Data mining e rischi aziendali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Data mining e rischi aziendali"

Transcript

1 Data mining e rischi aziendali Antonella Ferrari

2 La piramide delle componenti di un ambiente di Bi Decision maker La decisione migliore Decisioni Ottimizzazione Scelta tra alternative Modelli di apprendimento Data Mining Esplorazione dei dati Analisi statistica e visualizzazione Data warehouse e data mart Analisi dei cubi multidimensionali Analisi attive di Bi Estrazione di informazioni e conoscenze a partire dai dati Analisi passive di Bi Metodi statistici, sistemi di interrogazioni e reporting Fonti di dati Dati operazionali, documenti e dati esterni Fonte: Business Intelligence. Modelli matematici e sistemi per le decisioni ioni,, C. Vercellis, McGraw Hill,,

3 Il data mining è Il processo di esplorazione e analisi di grandi quantità di dati avente lo scopo di scoprire conoscenza, nuovi fatti, correlazioni, regolarità utili nella presa di decisioni 3

4 Il data mining, la statistica classica e gli strumenti Olap Olap Estrazione di dettagli e totali aggregati dai dati Informazione Distribuzione dei redditi di chi richiede mutui Statistica Verifica di ipotesi formulate da analisti Validazione Analisi di varianza dei redditi di chi richiede mutui Data mining Identificazione di regolarità e ricorrenze nei dati Conoscenza Caratterizzazione di chi richiede mutui e predizione di chi li richiederà in futuro Fonte: Business Intelligence. Modelli matematici e sistemi per le decisioni ioni,, C. Vercellis, McGraw Hill,,

5 Il data mining, la statistica classica e gli strumenti Olap Analisi statistiche Preventiva formulazione di un ipotesi che in seguito si cerca di confermare in base all evidenza campionaria Analisi Olap Criteri di estrazione, reporting e visualizzazione basati su ipotesi formulate Entrambi forniscono elementi a conferma o a smentita delle ipotesi formulate Approccio di analisi di tipo top-down 5

6 Il data mining, la statistica classica e gli strumenti Olap Modelli di data mining Predizioni e interpretazioni che costituiscono nuova conoscenza Approccio di analisi di tipo bottom-up Apprendimento dai dati 6

7 Apprendimento dai dati Gli algoritmi imparano dai dati, sono quindi adattabili, cioè possono essere impiegati anche quando le condizioni cambiano Inoltre sono in grado di fornire buone risposte a fronte di dati rumorosi (errori o anomalie per eventi straordinari, ) 7

8 Obiettivo del data mining Capire il fenomeno (Apprendere dall esperienza passata) Prevedere il fenomeno (Ampliare l orizzonte) l Ieri Oggi Domani Un ponte tra il passato e il futuro 8

9 Dal dato alla conoscenza Dati Selezione Dati di target Preparazione Dati trasformati Data mining Patterns Interpretazione/ Valutazione Fonte: Advances in knowledge discovery and data mining, U. M.Fayyad, G.Piatetsky-Shapiro Shapiro,, P. Smyth,, R. R.Uthurusamy,, AAAAI Press / The MIT Press, Conoscenza 9

10 Dal dato alla conoscenza Processo interattivo e iterativo,, strutturato in diverse fasi: 1. Identificazione del problema, tenendo conto della relativa conoscenza già acquisita in precedenza e degli obiettivi che si vogliono perseguire 2. Selezione dell insieme dei dati, oggetto del processo di estrazione (scoperta) della conoscenza 3. Pulizia e normalizzazione dei dati attraverso, ad esempio, l eliminazione l dei dati rumorosi (noise( noise) ) e dei valori estremi (outlier( outlier), la gestione dei campi vuoti (missing values field) 10

11 Dal dato alla conoscenza Processo interattivo e iterativo,, strutturato in diverse fasi: 4. Individuazione delle caratteristiche salienti per rappresentare il fenomeno che si sta analizzando in funzione dell obiettivo definito 5. Scelta del cosiddetto data mining task,, cioè il tipo di analisi sui dati da effettuare (classificazione, previsione, ) 6. Scelta delle tecniche di data mining da impiegare per ricercare i pattern nei dati 11

12 Dal dato alla conoscenza Processo interattivo e iterativo,, strutturato in diverse fasi: 7. Svolgimento del data mining, cioè si compie la ricerca dei pattern d interessed 8. Interpretazione dei pattern scoperti con la possibilità di ritornare alle fasi precedenti per ulteriori iterazioni 9. Consolidamento e formalizzazione della conoscenza acquisita (realizzazione/integrazione di un sistema applicativo, redazione di documentazione, presentazione alle parti interessate, ) 12

13 Tipologia di problemi Classificazione/Valutazione Paziente A Paziente B t0 Previsione Paziente A Paziente B t1 Segmentazione Cluster A Cluster B Cluster C 13

