Data mining e rischi aziendali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Data mining e rischi aziendali"

Transcript

1 Data mining e rischi aziendali Antonella Ferrari

2 La piramide delle componenti di un ambiente di Bi Decision maker La decisione migliore Decisioni Ottimizzazione Scelta tra alternative Modelli di apprendimento Data Mining Esplorazione dei dati Analisi statistica e visualizzazione Data warehouse e data mart Analisi dei cubi multidimensionali Analisi attive di Bi Estrazione di informazioni e conoscenze a partire dai dati Analisi passive di Bi Metodi statistici, sistemi di interrogazioni e reporting Fonti di dati Dati operazionali, documenti e dati esterni Fonte: Business Intelligence. Modelli matematici e sistemi per le decisioni ioni,, C. Vercellis, McGraw Hill,,

3 Il data mining è Il processo di esplorazione e analisi di grandi quantità di dati avente lo scopo di scoprire conoscenza, nuovi fatti, correlazioni, regolarità utili nella presa di decisioni 3

4 Il data mining, la statistica classica e gli strumenti Olap Olap Estrazione di dettagli e totali aggregati dai dati Informazione Distribuzione dei redditi di chi richiede mutui Statistica Verifica di ipotesi formulate da analisti Validazione Analisi di varianza dei redditi di chi richiede mutui Data mining Identificazione di regolarità e ricorrenze nei dati Conoscenza Caratterizzazione di chi richiede mutui e predizione di chi li richiederà in futuro Fonte: Business Intelligence. Modelli matematici e sistemi per le decisioni ioni,, C. Vercellis, McGraw Hill,,

5 Il data mining, la statistica classica e gli strumenti Olap Analisi statistiche Preventiva formulazione di un ipotesi che in seguito si cerca di confermare in base all evidenza campionaria Analisi Olap Criteri di estrazione, reporting e visualizzazione basati su ipotesi formulate Entrambi forniscono elementi a conferma o a smentita delle ipotesi formulate Approccio di analisi di tipo top-down 5

6 Il data mining, la statistica classica e gli strumenti Olap Modelli di data mining Predizioni e interpretazioni che costituiscono nuova conoscenza Approccio di analisi di tipo bottom-up Apprendimento dai dati 6

7 Apprendimento dai dati Gli algoritmi imparano dai dati, sono quindi adattabili, cioè possono essere impiegati anche quando le condizioni cambiano Inoltre sono in grado di fornire buone risposte a fronte di dati rumorosi (errori o anomalie per eventi straordinari, ) 7

8 Obiettivo del data mining Capire il fenomeno (Apprendere dall esperienza passata) Prevedere il fenomeno (Ampliare l orizzonte) l Ieri Oggi Domani Un ponte tra il passato e il futuro 8

9 Dal dato alla conoscenza Dati Selezione Dati di target Preparazione Dati trasformati Data mining Patterns Interpretazione/ Valutazione Fonte: Advances in knowledge discovery and data mining, U. M.Fayyad, G.Piatetsky-Shapiro Shapiro,, P. Smyth,, R. R.Uthurusamy,, AAAAI Press / The MIT Press, Conoscenza 9

10 Dal dato alla conoscenza Processo interattivo e iterativo,, strutturato in diverse fasi: 1. Identificazione del problema, tenendo conto della relativa conoscenza già acquisita in precedenza e degli obiettivi che si vogliono perseguire 2. Selezione dell insieme dei dati, oggetto del processo di estrazione (scoperta) della conoscenza 3. Pulizia e normalizzazione dei dati attraverso, ad esempio, l eliminazione l dei dati rumorosi (noise( noise) ) e dei valori estremi (outlier( outlier), la gestione dei campi vuoti (missing values field) 10

11 Dal dato alla conoscenza Processo interattivo e iterativo,, strutturato in diverse fasi: 4. Individuazione delle caratteristiche salienti per rappresentare il fenomeno che si sta analizzando in funzione dell obiettivo definito 5. Scelta del cosiddetto data mining task,, cioè il tipo di analisi sui dati da effettuare (classificazione, previsione, ) 6. Scelta delle tecniche di data mining da impiegare per ricercare i pattern nei dati 11

12 Dal dato alla conoscenza Processo interattivo e iterativo,, strutturato in diverse fasi: 7. Svolgimento del data mining, cioè si compie la ricerca dei pattern d interessed 8. Interpretazione dei pattern scoperti con la possibilità di ritornare alle fasi precedenti per ulteriori iterazioni 9. Consolidamento e formalizzazione della conoscenza acquisita (realizzazione/integrazione di un sistema applicativo, redazione di documentazione, presentazione alle parti interessate, ) 12

