Data Mining in SAP. Alessandro Ciaramella

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Data Mining in SAP. Alessandro Ciaramella"

Transcript

1 UNIVERSITÀ DI PISA Corsi di Laurea Specialistica in Ingegneria Informatica per la Gestione d Azienda e Ingegneria Informatica Data Mining in SAP A cura di: Alessandro Ciaramella

2 La Business Intelligence Profitto Conoscenza Informazione Dati 2 Processi Tecnologie Strumenti

3 I Passi della Business Intelligence 3 Fonte: Norbert Egger & al., Business Intelligence, SAP PRESS (2007)

4 Il Data Mining 4 Un processo iterativo Per scoprire regolarità e relazioni In grandi quantità di dati Per un risultato chiaro, utile e riusabile

5 Un processo iterativo Processo Standardizzato dal CRISP-DM 5

6 Il Modulo SAP APD Permette di sviluppare processi di analisi di Data Mining Fonte: sap.com 6

7 Il Processo di Data Mining in SAP 7

8 1st Step: Selection of Data 8 I dati possono essere prelevati da una grande quantità di sorgenti:

9 2nd step: Preparation 9 Permette di manipolare i dati per renderli adatti alle analisi dei metodi di data mining

10 3td Step: Transformation 10 Rappresentano metodi potenti di analisi dei dati:

11 4th Step: Saving / Trasferring 11 I dati possono essere salvati in diverse strutture: Oppure possono essere utilizzati per addestrare i modelli di data mining o generare le Regole di Associazione

12 I Metodi di Data Mining 12 Decision Tree Cluster Analysis Regression Analysis Association Rules

13 Decision Tree A A=w A=x B 13 B B B<θ Class 1 A=z A=y B θ Class 2 Class 3

14 Generare un Albero di Decisione test test test......

15 Algoritmo CLS Proposto da Hunt (1966) Base della maggior parte degli algoritmi Sia T il training set non vuoto e {C, C,, C } le classi a cui appartengono le unità Tutte le unità appartengono alla stessa classe 2.L'insieme T è vuoto 3.L'insieme T contiene unità di classi diverse Selezione della variabile per test Partizione di T in sottoinsiemi T e ricorsione i 15 k

16 Il Problema dell Overfitting 16 L obiettivo è riuscire a classificare in modo corretto anche dati non appartenenti al training set. In modo intuitivo è facile capire che alberi più semplici riescono a generalizzare meglio di alberi complessi, con tanti test sulle variabili di ingresso.

17 Algoritmi ID3 e C Proposti da Quinlan (1986 e 1993) Il C4.5 estende gli alberi ai domini quantitativi Basati sull algoritmo CLS Tecnica di sampling del training set Selezione della variabile guidata dall'information Gain

18 L'Information Gain L'information Gain di una variabile A rispetto a una variabile X è un indicatore di quanto la conoscenza di A può influire sulla conoscenza di X: IG(X,A) = H(X) H(X A) Dove H() rappresenta l'entropia informatica, una misura dell'incertezza legata a una variabile statistica (Shannon, 1948) 18

19 Pruning La potatura è guidata da una misura del tasso di errore dell albero nel classificare campioni non precedentemente visti. 19 prepruning: si decide di fermarsi a un certo nodo, anche se l insieme dei campioni non appartiene tutto a un unica classe postpruning: la potatura è effettuata sull albero completamente generato, agendo retrospettivamente sulla sua struttura

20 Decision Tree in SAP 20

21 L'Algoritmo in SAP 21 Utilizza una variante dell algoritmo C4.5

22 I Risultati della Classificazione 22

23 Applicazione 23 Problema: Predire quando l income di una persona supera una certa soglia in base ai dati relativi al censo. Decision Tree: 86,17% successo in test set

24 Cluster Analysis 24 Segmenta un insieme di oggetti in gruppi tali che: Oggetti molto simili tra loro appartengano allo stesso gruppo Oggetti di gruppi diversi siano molto diversi tra loro

25 Il Processo di Clustering Fonte: Halkidi (2001) 25

26 Cluster Analysis in SAP 26 Utilizza una variante del k-means Estende il dominio alle variabili qualitative

27 Le Dimensioni dello Spazio 27 Ciascun attributo rappresenta una o più dimensioni nello spazio di ricerca Alle variabili quantitative e qualitative ordinate viene assegnata una dimensione Alle variabili qualitative non ordinate viene assegnata una dimensione per ogni modalità che possono assumere (binarizzazione)

28 Algoritmo di Clustering: passo 1 Calcolo dei Centroidi Iniziali 28 Attraverso un campionamento casuale, l insieme dei dati iniziali viene diviso in k parti; Per ciascuna parte, su alcuni dei campioni rappresentati come vettori viene calcolata la media aritmetica che rappresenterà le coordinate del punto centroide.

29 Algoritmo di Clustering: passo 2 Attribuzione degli Oggetti ai Cluster 29 Ogni campione viene assegnato al cluster il cui centroide ha la distanza euclidea minima dal campione stesso.

30 Algoritmo di Clustering: passo 3 Nuovo Calcolo dei Centroidi 30 I centroidi vengono calcolati in base alle appartenenze stabilite nel passo precedente. In particolare, alcuni campioni vengono selezionati a caso e la loro media rappresenterà le coordinate del nuovo punto centroide.