14 Tipologia di apprendimento Apprendimento supervisionato Input Output Info Cliente XXX Info Cliente YYY Cliente Classe A Cliente Classe B Apprendimento non supervisionato Solo Input Cluster A Clienti Cluster B Cluster C 14

15 Alcune tecniche Apprendimento supervisionato Alberi decisionali Reti neurali * Apprendimento non supervisionato Regole associative Algoritmi di clustering 15

16 Reti neurali Tecnica di apprendimento che vuole essere il tentativo di imitare il cervello umano nella sua struttura di miliardi di neuroni interconnessi attraverso le sinapsi e nel suo funzionamento Essa è impiegata per la risoluzione di problemi in cui sono richieste capacità di riconoscimento,, di classificazione o di previsione 16

17 Alberi decisionali Tecnica di apprendimento per la risoluzione di problemi di classificazione e di previsione Essa genera regole del tipo se allora che consentono di capire il processo che ha portato a un certo risultato 17

18 Regole associative Tecnica che consente di estrarre informazioni sulla base della concomitanza del verificarsi di certi eventi Essa è spesso associata alla market basket analysis,, una tecnica impiegata per scoprire le relazioni o le correlazioni tra un insieme di prodotti (paniere o basket) 18

19 Algoritmi di clustering Gli algoritmi di clustering esplorano i dati al fine di individuare caratteristiche comuni che consentano di suddividerli in gruppi omogenei (cluster) I dati vengono raggruppati sulla base delle somiglianze e affinità che presentano 19

20 Differenze nelle tecniche Accuratezza versus comprensibilità Alto Alberi decisionali Livello di facilità di comprensione Algoritmi di clustering Regole associative Basso Reti neurali 20

21 Ambiti applicativi Rischio frodi perpetrate attraverso l uso l di carte di credito o Sim telefoniche Rischio frodi assicurative Rischio di credito Rischio di abbandono Rischi legati alla diagnostica medica Rischi legati a processi produttivi di diversa natura Rischi legati all It Governance (controllo, sicurezza, integrità dei dati, ) 21

22 Altri campioni (set) Altri campioni (set) Altre tecniche Altre tecniche 22 L ambiente ad hoc di data mining Definizione set/modelli Dati Scelta tecnica Quali Addestra- mento Raccolta Valutazione modelli Nuovi dati Nuovi dati Verifica, analisi e pulizia Altre variabili derivate Scelta miglior modello Pre- elaborazione A. Ferrari Dati scorretti o incongruenti Se non disponibili

23 Flusso operativo Database X Codice CLIENTE Caratteristiche individuate dal modello Codice CLIENTE Cluster di appartenenza Database X Datamart X Cluster di appartenenza da definire Modello di clustering Datamart X DWH X DWH X Tabella CLIENTI Tabella CLIENTI.. Report 23

24 Data mining e Edp auditing Il data mining come strumento a supporto dell attivit attività di Edp Auditing Il data mining come sistema informativo oggetto di attività di Edp Auditing 24

25 Grazie! 25

Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita;

Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita; .netbin. è un potentissimo strumento SVILUPPATO DA GIEMME INFORMATICA di analisi dei dati con esposizione dei dati in forma numerica e grafica con un interfaccia visuale di facile utilizzo, organizzata

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Sistemi di supporto alle decisioni

Sistemi di supporto alle decisioni Sistemi di supporto alle decisioni Introduzione I sistemi di supporto alle decisioni, DSS (decision support system), sono strumenti informatici che utilizzano dati e modelli matematici a supporto del decision

Dettagli

Business Intelligence

Business Intelligence aggregazione dati Business Intelligence analytic applications query d a t a w a r e h o u s e aggregazione budget sales inquiry data mining Decision Support Systems MIS ERP data management Data Modeling

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione Text mining ed analisi di dati codificati in linguaggio naturale Analisi esplorative di dati testualilezione 2 Le principali tecniche di analisi testuale Facendo riferimento alle tecniche di data mining,

Dettagli

un occhio al passato per il tuo business futuro

un occhio al passato per il tuo business futuro 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 un occhio al passato per il tuo business futuro BUSINESS DISCOVERY Processi ed analisi per aziende virtuose Che cos è La Business Discovery è un insieme

Dettagli

Realizzare un architettura integrata di Business Intelligence

Realizzare un architettura integrata di Business Intelligence Realizzare un architettura integrata di Business Intelligence Un sistema integrato di Business Intelligence consente all azienda customer oriented una gestione efficace ed efficiente della conoscenza del

Dettagli

Business Intelligence. Il data mining in

Business Intelligence. Il data mining in Business Intelligence Il data mining in L'analisi matematica per dedurre schemi e tendenze dai dati storici esistenti. Revenue Management. Previsioni di occupazione. Marketing. Mail diretto a clienti specifici.