13 Tipologia di problemi Classificazione/Valutazione Paziente A Paziente B t0 Previsione Paziente A Paziente B t1 Segmentazione Cluster A Cluster B Cluster C 13

14 Tipologia di apprendimento Apprendimento supervisionato Input Output Info Cliente XXX Info Cliente YYY Cliente Classe A Cliente Classe B Apprendimento non supervisionato Solo Input Cluster A Clienti Cluster B Cluster C 14

15 Alcune tecniche Apprendimento supervisionato Alberi decisionali Reti neurali * Apprendimento non supervisionato Regole associative Algoritmi di clustering 15

16 Reti neurali Tecnica di apprendimento che vuole essere il tentativo di imitare il cervello umano nella sua struttura di miliardi di neuroni interconnessi attraverso le sinapsi e nel suo funzionamento Essa è impiegata per la risoluzione di problemi in cui sono richieste capacità di riconoscimento,, di classificazione o di previsione 16

17 Alberi decisionali Tecnica di apprendimento per la risoluzione di problemi di classificazione e di previsione Essa genera regole del tipo se allora che consentono di capire il processo che ha portato a un certo risultato 17

18 Regole associative Tecnica che consente di estrarre informazioni sulla base della concomitanza del verificarsi di certi eventi Essa è spesso associata alla market basket analysis,, una tecnica impiegata per scoprire le relazioni o le correlazioni tra un insieme di prodotti (paniere o basket) 18

19 Algoritmi di clustering Gli algoritmi di clustering esplorano i dati al fine di individuare caratteristiche comuni che consentano di suddividerli in gruppi omogenei (cluster) I dati vengono raggruppati sulla base delle somiglianze e affinità che presentano 19

20 Differenze nelle tecniche Accuratezza versus comprensibilità Alto Alberi decisionali Livello di facilità di comprensione Algoritmi di clustering Regole associative Basso Reti neurali 20

21 Ambiti applicativi Rischio frodi perpetrate attraverso l uso l di carte di credito o Sim telefoniche Rischio frodi assicurative Rischio di credito Rischio di abbandono Rischi legati alla diagnostica medica Rischi legati a processi produttivi di diversa natura Rischi legati all It Governance (controllo, sicurezza, integrità dei dati, ) 21

22 Altri campioni (set) Altri campioni (set) Altre tecniche Altre tecniche 22 L ambiente ad hoc di data mining Definizione set/modelli Dati Scelta tecnica Quali Addestra- mento Raccolta Valutazione modelli Nuovi dati Nuovi dati Verifica, analisi e pulizia Altre variabili derivate Scelta miglior modello Pre- elaborazione A. Ferrari Dati scorretti o incongruenti Se non disponibili

23 Flusso operativo Database X Codice CLIENTE Caratteristiche individuate dal modello Codice CLIENTE Cluster di appartenenza Database X Datamart X Cluster di appartenenza da definire Modello di clustering Datamart X DWH X DWH X Tabella CLIENTI Tabella CLIENTI.. Report 23

24 Data mining e Edp auditing Il data mining come strumento a supporto dell attivit attività di Edp Auditing Il data mining come sistema informativo oggetto di attività di Edp Auditing 24

25 Grazie! 25

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD Il processo di KDD Introduzione Crescita notevole degli strumenti e delle tecniche per generare e raccogliere dati (introduzione codici a barre, transazioni economiche tramite carta di credito, dati da

Dettagli

Data Mining e Analisi dei Dati

Data Mining e Analisi dei Dati e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca

Dettagli

SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE

SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE SEGMENTAZIONE INNOVATIVA VS TRADIZIONALE Arricchimento dei dati del sottoscrittore / user Approccio Tradizionale Raccolta dei dati personali tramite contratto (professione, dati sul nucleo familiare, livello

Dettagli

Il DataMining. Susi Dulli dulli@math.unipd.it

Il DataMining. Susi Dulli dulli@math.unipd.it Il DataMining Susi Dulli dulli@math.unipd.it Il Data Mining Il Data Mining è il processo di scoperta di relazioni, pattern, ed informazioni precedentemente sconosciute e potenzialmente utili, all interno

Dettagli

Data Mining a.a. 2010-2011

Data Mining a.a. 2010-2011 Data Mining a.a. 2010-2011 Docente: mario.guarracino@cnr.it tel. 081 6139519 http://www.na.icar.cnr.it/~mariog Informazioni logistiche Orario delle lezioni A partire dall 19.10.2010, Martedì h: 09.50 16.00

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Cenni al Data Mining 1 Data Mining nasce prima del Data Warehouse collezione di tecniche derivanti da Intelligenza Artificiale,

Dettagli

MASTER UNIVERSITARIO. Analisi Dati per la Business Intelligence e Data Science. IV edizione 2015/2016

