) 2 (14.13) Come si vede, le bande laterali di rumore si riducono di intensità al ritmo di 2 db per decade di frequenza. Ma ancora ad una distanza di 5 khz dalla portante hanno una intensità di 128 dbc. Un eventuale altro segnale presente a questa distanza dalla portante, che occupi ad esempio una banda di 2 khz, sarebbe disturbato da un rumore con una potenza pari a 128 + 33 = 95 db rispetto alla portante. Questo è un effetto per niente trascurabile in molte situazioni in cui si ha a che fare con strumenti molto sensibili come un ricevitore radio, un analizzatore di spettro o un radiotelescopio, in grado di elaborare segnali che si estendono su scale che possono arrivare a 12 db di dinamica. 14.2 Oscillatore Colpitts L amplificatore accordato descritto nella fig. 13.25 può essere facilmente trasformato in un generatore di segnali, collegando l uscita (out) con l ingresso (in) realizzando così, secondo lo schema di principio di fig. 14.3, un circuito oscillatore noto come oscillatore Colpitts (fig. 14.5). Figura 14.5: Schema elettrico di un oscillatore Colpitts. Con i valori dei componenti indicati la frequenza di oscillazione è di 13... 15 MHz, regolabile tramite il condensatore variabile C 3. Il rapporto tra i due condensatori C 1 e C 2 deve essere scelto in modo da avere un guadagno d anello complessivo maggiore di uno. Normalmente, anzi, si fa in modo

14.2. OSCILLTORE COLPITTS 14-7 che il guadagno d anello sia decisamente maggiore di uno, lasciando poi alla saturazione del dispositivo amplificatore il compito di limitare e stabilizzare l ampiezza dell oscillazione. In fig. 14.6 è riportata la registrazione, effettuata tramite un oscilloscopio digitalizzatore, della nascita, crescita e stabilizzazione dell oscillazione. 1 5 mpiezza [V] -5-1 1 2 3 4 tempo [µs] Figura 14.6: Crescita e stabilizzazione dell ampiezza del segnale nell oscillatore Colpitts di fig. 14.5. Per effettuare questa misura è stato utilizzato il circuito modificato come indicato nella fig. 14.5, a destra, in rosso: in parallelo al circuito risonante è stata aggiunta una resistenza variabile (in pratica un transistor jfet), comandata dal generatore V G, programmato per inviare un onda quadra. I valori del circuito sono stati aggiustati in modo da avere, con il transistor jfet acceso, un guadagno d anello minore di uno e spengere l oscillazione; viceversa, con il transisor spento, il guadagno d anello torna a valori maggiori di uno e l oscillazione può nascere e crescere. Il segnale a gradino in verde nella figura è il fronte di discesa dell onda quadra, che comanda lo spengimento del fet. L oscillazione nasce dalla piccola perturbazione indotta nel circuito risonante dall onda quadra attraverso la capacità gate-drain del fet. In assenza di questa, l oscillazione avrebbe origine da ogni minima fluttuazione dovuta al rumore elettrico sempre presente nei circuiti. Nel grafico si vede chiaramente come l oscillazione cresce di ampiezza con andamento esponenziale per circa 2 µs, quindi, in corrispondenza dell ampiezza di ±5 V comincia a crescere sempre più lentamente fino a che non si stabilizza asintoticamente intorno a circa ±8 V. 14.2.1 Stabilità della frequenza Una delle prestazioni più importanti richieste ad un generatore di segnali, sia nelle applicazioni in telecomunicazioni sia nel campo della strumentazione scientifica, è la precisione e la stabilità della frequenza generata. Le due cause principali di deriva della frequenza sono le variazioni della tensione di alimentazione e le variazioni di

14-8 CPITOLO 14. GENERZIONE DI SEGNLI temperatura. Per il circuito di fig. 14.5 queste derive sono riportate nella fig. 14.7 (curve in rosso, scale dei valori a sinistra). deriva oscillatore libero [khz] 8 4-4 oscillatore libero con quarzo 2 1-1 deriva oscillatore a quarzo [Hz] 1 11 12 13 14 Tensione di alimentazione [V] deriva oscillatore libero [khz] 15 1 5-5 -1-15 oscillatore libero con quarzo 1 5-5 -1 deriva oscillatore a quarzo [Hz] 26 28 3 32 34 36 38 4 42 44 Temperatura [gradi] Figura 14.7: Deriva della frequenza in funzione della tensione di alimentazione (in alto) e della temperatura (in basso). Le curve rosse (con scala dei valori a sinistra) si riferiscono al generatore controllato dal solo circuito risonante LC; le curve verdi (scala dei valori a destra) al generatore controllato da un cristallo di quarzo. ttenzione: la scala a sinistra è in khz, quella a destra in Hz. Nel grafico in alto è riportata la deriva al variare della tensione di alimentazione di 2 V in più o in meno rispetto al valore nominale di 12 V. Nel grafico in basso la deriva al variare della temperatura tra 26 e 42 C. I coefficienti di deriva sono rispettivamente 21 khz/v (a 12 V ) e 2.3 khz/ C (a 34 C), rispetto alla frequenza nominale di 12.7 M Hz. In condizioni ambientali ordinarie si può avere facilmente una escursione di temperatura di 1 C nell arco di una giornata ed anche di 4 C tra una stagione e l altra. Questo porta a fluttuazioni della frequenza generata fino a ±46 khz, pari a ±.36% della frequenza nominale. Un orologio controllato da questo generatore potrebbe accumulare nell arco di una giornata un errore di diversi minuti;