Dettagli

STUDIO DI SETTORE SM43U

STUDIO DI SETTORE SM43U ALLEGATO 3 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM43U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

IT FOR BUSINESS AND FINANCE

IT FOR BUSINESS AND FINANCE IT FOR BUSINESS AND FINANCE Business Intelligence Siena 14 aprile 2011 AGENDA Cos è la Business Intelligence Terminologia Perché la Business Intelligence La Piramide Informativa Macro Architettura Obiettivi

Dettagli

Ottimizzare le performance con i sistemi di Business Intelligence. Rapporto 2009 Osservatorio Business Intelligence

Ottimizzare le performance con i sistemi di Business Intelligence. Rapporto 2009 Osservatorio Business Intelligence Ottimizzare le performance con i sistemi di Business Intelligence Rapporto 2009 Osservatorio Business Intelligence Novembre 2009 Copyright e utilizzo dei contenuti I Report non potranno essere oggetto

Dettagli

ORACLE BUSINESS INTELLIGENCE STANDARD EDITION ONE A WORLD CLASS PERFORMANCE

ORACLE BUSINESS INTELLIGENCE STANDARD EDITION ONE A WORLD CLASS PERFORMANCE ORACLE BUSINESS INTELLIGENCE STANDARD EDITION ONE A WORLD CLASS PERFORMANCE Oracle Business Intelligence Standard Edition One è una soluzione BI completa, integrata destinata alle piccole e medie imprese.oracle

Dettagli

di4g: Uno strumento di clustering per l analisi integrata di dati geologici

di4g: Uno strumento di clustering per l analisi integrata di dati geologici di4g: Uno strumento di clustering per l analisi integrata di dati geologici Alice Piva 1, Giacomo Gamberoni 1, Denis Ferraretti 1, Evelina Lamma 2 1 intelliware snc, via J.F.Kennedy 15, 44122 Ferrara,

Dettagli

white paper La Process Intelligence migliora le prestazioni operative del settore assicurativo

white paper La Process Intelligence migliora le prestazioni operative del settore assicurativo white paper La Process Intelligence migliora le prestazioni operative del settore assicurativo White paper La Process Intelligence migliora le prestazioni operative del settore assicurativo Pagina 2 Sintesi

Dettagli

www.bistrategy.it In un momento di crisi perché scegliere di investire sulla Business Intelligence?

www.bistrategy.it In un momento di crisi perché scegliere di investire sulla Business Intelligence? In un momento di crisi perché scegliere di investire sulla Business Intelligence? Cos è? Per definizione, la Business Intelligence è: la trasformazione dei dati in INFORMAZIONI messe a supporto delle decisioni

Dettagli

Business Intelligence: dell impresa

Business Intelligence: dell impresa Architetture Business Intelligence: dell impresa Silvana Bortolin Come organizzare la complessità e porla al servizio dell impresa attraverso i sistemi di Business Intelligence, per creare processi organizzativi

Dettagli

Pagine romane (I-XVIII) OK.qxd:romane.qxd 7-09-2009 16:23 Pagina VI. Indice

Pagine romane (I-XVIII) OK.qxd:romane.qxd 7-09-2009 16:23 Pagina VI. Indice Pagine romane (I-XVIII) OK.qxd:romane.qxd 7-09-2009 16:23 Pagina VI Prefazione Autori XIII XVII Capitolo 1 Sistemi informativi aziendali 1 1.1 Introduzione 1 1.2 Modello organizzativo 3 1.2.1 Sistemi informativi

Dettagli

REALIZZARE UN MODELLO DI IMPRESA

REALIZZARE UN MODELLO DI IMPRESA REALIZZARE UN MODELLO DI IMPRESA - organizzare e gestire l insieme delle attività, utilizzando una piattaforma per la gestione aziendale: integrata, completa, flessibile, coerente e con un grado di complessità

Dettagli

Analisi per tutti. Panoramica. Considerazioni principali. Business Analytics Scheda tecnica. Software per analisi

Analisi per tutti. Panoramica. Considerazioni principali. Business Analytics Scheda tecnica. Software per analisi Analisi per tutti Considerazioni principali Soddisfare le esigenze di una vasta gamma di utenti con analisi semplici e avanzate Coinvolgere le persone giuste nei processi decisionali Consentire l'analisi

Dettagli

LA TECHNOLOGY TRANSFER PRESENTA JEN UNDERWOOD ADVANCED WORKSHOP ROMA 6 MAGGIO 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231

LA TECHNOLOGY TRANSFER PRESENTA JEN UNDERWOOD ADVANCED WORKSHOP ROMA 6 MAGGIO 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 LA TECHNOLOGY TRANSFER PRESENTA JEN UNDERWOOD ADVANCED ANALYTICS WORKSHOP ROMA 6 MAGGIO 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 info@technologytransfer.it www.technologytransfer.it ADVANCED ANALYTICS

Dettagli

IBM Cognos 8 BI Midmarket Reporting Packages Per soddisfare tutte le vostre esigenze di reporting restando nel budget

IBM Cognos 8 BI Midmarket Reporting Packages Per soddisfare tutte le vostre esigenze di reporting restando nel budget Data Sheet IBM Cognos 8 BI Midmarket Reporting Packages Per soddisfare tutte le vostre esigenze di reporting restando nel budget Panoramica Le medie aziende devono migliorare nettamente le loro capacità