MASTER UNIVERSITARIO. Analisi Dati per la Business Intelligence e Data Science. IV edizione 2015/2016 MASTER UNIVERSITARIO Analisi Dati per la Business Intelligence e Data Science In collaborazione con IV edizione 2015/2016 Dipartimento di Culture, Politica e Società Dipartimento di Informatica Dipartimento

Dettagli

MASTER UNIVERSITARIO

MASTER UNIVERSITARIO MASTER UNIVERSITARIO Analisi Dati per la Business Intelligence In collaborazione con II edizione 2013/2014 Dipartimento di Culture, Politica e Società Dipartimento di Informatica gestito da aggiornato

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Mining. Introduzione La crescente popolarità

Dettagli

UNIVERSITA DI PISA FACOLTA DI ECONOMIA CORSO DI LAUREA SPECIALISTICA IN STRATEGIA E GOVERNO DELL AZIENDA

UNIVERSITA DI PISA FACOLTA DI ECONOMIA CORSO DI LAUREA SPECIALISTICA IN STRATEGIA E GOVERNO DELL AZIENDA UNIVERSITA DI PISA FACOLTA DI ECONOMIA CORSO DI LAUREA SPECIALISTICA IN STRATEGIA E GOVERNO DELL AZIENDA TESI DI LAUREA IN STATISTICA PER LE RICERCHE SPERIMENTALI E DI MERCATO L ANALISI STATISTICA DI DATI

Dettagli

DATA MINING E DATA WAREHOUSE

DATA MINING E DATA WAREHOUSE Reti e sistemi informativi DATA MINING E DATA WAREHOUSE Marco Gottardo FONTI Wikipedia Cineca Università di Udine, Dipartimento di fisica, il data mining scientifico thepcweb.com DATA MINING 1/2 Il Data

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it Data Mining Gabriella Trucco gabriella.trucco@unimi.it Perché fare data mining La quantità dei dati memorizzata su supporti informatici è in continuo aumento Pagine Web, sistemi di e-commerce Dati relativi

Dettagli

Marketing relazionale

Marketing relazionale Marketing relazionale Introduzione Nel marketing intelligence assume particolare rilievo l applicazione di modelli predittivi rivolte a personalizzare e rafforzare il legame tra azienda e clienti. Un azienda

Dettagli

Costruzione di Modelli Previsionali

Costruzione di Modelli Previsionali Metodologie per Sistemi Intelligenti Costruzione di Modelli Previsionali Ing. Igor Rossini Laurea in Ingegneria Informatica Politecnico di Milano Polo Regionale di Como Agenda Knowledge discovery in database

Dettagli

Introduzione al KDD e al DATA MINING

Introduzione al KDD e al DATA MINING Introduzione al KDD e al DATA MINING Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Verso il DM: una breve analisi delle fasi del processo KDD. 1 2 Il DM: Alcune definizioni.

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida Introduzione alle tecniche di Data Mining Prof. Giovanni Giuffrida Programma Contenuti Introduzione al Data Mining Mining pattern frequenti, regole associative Alberi decisionali Clustering Esempio di

Dettagli

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati Data mining Il consente l informazione processo di Data Mining estrarre automaticamente informazioneda un insieme di dati telefoniche, ènascostaa a causa di fra quantitàdi loro, complessità: non... ci

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei

Dettagli

IL CONTROLLO DI GESTIONE CORSO AVANZATO. A cura di dottor Alessandro Tullio

IL CONTROLLO DI GESTIONE CORSO AVANZATO. A cura di dottor Alessandro Tullio IL CONTROLLO DI GESTIONE CORSO AVANZATO A cura di dottor Alessandro Tullio Studio di Consulenza dottor Alessandro Tullio Docente: dottor Alessandro Tullio Corso Canalgrande 90 41100 Modena Tel. 059.4279344

Dettagli

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it MACHINE LEARNING e DATA MINING Introduzione a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it Apprendimento Automatico(i) Branca dell AI che si occupa di realizzare dispositivi artificiali capaci di

Dettagli

Agenda. I sistemi a supporto delle decisioni Information Directory Sviluppi futuri. Cinque anni di Data Warehouse:dai dati alle decisioni 1

Agenda. I sistemi a supporto delle decisioni Information Directory Sviluppi futuri. Cinque anni di Data Warehouse:dai dati alle decisioni 1 Cinque anni di Data Warehouse: dai dati alle decisioni Mario ANCILLI SETTORE SISTEMI INFORMATIVI ED INFORMATICA DIREZIONE ORGANIZZAZIONE; PIANIFICAZIONE, SVILUPPO E GESTIONE DELLE RISORSE UMANE Torino,

Dettagli

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence Introduzione Definizione di Business Intelligence: insieme di processi per raccogliere