14.2. OSCILLTORE COLPITTS 14-9 sarebbe un orologio di qualità decisamente scadente. Lasciando il controllo della frequenza a componenti come induttanze e capacità (e quindi anche agli effetti delle capacità parassite, come ad esempio la capacità collettore-base del transistor) non è facile ottenere prestazioni migliori. 14.2.2 Oscillatore a quarzo Per ottenere una migliore stabilità di frequenza da un oscillatore è necessario accoppiare al circuito un elemento risonante che abbia una frequenza di risonanza il più possibile insensibile alle condizioni ambientali ed un fattore di merito Q molto elevato, in modo che questo sia l elemento di gran lunga preponderante nello stabilire la frequenza di oscillazione del circuito. Una soluzione molto semplice e molto usata in elettronica è l utilizzo di un risuonatore meccanico formato da una lamina di cristallo di quarzo. Le caratteristiche meccaniche del cristallo di quarzo sono molto stabili sia al variare della temperatura, sia per quanto riguarda l invecchiamento con il passare del tempo. Il fatto che il quarzo sia un materiale piezoelettrico permette di accoppiare facilmente il risuonatore meccanico al circuito elettronico semplicemente utilizzando la lamina come dielettrico di un condensatore. Figura 14.8: Nella foto, a sinistra: lamina di quarzo estratta dal contenitore, con gli elettrodi metallici depositati sulle due facce; a destra: il cristallo incapsulato nel suo contenitore, pronto per l uso. Lo schema elettrico a destra indica come il cristallo di quarzo può essere inserito nel circuito oscillatore di fig. 14.5. Nella fig. 14.8 si vede, a sinistra nella foto, come è realizzato in pratica il risuonatore: una sottile lamina (la frequenza di risonanza dipende dallo spessore), di forma circolare (ma può essere anche quadrata o rettangolare), con due elettrodi metallici depositati sulle due facce e collegati ai terminali. Una volta incapsulata nel suo contenitore, si presenta come si vede a destra nella foto. Nello schema elettrico, a destra nella figura, è riportato il simbolo circuitale del risuonatore al quarzo (X T L ), inserito nel circuito dell oscillatore di fig. 14.5 in sostituzione del condensatore C 4. Elettricamente il risuonatore meccanico al quarzo equivale ad un circuito risonante RLC serie; in parallelo a questo si viene a trovare la capacità degli elettrodi, per cui il circuito equivalente complessivo è quello riportato in fig. 14.9 in alto; in basso è riportato l andamento di modulo e fase dell impedenza in funzione della frequenza nell intorno della risonanza. Si osservano due risonanze: la prima, ad una frequenza

14-1 CPITOLO 14. GENERZIONE DI SEGNLI 1k 1k Z [Ω] 1k 1 9-9 fase [gradi] 1-2 2 4 f - f s [khz] Figura 14.9: Circuito elettrico equivalente di un risuonatore al quarzo e sua impedenza complessa in funzione della frequenza, in modulo (curva rossa) e fase (curva verde). Il circuito RLC s serie corrisponde all elemento piezoelettrico; il condensatore C p corrisponde alla capacità tra gli elettrodi. La frequenza f s per il dispositivo utilizzato per questa misura è 12762.4 khz. più bassa (f s ), è la risonanza serie del circuito RLC s (leggermente corretta dalla presenza di C p ) ed è, caratterizzata dal minimo dell impedenza (circa 1 Ω); la seconda, ad una frequenza f p più alta di circa 25 khz rispetto ad f s, è la risonanza parallelo generata dal comportamento induttivo di RLC s a frequenze f > f s in parallelo a C p ed è caratterizzata da un massimo dell impedenza (oltre 1 kω). Poichè il circuito amplificatore su cui è costruito l oscillatore è di tipo base a massa, è la frequenza f s quella che realizza la condizione di massima amplificazione e quindi corrisponde alla frequenza di oscillazione. Il fatto che la fase vari molto rapidamente da 9 a +9 intorno a f s fa sì che uno spostamento lievissimo di f da f s possa compensare eventuali piccoli errori o fluttuazioni nella fase del quadagno d anello dagli esatti necessari per avere l oscillazione stabile. Le derive misurate sul circuito modificato come indicato in fig. 14.9 sono riportate in verde nella fig. 14.7. Nelle stesse condizioni operative utilizzate per l oscillatore libero, si hanno rispettivamente 79 Hz/V e 15 Hz/ C al variare della tensione di alimentazione e della temperatura. Il miglioramento nella stabilità è di oltre due ordini di grandezza per entrambe le derive.