Dettagli

Convegno 6 giugno 2013 Federlazio Frosinone

Convegno 6 giugno 2013 Federlazio Frosinone Convegno 6 giugno 2013 Federlazio Frosinone pag. 1 6 giugno 2013 Federlazio Frosinone Introduzione alla Business Intelligence Un fattore critico per la competitività è trasformare la massa di dati prodotti

Dettagli

Milano, Settembre 2009 BIOSS Consulting

Milano, Settembre 2009 BIOSS Consulting Milano, Settembre 2009 BIOSS Consulting Presentazione della società Agenda Chi siamo 3 Cosa facciamo 4-13 San Donato Milanese, 26 maggio 2008 Come lo facciamo 14-20 Case Studies 21-28 Prodotti utilizzati

Dettagli

BUSINESS INTELLIGENCE & PERFORMANCE MANAGEMENT

BUSINESS INTELLIGENCE & PERFORMANCE MANAGEMENT BUSINESS INTELLIGENCE & PERFORMANCE MANAGEMENT BOLOGNA BUSINESS school Dal 1088, studenti da tutto il mondo vengono a studiare a Bologna dove scienza, cultura e tecnologia si uniscono a valori, stile di

Dettagli

BUSINESS INTELLIGENCE E BPM

BUSINESS INTELLIGENCE E BPM UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE TESI DI LAUREA TRIENNALE IN STATISTICA E GESTIONE DELLE IMPRESE BUSINESS INTELLIGENCE E BPM RELATORE : CH.MA PROF.SSA SUSI DULLI LAUREANDO

Dettagli

BRM. Tutte le soluzioni. per la gestione delle informazioni aziendali. BusinessRelationshipManagement

BRM. Tutte le soluzioni. per la gestione delle informazioni aziendali. BusinessRelationshipManagement BRM BusinessRelationshipManagement Tutte le soluzioni per la gestione delle informazioni aziendali - Business Intelligence - Office Automation - Sistemi C.R.M. I benefici di BRM Garantisce la sicurezza

Dettagli

Le Dashboard di cui non si può fare a meno

Le Dashboard di cui non si può fare a meno Le Dashboard di cui non si può fare a meno Le aziende più sensibili ai cambiamenti stanno facendo di tutto per cogliere qualsiasi opportunità che consenta loro di incrementare il business e di battere

Dettagli

Razionalità organizzativa e struttura

Razionalità organizzativa e struttura Un organizzazione è sempre compresa in sistemi più ampi Alcune parti dell organizzazione inevitabilmente sono interdipendenti con altre organizzazioni non subordinate e fuori dalle possibilità di controllo

Dettagli

COME FRODE. la possibilità propri dati. brevissimo. Reply www.reply.eu

COME FRODE. la possibilità propri dati. brevissimo. Reply www.reply.eu FRAUD MANAGEMENT. COME IDENTIFICARE E COMB BATTERE FRODI PRIMA CHE ACCADANO LE Con una visione sia sui processi di business, sia sui sistemi, Reply è pronta ad offrire soluzioni innovative di Fraud Management,

Dettagli

Business Intelligence RENDE STRATEGICHE LE INFORMAZIONI

Business Intelligence RENDE STRATEGICHE LE INFORMAZIONI Business Intelligence RENDE STRATEGICHE LE INFORMAZIONI Business Intelligence RENDE STRATEGICHE LE INFORMAZIONI CSC ritiene che la Business Intelligence sia un elemento strategico e fondamentale che, seguendo

Dettagli

LA PROGETTAZIONE AZIENDALE

LA PROGETTAZIONE AZIENDALE Riassunti del testo di H. Mintzberg, La progettazione dell'organizzazione aziendale A cura di Francesco Lo Piparo SDC LA PROGETTAZIONE AZIENDALE CAPITOLO PRIMO: gli elementi di base della progettazione

Dettagli

Process mining & Optimization Un approccio matematico al problema

Process mining & Optimization Un approccio matematico al problema Res User Meeting 2014 con la partecipazione di Scriviamo insieme il futuro Paolo Ferrandi Responsabile Tecnico Research for Enterprise Systems Federico Bonelli Engineer Process mining & Optimization Un

Dettagli

CAPITOLO CAPIT Tecnologie dell ecnologie dell info inf rmazione e controllo

CAPITOLO CAPIT Tecnologie dell ecnologie dell info inf rmazione e controllo CAPITOLO 8 Tecnologie dell informazione e controllo Agenda Evoluzione dell IT IT, processo decisionale e controllo Sistemi di supporto al processo decisionale Sistemi di controllo a feedback IT e coordinamento

Dettagli

Per tutti i motivi sopra menzionati, bisogna capire come vengono interpretati i cambiamenti e le opportunità della BI.