Dettagli

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet Gabriele Bartolini Comune di Prato Sistema Informativo Servizi di E-government

Dettagli

Sistemi Informativi. Catena del valore di PORTER

Sistemi Informativi. Catena del valore di PORTER Sistemi Informativi Catena del valore di PORTER La catena del valore permette di considerare l'impresa come un sistema di attività generatrici del valore, inteso come il prezzo che il consumatore è disposto

Dettagli

CRM analitico: introduzione. Andrea Farinet

CRM analitico: introduzione. Andrea Farinet CRM analitico: introduzione Andrea Farinet 1 1. Agenda Definizione di Customer Relationship Management (CRM) Le caratteristiche strutturali di un progetto di Customer Relationship Management Il Customer

Dettagli

Data Mining e Marketing Intelligence

Data Mining e Marketing Intelligence Data Mining e Marketing Intelligence Alberto Saccardi * Abstract L evoluzione tecnologica ha reso possibile la costruzione di basi dati dedicate per la Marketing Intelligence, con la disponibilità di patrimoni

Dettagli

Dipartimento di Economia Seconda Università di Napoli. Dispensa didattica. Data Mining. Lombardo R. Lombardo R.

Dipartimento di Economia Seconda Università di Napoli. Dispensa didattica. Data Mining. Lombardo R. Lombardo R. Dipartimento di Economia Seconda Università di Napoli Dispensa didattica Data Mining Lombardo R. Lombardo R. Cos é il Data Mining? Premessa Il Data Mining è un processo di analisi dei dati da diverse prospettive

Dettagli

La Business Intelligence per la PA piemontese

La Business Intelligence per la PA piemontese La Business Intelligence per la PA piemontese GIULIANA BONELLO CSI PIEMONTE 0 Agenda Premessa Le basi dati della PA piemontese Le applicazioni di carattere decisionale della PA piemontese La piattaforma

Dettagli

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L.

Per capire meglio l ambito di applicazione di un DWhouse consideriamo la piramide di Anthony, L. Direzionale. L. Manageriale. L. DATA WAREHOUSE Un Dataware House può essere definito come una base di dati di database. In molte aziende ad esempio ci potrebbero essere molti DB, per effettuare ricerche di diverso tipo, in funzione del

Dettagli

Introduzione al Data Mining Parte 1

Introduzione al Data Mining Parte 1 Introduzione al Data Mining Parte 1 Corso di Laurea Specialistica in Ingegneria Informatica II Facoltà di Ingegneria, sede di Cesena (a.a. 2009/2010) Prof. Gianluca Moro Dipartimento di Elettronica, Informatica

Dettagli

Modelli matematici avanzati per l azienda a.a. 2010-2011

Modelli matematici avanzati per l azienda a.a. 2010-2011 Modelli matematici avanzati per l azienda a.a. 2010-2011 Docente: Pasquale L. De Angelis deangelis@uniparthenope.it tel. 081 5474557 http://www.economia.uniparthenope.it/siti_docenti P.L.DeAngelis Modelli

Dettagli

Il passaggio tra il primo ed il secondo livello: gli strumenti di extraction, tranformation and loading (ETL tools)

Il passaggio tra il primo ed il secondo livello: gli strumenti di extraction, tranformation and loading (ETL tools) Sistemi informativi direzionali l architettura Il passaggio tra il primo ed il secondo livello: gli strumenti di extraction, tranformation and loading (ETL tools) LA RICONCILIAZIONE DEI DATI 1. Estrazione:

Dettagli

Introduzione al Data Mining

Introduzione al Data Mining Introduzione al Data Mining Sistemi informativi per le Decisioni Slide a cura di Prof. Claudio Sartori Evoluzione della tecnologia dell informazione (IT) (Han & Kamber, 2001) Percorso evolutivo iniziato

Dettagli

E-Mail. Scheduling. Modalità d invio. E-Mail

E-Mail. Scheduling. Modalità d invio. E-Mail BI BI Terranova, azienda leader in Italia per le soluzioni Software rivolte al mercato delle Utilities, propone la soluzione Software di Business Intelligence RETIBI, sviluppata per offrire un maggiore

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Data Mining: Applicazioni

Data Mining: Applicazioni Sistemi Informativi Universitá degli Studi di Milano Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Tecnologie dell Informazione 1 Giugno 2007 Data Mining Perché il Data Mining Il Data

Dettagli

I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining

I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining Dipartimento di Informatica e Sistemistica I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining Renato Bruni bruni@dis.uniroma1.it Antonio Sassano sassano@dis.uniroma1.it

Dettagli

Data warehouse. della spesa sanitaria. acquisizione della conoscenza. Statistical Learning & Information Management