Per tutti i motivi sopra menzionati, bisogna capire come vengono interpretati i cambiamenti e le opportunità della BI. Introduzione Oggi nel mercato della Business Intelligence (BI) sta avvenendo lo stesso fenomeno che si riscontra nel mondo del web con la nascita del web 2.0. Si è iniziato, infatti, a parlare di BI 2.0

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Sistemi ERP e i sistemi di BI

Sistemi ERP e i sistemi di BI Sistemi ERP e i sistemi di BI 1 Concetti Preliminari Cos è un ERP: In prima approssimazione: la strumento, rappresentato da uno o più applicazioni SW in grado di raccogliere e organizzare le informazioni

Dettagli

Cos è la Businèss Intèlligèncè

Cos è la Businèss Intèlligèncè Cos è la Businèss Intèlligèncè di Alessandro Rezzani Il sistema informativo aziendale... 2 Definizione di Business Intelligence... 6 Il valore della Business Intelligence... 7 La percezione della Business

Dettagli

19/01/2015 La Repubblica - Affari Finanza - N.2-19 Gennaio 2015

19/01/2015 La Repubblica - Affari Finanza - N.2-19 Gennaio 2015 19/01/2015 La Repubblica - Affari Finanza - N.2-19 Gennaio 2015 Pag. 33 (diffusione:581000) La proprietà intellettuale è riconducibile alla fonte specificata in testa alla pagina. Il ritaglio stampa è

Dettagli

Architettura aperta come strumento di diversificazione nel controllo di rischio di portafoglio

Architettura aperta come strumento di diversificazione nel controllo di rischio di portafoglio S.A.F. SCUOLA DI ALTA FORMAZIONE LUIGI MARTINO La Congiuntura Economica Architettura aperta come strumento di diversificazione nel controllo di rischio di portafoglio Luca Martina Private Banker Banca

Dettagli

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale.

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. L analisi modale è un approccio molto efficace al comportamento dinamico delle strutture, alla verifica di modelli di calcolo

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

ersità Carlo Ca/aneo - LIUC emi di Business Intelligence

ersità Carlo Ca/aneo - LIUC emi di Business Intelligence 2010 Pearson Management Informa4on Systems versità Carlo Ca/aneo - LIUC temi di Business Intelligence Alta direzione e staff Direzioni Funzionali o di Divisione Personale EsecuFvo Problem Iden4fica4on Solu4on

Dettagli

4 MOTIVI PER CUI NON PUOI PIÙ FARE A MENO DELLA DATA VISUALIZATION

4 MOTIVI PER CUI NON PUOI PIÙ FARE A MENO DELLA DATA VISUALIZATION 4 MOTIVI PER CUI NON PUOI PIÙ FARE A MENO DELLA DATA VISUALIZATION 4 MOTIVI PER CUI NON PUOI PIÙ FARE A MENO DELLA DATA VISUALIZATION INDICE La semplicità nell era dei Big Data 05 01. Data Visualization:

Dettagli

journal tutto PArte dalla conoscenza del dato N.2 MAGGIO 2011

journal tutto PArte dalla conoscenza del dato N.2 MAGGIO 2011 N.2 MAGGIO 2011 journal Business Intelligence: tutto PArte dalla conoscenza del dato CASO UTENTE In uno scenario in cui la competitività e le istituzioni regolamentari impongono sempre più rigore nel time

Dettagli

White Paper. Operational DashBoard. per una Business Intelligence. in real-time

White Paper. Operational DashBoard. per una Business Intelligence. in real-time White Paper Operational DashBoard per una Business Intelligence in real-time Settembre 2011 www.axiante.com A Paper Published by Axiante CAMBIARE LE TRADIZIONI C'è stato un tempo in cui la Business Intelligence

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Il Data Quality, un problema di Business!

Il Data Quality, un problema di Business! Knowledge Intelligence: metodologia, modelli gestionali e strumenti tecnologici per la governance e lo sviluppo del business Il Data Quality, un problema di Business! Pietro Berrettoni, IT Manager Acraf

Dettagli

MARKETING INTELLIGENCE SUL WEB:

MARKETING INTELLIGENCE SUL WEB: Via Durini, 23-20122 Milano (MI) Tel.+39.02.77.88.931 Fax +39.02.76.31.33.84 Piazza Marconi,15-00144 Roma Tel.+39.06.32.80.37.33 Fax +39.06.32.80.36.00 www.valuelab.it valuelab@valuelab.it MARKETING INTELLIGENCE

Dettagli

La Business Intelligence

La Business Intelligence Parte 1 La Business Intelligence Capitolo 1 Cos è la Business Intelligence 1.1 Il sistema informativo aziendale Sempre la pratica dev essere edificata sopra la buona teorica. Leonardo da Vinci Le attività,

Dettagli

BOARD in Eisai: crescere con il Performance Management

BOARD in Eisai: crescere con il Performance Management BOARD in Eisai: crescere con il Performance Management Gli aspetti maggiormente apprezzabili nell utilizzo di BOARD sono la tempestività nel realizzare ambienti di analisi senza nessun tipo di programmazione

Dettagli

Il sistema informativo aziendale

Il sistema informativo aziendale Albez edutainment production Il sistema informativo aziendale III classe ITC 1 Alla fine di questo modulo sarai in grado di: conoscere funzioni, obiettivi e struttura del sistema informativo aziendale;

Dettagli

6. Le ricerche di marketing

6. Le ricerche di marketing Università degli Studi di Urbino Carlo Bo Facoltà di Lingue e Letterature Straniere Corso di Laurea in Lingue e Cultura per l Impresa 6. Le ricerche di marketing Prof. Fabio Forlani Urbino, 29/III/2011

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

IT FINANCIAL MANAGEMENT

IT FINANCIAL MANAGEMENT IT FINANCIAL MANAGEMENT L IT Financial Management è una disciplina per la pianificazione e il controllo economico-finanziario, di carattere sia strategico sia operativo, basata su un ampio insieme di metodologie

Dettagli

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI 6.1 ISTRUZIONI PER IL VALUTATORE Il processo di valutazione si articola in quattro fasi. Il Valutatore deve: 1 leggere il questionario;

Dettagli

BRINGING LIGHT. il sistema informativo direzionale BUSINESS INTELLIGENCE & CORPORATE PERFORMANCE MANAGEMENT. i modelli funzionali sviluppati da Sme.

BRINGING LIGHT. il sistema informativo direzionale BUSINESS INTELLIGENCE & CORPORATE PERFORMANCE MANAGEMENT. i modelli funzionali sviluppati da Sme. Sme.UP ERP Retail BI & CPM Dynamic IT Mgt Web & Mobile Business Performance & Transformation 5% SCEGLIERE PER COMPETERE BI e CPM, una necessità per le aziende i modelli funzionali sviluppati da Sme.UP

Dettagli

La piattaforma IBM Cognos

La piattaforma IBM Cognos La piattaforma IBM Cognos Fornire informazioni complete, coerenti e puntuali a tutti gli utenti, con una soluzione economicamente scalabile Caratteristiche principali Accedere a tutte le informazioni in

Dettagli

ARTICOLO 61 MARZO/APRILE 2013 LA BUSINESS INTELLIGENCE 1. http://www.sinedi.com

ARTICOLO 61 MARZO/APRILE 2013 LA BUSINESS INTELLIGENCE 1. http://www.sinedi.com http://www.sinedi.com ARTICOLO 61 MARZO/APRILE 2013 LA BUSINESS INTELLIGENCE 1 L estrema competitività dei mercati e i rapidi e continui cambiamenti degli scenari in cui operano le imprese impongono ai

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Problem Management Obiettivi Obiettivo del Problem Management e di minimizzare l effetto negativo sull organizzazione degli Incidenti e dei Problemi causati da errori nell infrastruttura e prevenire gli

Dettagli

Università di Venezia Corso di Laurea in Informatica. Marco Fusaro KPMG S.p.A.

Università di Venezia Corso di Laurea in Informatica. Marco Fusaro KPMG S.p.A. Università di Venezia Corso di Laurea in Informatica Laboratorio di Informatica Applicata Introduzione all IT Governance Lezione 5 Marco Fusaro KPMG S.p.A. 1 CobiT: strumento per la comprensione di una

Dettagli

Dalla Mappatura dei Processi al Business Process Management

Dalla Mappatura dei Processi al Business Process Management Dalla Mappatura dei Processi al Business Process Management Romano Stasi Responsabile Segreteria Tecnica ABI Lab Roma, 4 dicembre 2007 Agenda Il percorso metodologico Analizzare per conoscere: la mappatura

Dettagli

Evoluzione Risk Management in Intesa

Evoluzione Risk Management in Intesa RISCHIO DI CREDITO IN BANCA INTESA Marco Bee, Mauro Senati NEWFIN - FITD Rating interni e controllo del rischio di credito Milano, 31 Marzo 2004 Evoluzione Risk Management in Intesa 1994: focus iniziale

Dettagli

Studio di retribuzione 2014

Studio di retribuzione 2014 Studio di retribuzione 2014 TECHNOLOGY Temporary & permanent recruitment www.pagepersonnel.it EDITORIALE Grazie ad una struttura costituita da 100 consulenti e 4 uffici in Italia, Page Personnel offre

Dettagli

dal Controllo di Gestione alla Business Intelligence

dal Controllo di Gestione alla Business Intelligence dal Controllo di Gestione alla strumenti strategici per la gestione delle imprese Giovanni Esposito Bergamo, 29 Ottobre 2012 dal Controllo di Gestione alla 25/10/2012 1 Agenda 14:00 Benvenuto Il Sistema

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

Il modello metodologico del Sistema di Misurazione e Valutazione della sicurezza aziendale (MVS)

Il modello metodologico del Sistema di Misurazione e Valutazione della sicurezza aziendale (MVS) Il modello metodologico del Sistema di Misurazione e Valutazione della sicurezza aziendale (MVS) >> Il Sistema MVS permette di misurare e valutare la sicurezza aziendale (nell accezione di Security) nei