Data warehouse. della spesa sanitaria. acquisizione della conoscenza. Statistical Learning & Information Management Data warehouse della spesa sanitaria SLIM s.r.l. Statistical Learning & Information Management Un sistema privilegiato di acquisizione della conoscenza Requisiti Monitoraggio della spesa Controllo dinamico

Dettagli

Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita;

Supporto alle decisioni e strategie commerciali/mercati/prodotti/forza vendita; .netbin. è un potentissimo strumento SVILUPPATO DA GIEMME INFORMATICA di analisi dei dati con esposizione dei dati in forma numerica e grafica con un interfaccia visuale di facile utilizzo, organizzata

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA TESI DI LAUREA TRIENNALE

UNIVERSITA DEGLI STUDI DI PADOVA TESI DI LAUREA TRIENNALE UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E GESTIONE DELLE IMPRESE TESI DI LAUREA TRIENNALE Cluster Analysis per la segmentazione della clientela utilizzando

Dettagli

Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario

Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Nell ambito di questa attività è in fase di realizzazione un applicativo che metterà a disposizione dei policy makers,

Dettagli

A+FORUM 2015 Big data e predic,ve analy,cs: cosa sono, soluzioni e vantaggi, servono alle PMI?

A+FORUM 2015 Big data e predic,ve analy,cs: cosa sono, soluzioni e vantaggi, servono alle PMI? A+FORUM 2015 Big data e predic,ve analy,cs: cosa sono, soluzioni e vantaggi, servono alle PMI? Alessandro Rezzani Hotel Calzavecchio Casalecchio di Reno; 18/09/2015 Hotel Calzavecchio; Casalecchio di Reno;

Dettagli

Dynamic Warehousing: la tecnologia a supporto della Business Intelligence 2.0. Giulia Caliari Software IT Architect

Dynamic Warehousing: la tecnologia a supporto della Business Intelligence 2.0. Giulia Caliari Software IT Architect Dynamic Warehousing: la tecnologia a supporto della Business Intelligence 2.0 Giulia Caliari Software IT Architect Business Intelligence: la nuova generazione Infrastruttura Flessibilità e rapidità di

Dettagli

Data warehouse Introduzione

Data warehouse Introduzione Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi

Dettagli

Con il termine. Demand Planning per le aziende industriali e commerciali. Management. La disciplina del. Demand Planning

Con il termine. Demand Planning per le aziende industriali e commerciali. Management. La disciplina del. Demand Planning Demand Planning per le aziende industriali e commerciali 36 La disciplina del Demand Planning ha come oggetto lo studio dei processi di business che si occupano della generazione delle previsioni di vendita

Dettagli

Introduzione a data warehousing e OLAP

Introduzione a data warehousing e OLAP Corso di informatica Introduzione a data warehousing e OLAP La Value chain Information X vive in Z S ha Y anni X ed S hanno traslocato Data W ha del denaro in Z Stile di vita Punto di vendita Dati demografici

Dettagli

Data Mining in SAP. Alessandro Ciaramella

Data Mining in SAP. Alessandro Ciaramella UNIVERSITÀ DI PISA Corsi di Laurea Specialistica in Ingegneria Informatica per la Gestione d Azienda e Ingegneria Informatica Data Mining in SAP A cura di: Alessandro Ciaramella La Business Intelligence

Dettagli

Una miniera di dati sul comportamento degli utenti del Web

Una miniera di dati sul comportamento degli utenti del Web Una miniera di dati sul comportamento degli utenti del Web Organizzare le informazioni sull'utilizzo della rete in PostgreSQL utilizzando ht://miner, un sistema open-source di data mining e data warehousing

Dettagli

Sistemi di supporto alle decisioni

Sistemi di supporto alle decisioni Sistemi di supporto alle decisioni Introduzione I sistemi di supporto alle decisioni, DSS (decision support system), sono strumenti informatici che utilizzano dati e modelli matematici a supporto del decision

Dettagli

MICROMARKETING DI SUCCESSO SFRUTTANDO DAVVERO IL CUSTOMER DATABASE

MICROMARKETING DI SUCCESSO SFRUTTANDO DAVVERO IL CUSTOMER DATABASE MICROMARKETING DI SUCCESSO SFRUTTANDO DAVVERO IL CUSTOMER DATABASE Innovative tecniche statistiche che consentono di mirare le azioni di marketing, vendita e comunicazione valorizzando i dati dei database

Dettagli

KNOWLEDGE DISCOVERY E DATA MINING

KNOWLEDGE DISCOVERY E DATA MINING KNOWLEDGE DISCOVERY E DATA MINING Prof. Dipartimento di Elettronica e Informazione Politecnico di Milano LE TECNOLOGIE DI GESTIONE DELL INFORMAZIONE DATA WAREHOUSE SUPPORTO ALLE DECISIONI DATA MINING ANALISI