Dettagli

Supervisori che imparano dagli studenti

Supervisori che imparano dagli studenti Supervisori che imparano dagli studenti di Angela Rosignoli Questa relazione tratta il tema della supervisione, la supervisione offerta dagli assistenti sociali agli studenti che frequentano i corsi di

Dettagli

Unità di ricerca Business Intelligence, Finance& Knowledge

Unità di ricerca Business Intelligence, Finance& Knowledge Unità di ricerca Business Intelligence, Finance& Knowledge ( www.economia.unimi.it/lda/adamss ) Facoltàdi Scienze, Università degli Studi di Milano 10 febbraio 2006 Coordinatore: Davide La Torre (Professore

Dettagli

L EVOLUZIONE DEGLI STRUMENTI DI BUSINESS INTELLIGENCE NEL CONTROLLO DI GESTIONE

L EVOLUZIONE DEGLI STRUMENTI DI BUSINESS INTELLIGENCE NEL CONTROLLO DI GESTIONE UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI ECONOMIA DOTTORATO DI RICERCA IN SCIENZE AZIENDALI XIX CICLO TESI DI DOTTORATO L EVOLUZIONE DEGLI STRUMENTI DI BUSINESS INTELLIGENCE NEL CONTROLLO

Dettagli

DRG e SDO. Prof. Mistretta

DRG e SDO. Prof. Mistretta DRG e SDO Prof. Mistretta Il sistema è stato creato dal Prof. Fetter dell'università Yale ed introdotto dalla Medicare nel 1983; oggi è diffuso anche in Italia. Il sistema DRG viene applicato a tutte le

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

INDICE 1. DESCRIZIONE DEL CONTESTO ------------------------------------------------------------------- 4

INDICE 1. DESCRIZIONE DEL CONTESTO ------------------------------------------------------------------- 4 Appendice 1: Allegato Tecnico Servizio di consulenza specialistica e dei servizi di sviluppo, manutenzione ed evoluzione dei sistemi di Business Process Management (BPM) e di Business Intelligence (BI)

Dettagli

Nel regno degli esseri viventi non esistono cose, ma solo relazioni Gregory Bateson

Nel regno degli esseri viventi non esistono cose, ma solo relazioni Gregory Bateson Le Tecnologie della Relationship Management e l interazione con le funzioni ed i processi aziendali Angelo Caruso, 2001 Relationship Management Nel regno degli esseri viventi non esistono cose, ma solo

Dettagli

F O R M A T O E U R O P E O

F O R M A T O E U R O P E O F O R M A T O E U R O P E O P E R I L C U R R I C U L U M V I T A E INFORMAZIONI PERSONALI Nome Indirizzo Laura Bacci, PMP Via Tezze, 36 46100 MANTOVA Telefono (+39) 348 6947997 Fax (+39) 0376 1810801

Dettagli

Grandi dimensioni e dimensioni variabili

Grandi dimensioni e dimensioni variabili Grandi dimensioni e dimensioni variabili aprile 2012 1 Questo capitolo studia alcuni ulteriori aspetti importanti e caratteristici della gestione delle dimensioni in particolare, delle grandi dimensioni

Dettagli

DAT@GON. Gestione Gare e Offerte

DAT@GON. Gestione Gare e Offerte DAT@GON Gestione Gare e Offerte DAT@GON partecipare e vincere nel settore pubblico La soluzione sviluppata da Revorg per il settore farmaceutico, diagnostico e di strumentazione medicale, copre l intero

Dettagli

DIVENTA UN PERFETTO DECISION-MAKER

DIVENTA UN PERFETTO DECISION-MAKER 2012 NUMERO 16 SOLUZIONI PER IL TUO BUSINESS IN PRIMO PIANO PRENDI LA DECISIONE GIUSTA Assumi il controllo dei tuoi dati UN NUOVO SGUARDO AI DATI ANALITICI Trasforma le informazioni sul tuo business MAGGIORE

Dettagli

PLM Software. Answers for industry. Siemens PLM Software

PLM Software. Answers for industry. Siemens PLM Software Siemens PLM Software Monitoraggio e reporting delle prestazioni di prodotti e programmi Sfruttare le funzionalità di reporting e analisi delle soluzioni PLM per gestire in modo più efficace i complessi

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

Istituto Tecnico Commerciale Indirizzo AFM articolazione SIA PERCHE???