Dettagli

Modulo Campaign Activator

Modulo Campaign Activator Modulo Campaign Activator 1 Che cosa è Market Activator Market Activator è una suite composta da quattro diversi moduli che coprono esigenze diverse, ma tipicamente complementari per i settori marketing/commerciale

Dettagli

L intelligence commerciale per il governo della complessità distributiva: l approccio adottato in BNL

L intelligence commerciale per il governo della complessità distributiva: l approccio adottato in BNL L intelligence commerciale per il governo della complessità distributiva: l approccio adottato in BNL Convegno ABI CRM 2003 Strategie di Valorizzazione delle Relazioni con la Clientela Andrea Di Fabio

Dettagli

Il data mining. di Alessandro Rezzani

Il data mining. di Alessandro Rezzani Il data mining di Alessandro Rezzani Cos è il data mining.... 2 Knowledge Discovery in Databases (KDD)... 3 Lo standard CRISP-DM... 4 La preparazione dei dati... 7 Costruzione del modello... 7 Attività

Dettagli

Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria di Modena

Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria di Modena Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria di Modena Corso di Laurea Specialistica in Ingegneria Informatica Business Intelligence per le imprese: progetto e realizzazione di

Dettagli

Uno sguardo sul futuro: Big data analytics

Uno sguardo sul futuro: Big data analytics Uno sguardo sul futuro: Big data analytics door@polimi.it - www.door.polimi.it - via Lambruschini 4b, 20156 ilano ilano, 20 novembre 2014 8 FORU NAZIONALE EDITORI TECNICI PROFESSIONALI SPECIALIZZATI Le

Dettagli

DATA MINING IN TIME SERIES

DATA MINING IN TIME SERIES Modellistica e controllo dei sistemi ambientali DATA MINING IN TIME SERIES 01 Dicembre 2009 Dott. Ing.. Roberto Di Salvo Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi Anno Accademico 2009-2010

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

E.T.L. (Extract.Tansform.Load) IBM - ISeries 1/8

E.T.L. (Extract.Tansform.Load) IBM - ISeries 1/8 E.T.L. (Extract.Tansform.Load) IBM - ISeries Quick-EDD/ DR-DRm ETL 1/8 Sommario ETL... 3 I processi ETL (Extraction, Transformation and Loading - estrazione, trasformazione e caricamento)... 3 Cos è l

Dettagli

Offerta tecnica. Allegato III Modelli di documentazione

Offerta tecnica. Allegato III Modelli di documentazione Offerta tecnica Allegato III Modelli di documentazione Gestione, sviluppo e manutenzione dell architettura software di Business Intelligence in uso presso Cestec S.p.A. Redatto da Omnia Service Italia

Dettagli

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Gli elementi chiave del db

Dettagli

Lezione 8. Data Mining

Lezione 8. Data Mining Lezione 8 Data Mining Che cos'è il data mining? Data mining (knowledge discovery from data) Estrazione di pattern interessanti (non banali, impliciti, prima sconosciuti e potenzialmente utili) da enormi

Dettagli

Tecnopolis CSATA s.c.r.l. APQ in Materia di Ricerca Scientifica nella Regione Puglia

Tecnopolis CSATA s.c.r.l. APQ in Materia di Ricerca Scientifica nella Regione Puglia BANDO ACQUISIZIONI Prodotti Software ALLEGATO 6.1 Capitolato Tecnico Ambiente di Business Intelligence Allegato 6.1: capitolato tecnico Pag. 1 1 La piattaforma di Business Intelligence L informazione è

Dettagli

Knowledge Discovery e Data Mining

Knowledge Discovery e Data Mining Sommario Knowledge Discovery e Mining Introduzione Motivazioni ed applicazioni ll processo di KDD Fasi e caratteristiche Le tecniche di DM Classificazione e regressione Scoperta di regole associative Clustering

Dettagli

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione 1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La

Dettagli

La suite Pentaho Community Edition

La suite Pentaho Community Edition La suite Pentaho Community Edition GULCh 1 Cosa è la Business Intelligence Con la locuzione business intelligence (BI) ci si può solitamente riferire a: un insieme di processi aziendali per raccogliere

Dettagli

Introduzione al Datamining. Francesco Passantino francesco@iteam5.net www.iteam5.net/francesco

Introduzione al Datamining. Francesco Passantino francesco@iteam5.net www.iteam5.net/francesco Introduzione al Datamining Francesco Passantino francesco@iteam5net wwwiteam5net/francesco Cos è il datamining Processo di selezione, esplorazione e modellazione di grandi masse di dati, al fine di scoprire

Dettagli

Pianificazione Controllo Analisi Reporting. Progetti Srl - PCPro 1

Pianificazione Controllo Analisi Reporting. Progetti Srl - PCPro 1 Pianificazione Controllo Analisi Reporting 1 Controllo di Gestione La situazione dei mercati impone alle aziende la necessità di operare in modo più efficiente e tempestivo. L informazione sullo stato

Dettagli

Previsione e monitoraggio del posizionamento competitivo sul sistema. Analisi comparata della propria rete di vendita e penetrazione sul territorio

Previsione e monitoraggio del posizionamento competitivo sul sistema. Analisi comparata della propria rete di vendita e penetrazione sul territorio Essbase XTD e Pk.ben Pagina 1 Una sinergia vincente Previsione e monitoraggio del posizionamento competitivo sul sistema. Analisi comparata della propria rete di vendita e penetrazione sul territorio Cesare

Dettagli

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito Sistemi direzionali e modello multidimensionale Prof. Piercarlo Giolito 1 Data warehousing e tecnologia OLAP Argomenti trattati. Evoluzione dei Sistemi Informativi Decisionali Il modello dei dati multidimensionale

Dettagli

Data mining for e- commerce sites

Data mining for e- commerce sites Data mining for e- commerce sites Commercio elettronico Possibilità di svolgerele attività commerciali per via elettronica, in particolare tramite Internet. Un qualsiasi tipo di transazione tendente a

Dettagli

Apprendimento Automatico

Apprendimento Automatico Metodologie per Sistemi Intelligenti Apprendimento Automatico Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo regionale di Como Intelligenza Artificiale "making a machine

Dettagli

INDICE INTRODUZIONE... 1. Capitolo 1: RETI WIRELESS... 5. 1.1 Reti Wireless... 5. 1.2 Lo standard IEEE 802.11... 10. 1.3 Le Vanet...

INDICE INTRODUZIONE... 1. Capitolo 1: RETI WIRELESS... 5. 1.1 Reti Wireless... 5. 1.2 Lo standard IEEE 802.11... 10. 1.3 Le Vanet... Indice INDICE INTRODUZIONE... 1 Capitolo 1: RETI WIRELESS... 5 1.1 Reti Wireless... 5 1.2 Lo standard IEEE 802.11... 10 1.3 Le Vanet... 14 1.4 LTE (Long Term Evolution)... 19 1.5 5G... 21 Capitolo 2: RETI

Dettagli

Presentazione. Risorse Web. Metodi Statistici 1

Presentazione. Risorse Web. Metodi Statistici 1 I-XVI Romane_ 27-10-2004 14:25 Pagina VII Prefazione Risorse Web XI XIII XVII Metodi Statistici 1 Capitolo 1 Tecniche Statistiche 3 1.1 Probabilità, Variabili Casuali e Statistica 3 1.1.1 Introduzione

Dettagli

Introduzione alla Business Intelligence

Introduzione alla Business Intelligence SOMMARIO 1. DEFINIZIONE DI BUSINESS INTELLIGENCE...3 2. FINALITA DELLA BUSINESS INTELLIGENCE...4 3. DESTINATARI DELLA BUSINESS INTELLIGENCE...5 4. GLOSSARIO...7 BIM 3.1 Introduzione alla Pag. 2/ 9 1.DEFINIZIONE

Dettagli

RRF Reply Reporting Framework

RRF Reply Reporting Framework RRF Reply Reporting Framework Introduzione L incremento dei servizi erogati nel campo delle telecomunicazioni implica la necessità di effettuare analisi short-term e long-term finalizzate a tenere sotto

Dettagli

Suggerimenti per l approccio all analisi dei dati multivariati

Suggerimenti per l approccio all analisi dei dati multivariati Suggerimenti per l approccio all analisi dei dati multivariati Definizione degli obbiettivi Il primo passo è la definizione degli obbiettivi. Qual è l obbiettivo della sperimentazione i cui dati dovete

Dettagli

STUDIO DI SETTORE SG42U

STUDIO DI SETTORE SG42U ALLEGATO 2 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG42U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Sistemi informativi aziendali

Sistemi informativi aziendali Sistemi informativi aziendali Lezione 12 prof. Monica Palmirani Sistemi informativi e informatici Sistemi informativi = informazioni+processi+comunicazione+persone Sistemi informatici = informazioni+hardware+software

Dettagli

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Informatica per il management. Business Analytics

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Informatica per il management. Business Analytics Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Informatica per il management Business Analytics Tesi di Laurea in Basi di Dati

Dettagli

DATA WAREHOUSING CON JASPERSOFT BI SUITE

DATA WAREHOUSING CON JASPERSOFT BI SUITE UNIVERSITÁ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria di Enzo Ferrari Corso di Laurea Magistrale in Ingegneria Informatica (270/04) DATA WAREHOUSING CON JASPERSOFT BI SUITE Relatore