Istituto Tecnico Commerciale Indirizzo AFM articolazione SIA PERCHE??? Istituto Tecnico Commerciale Indirizzo AFM articolazione SIA PERCHE??? Opportunità di lavoro: ICT - Information and Communication Technology in Azienda Vendite Acquisti Produzione Logistica AFM SIA ICT

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

La Valutazione degli Asset Intangibili

La Valutazione degli Asset Intangibili La Valutazione degli Asset Intangibili Chiara Fratini Gli asset intangibili rappresentano il patrimonio di conoscenza di un organizzazione. In un accezione ampia del concetto di conoscenza, questo patrimonio

Dettagli

IL BUDGET DEGLI INVESTIMENTI E IL BUDGET ECONOMICO. dott.ssa Annaluisa Palma 1

IL BUDGET DEGLI INVESTIMENTI E IL BUDGET ECONOMICO. dott.ssa Annaluisa Palma 1 IL BUDGET DEGLI INVESTIMENTI E IL BUDGET ECONOMICO dott.ssa Annaluisa Palma 1 Indice Il budget: documenti amministrativi in cui si estrinseca; Forma e contenuti del budget degli investimenti; Gli scopi

Dettagli

Pronti per la Voluntary Disclosure?

Pronti per la Voluntary Disclosure? Best Vision GROUP The Swiss hub in the financial business network Pronti per la Voluntary Disclosure? Hotel de la Paix, 21 aprile 2015, ore 18:00 Hotel Lugano Dante, 22 aprile 2015, ore 17:00 Best Vision

Dettagli

Business Process Modeling Caso di Studio

Business Process Modeling Caso di Studio Caso di Studio Stefano Angrisano, Consulting IT Specialist December 2007 2007 IBM Corporation Sommario Perché l architettura SOA? Le aspettative del Cliente. Ambito applicativo oggetto dell introduzione

Dettagli

Process Mining. Come estrarre conoscenza dai log dei processi di business

Process Mining. Come estrarre conoscenza dai log dei processi di business Process Mining Come estrarre conoscenza dai log dei processi di business Wil M.P. van der Aalst, Andrea Burattin, Massimiliano de Leoni, Antonella Guzzo, Fabrizio M. Maggi e Marco Montali Sommario Le tecniche

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

Guida di Riferimento

Guida di Riferimento Guida di Riferimento Capitoli 1: STATISTICA: Panoramica Generale 1 2: Esempi Passo-Passo 9 Analitici 11 Gestione dei Dati 79 Installazioni Enterprise 107 3: Interfaccia Utente 139 4: Output delle Analisi

Dettagli

L attività di ricerca e sviluppo nell organizzazione aziendale

L attività di ricerca e sviluppo nell organizzazione aziendale CAPITOLO PRIMO L attività di ricerca e sviluppo nell organizzazione aziendale SOMMARIO * : 1. Il ruolo dell innovazione tecnologica 2. L attività di ricerca e sviluppo: contenuti 3. L area funzionale della

Dettagli

nel mondo delle professioni e della salute

nel mondo delle professioni e della salute Una Aggiornamento storia che e si formazione rinnova nel mondo delle professioni e della salute una rete di professionisti, la forza dell esperienza, l impegno nell educazione, tecnologie che comunicano.

Dettagli

I.Stat Guida utente Versione 1.7 Dicembre 2010

I.Stat Guida utente Versione 1.7 Dicembre 2010 I.Stat Guida utente Versione 1.7 Dicembre 2010 1 Sommario INTRODUZIONE 3 I concetti principali di I.Stat 4 Organizzazione dei dati 4 Ricerca 5 GUIDA UTENTE 6 Per iniziare 6 Selezione della lingua 7 Individuazione

Dettagli

1 BI Business Intelligence

1 BI Business Intelligence K Venture Corporate Finance Srl Via Papa Giovanni XXIII, 40F - 56025 Pontedera (PI) Tel/Fax 0587 482164 - Mail: info@kventure.it www.kventure.it 1 BI Business Intelligence Il futuro che vuoi. Sotto controllo!

Dettagli

1 Congresso Nazionale ANFeA Roma, Auditorium ISPRA 1 e 2 dicembre 2011

1 Congresso Nazionale ANFeA Roma, Auditorium ISPRA 1 e 2 dicembre 2011 1 Congresso Nazionale ANFeA Roma, Auditorium ISPRA 1 e 2 dicembre 2011 DETERMINAZIONE DEI PARAMETRI DI CAPTAZIONE DEI NUCLEI DELLA BASE DA ESAME DATSCAN CON I 123 TRAMITE SOFTWARE BASAL GANGLIA MATCHING

Dettagli

Quali dati potremmo modificare? Impostazioni sul campionato, risultati, designazioni, provvedimenti disciplinari, statistiche e tanto ancora.

Quali dati potremmo modificare? Impostazioni sul campionato, risultati, designazioni, provvedimenti disciplinari, statistiche e tanto ancora. WCM Sport è un software che tramite un sito web ha l'obbiettivo di aiutare l'organizzazione e la gestione di un campionato sportivo supportando sia i responsabili del campionato sia gli utilizzatori/iscritti

Dettagli

La ricerca empirica: una definizione

La ricerca empirica: una definizione Lucido 35/51 La ricerca empirica: una definizione La ricerca empirica si distingue da altri tipi di ricerca per tre aspetti (Ricolfi, 23): 1. produce asserti o stabilisce nessi tra asserti ipotesi teorie,

Dettagli