Dettagli

Aprile 2013 LA SOLUZIONE EXPERTEE EEDG ENTERPRISE DATA GOVERNANCE

Aprile 2013 LA SOLUZIONE EXPERTEE EEDG ENTERPRISE DATA GOVERNANCE Aprile 2013 LA SOLUZIONE EXPERTEE EEDG ENTERPRISE DATA GOVERNANCE Company Profile Startup, fondata Q4 2012 Prodotto: Suite Expertee Enterprise Data Governance - EEDG, per la Governance end-to-end dei processi

Dettagli

La matematica per innovare i processi di decisione del fundraising

La matematica per innovare i processi di decisione del fundraising La matematica per innovare i processi di decisione del fundraising Festival del Fundraising Ottavio Crivaro Giovanni Cassarini 2 La sfida: è possibile? Risk map and Risk models Prevedere l arrivo di auto

Dettagli

SQL Server BI Development Studio

SQL Server BI Development Studio Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report

Dettagli

Glossario. Termini tecnici. Termini di business. Acronimi

Glossario. Termini tecnici. Termini di business. Acronimi Glossario Il glossario è suddiviso in tre sezioni: la prima riporta i termini tecnici più frequentemente utilizzati in tutti i progetti di Data Warehouse la seconda è specifica di progetto e tratta i termini

Dettagli

La Business Intelligence per competere e governare il cambiamento Vittorio Arighi Practice Leader Netconsulting

La Business Intelligence per competere e governare il cambiamento Vittorio Arighi Practice Leader Netconsulting La Business Intelligence per competere e governare il cambiamento Vittorio Arighi Practice Leader Netconsulting 9 ottobre 2014 L andamento del PIL a livello mondiale: l Italia continua ad arretrare Mondo

Dettagli

I sistemi di reporting e i rapporti direzionali

I sistemi di reporting e i rapporti direzionali I sistemi di reporting e i rapporti direzionali Reporting - Sintesi dei fenomeni aziendali secondo modelli preconfezionati e con frequenza e aggiornamento prestabiliti - contabile (dati economici) - extracontabile

Dettagli

Business Intelligence

Business Intelligence aggregazione dati Business Intelligence analytic applications query d a t a w a r e h o u s e aggregazione budget sales inquiry data mining Decision Support Systems MIS ERP data management Data Modeling

Dettagli

LEZIONE 3 CUSTOMER RELATIONSHIP ICT GOVERNANCE. ECONOMIA dell ICT ECONOMIA DELL ICT 1. Facoltà di Ingegneria Università di Roma Tor Vergata

LEZIONE 3 CUSTOMER RELATIONSHIP ICT GOVERNANCE. ECONOMIA dell ICT ECONOMIA DELL ICT 1. Facoltà di Ingegneria Università di Roma Tor Vergata LEZIONE 3 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) ICT GOVERNANCE ECONOMIA dell ICT ECONOMIA DELL ICT 1 Sviluppo storico del CRM 50 60 Avvento dei brand items e delle agenzie di pubblicità 70 Avvento del

Dettagli

DSCube. L analisi dei dati come strumento per i processi decisionali

DSCube. L analisi dei dati come strumento per i processi decisionali DSCube L analisi dei dati come strumento per i processi decisionali Analisi multi-dimensionale dei dati e reportistica per l azienda: DSCube Introduzione alla suite di programmi Analyzer Query Builder

Dettagli

Data Warehouse: una collezione di dati in supporto al processo decisionale del management

Data Warehouse: una collezione di dati in supporto al processo decisionale del management Data Warehouse Data Warehouse: una collezione di dati in supporto al processo decisionale del management Orientata al soggetto Integrata Dipendente dal tempo Non volatile Bill Inmon ORIENTATA AL SOGGETTO:

Dettagli

Miriam Gotti m.gotti@cineca.it

Miriam Gotti m.gotti@cineca.it Cenni sul Dat a Warehouse Ravenna 5 Novembre 2007 Miriam Gotti m.gotti@cineca.it www. cineca.it Agenda Fondamenti di Data Warehouse Modello Multidimensionale Analisi OLAP Introduzione a Statportal www.cineca.it

Dettagli

STUDIO DI SETTORE SG87U

STUDIO DI SETTORE SG87U ALLEGATO 9 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG87U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire

Dettagli

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005.

SQL Server 2005. Introduzione all uso di SQL Server e utilizzo delle opzioni Olap. Dutto Riccardo - SQL Server 2005. SQL Server 2005 Introduzione all uso di SQL Server e utilizzo delle opzioni Olap SQL Server 2005 SQL Server Management Studio Gestione dei server OLAP e OLTP Gestione Utenti Creazione e gestione DB SQL

Dettagli