31 Algoritmo di Clustering: passo 4 Condizioni di Stop 31 L algoritmo torna al passo due (attribuzione degli oggetti ai cluster) finchè le condizioni di stop non vengono soddisfatte.

32 Configurazione dei Parametri 32

33 La Validazione dei Risultati 33 Ottenuta una partizione dei dati, è importante controllare che questa non sia stata prodotta artificialmente dall algoritmo ma corrisponda alla struttura effettiva dei dati. Una buona partizione ha cluster ben separati tra loro e compatti al loro interno.

34 L'Indice Xie-Beni Al numeratore: compattezza Al denominatore: separazione Piccoli valori di Xie-Beni buone partizioni 34

35 La Validazione in SAP 35 Non è presente alcun indicatore sintetico della bontà dei risultati ottenuti Possiamo utilizzare alcune informazioni di riepilogo fornite dal sistema per ottenere un approssimazione dell indice di Xie-Beni

36 La Compattezza 36 Attraverso l Intra Cluster Distance Graph si può risalire alla distanza media tra gli elementi appartenenti a un cluster e il suo centroide.

37 La Separazione 37 Visualizzando il modello secondo la sintassi PMML è possibile accedere alle coordinate di ogni cluster

38 Applicazione 1/2 Problema: classificare un insieme di individui in gruppi omogenei, attraverso l analisi delle caratteristiche del loro censo Guidati dall indice Xie-Beni, abbiamo trovato la migliore partizione in tre gruppi 38 Variabili utilizzate: sex, income, relationship, education, age

39 Applicazione 2/2 39 Problema: predire la classe di appartenenza di una pianta di iris, raggruppando i campioni in base ai loro dati biologici Cluster Analysis: si ottiene una corretta classificazione nel 96% dei casi

40 Regression Analysis y = f(x, θ) + ε 40 Stima i parametri dell equazione che lega le variabili predittrici con la variabile risposta La variabile da predire è di tipo continuo e non un identificatore di classe

41 La Regressione Lineare y=α+β x+ε La risposta è funzione lineare dei parametri Errore: Metodo dei minimi quadrati 41

42 Regressione Non Lineare Equazione della regressione non lineare: y = f(x, θ) + ε 42 Per stimare i parametri non c è un metodo generale, ma sono necessari algoritmi specifici di ricerca operativa

43 Alcune Definizioni 43 Da cui SST = SSR + SSE Coefficiente di Determinazione:

44 Regression Analysis in SAP 44 Effettua regressioni sia di tipo lineare sia di tipo non lineare Accetta predittori qualitativi, generando un equazione per ogni combinazione dei loro valori

45 Regressione Lineare in SAP 45 Per stimare i parametri dell equazione di regressione utilizza il metodo dei minimi quadrati

46 Regressione non Lineare in SAP Attraverso spline di ordine uno y x 46

47 Linearizzazione Locale 47 Per ogni variabile predittrice quantitativa è necessario stabilire un intervallo di linearizzazione in modo automatico o manuale (specificando le soglie):

48 I Risultati del Modello 48 Il sistema fornisce come indicatore di bontà la radice quadrata del coefficiente di determinazione: Pericolo di sovrastimare la capacità di analisi raggiunta

49 Applicazione 49 Problema: predire il numero di anelli della conchiglia di un mollusco note alcune sue misure fisiche Regression Analysis: 45,40% di successo con margine di errore ± 1 unità.

50 Association Rules Scoprono relazioni nascoste tra gli attributi (local pattern) La conoscenza indotta è mantenuta sotto forma di regole del tipo: Se {Antecedente} allora {Conseguente} 50

51 Market Basket Analysis Rappresenta l applicazione più nota delle Regole di Associazione Ogni acquisto rappresenta una transazione e coinvolge un certo insieme di articoli Se A e B sono due insiemi di articoli disgiunti, una regola di associazione prende la forma: A B 51

52 Il Supporto Il Supporto di una regola di associazione A B è la proporzione di transazioni che contengono sia A e B: (numero delle transazioni contenenti sia A e B) (numero totale delle transazioni) 52

53 La Confidenza La Confidenza di una regola di associazione A B è una misura della sua accuratezza ed è determinata dalla percentuale di transazioni che contengono A e che inoltre contengono B: (num. delle trans. contenenti sia A e B) (num. delle trans. contenenti A) 53

54 Altre Definizioni 54 Regole forti: regole che hanno supporto e confidenza maggiori di soglie prestabilite Itemset: un insieme di articoli K-itemset: un itemset contenente k articoli Large Itemset: un itemset che si presenta almeno un certo numero di volte

55 Algoritmo Apriori Proposto da Agrawal (1993) 1. Trova i large itemset 2. Per ciascun large itemset, genera tutte le regole ottenute dalla combinazione dei suoi articoli 3. Seleziona le regole che superano una certa soglia di confidenza prestabilita 55

56 I Large Itemset Trovare i large itemset in modo diretto non è computazionalmente possibile Si usa la downward closure property: 56 Se un itemset X non è un large itemset, aggiungere un ulteriore articolo A a tale itemset non renderà X U A un large itemset Per ottenere i large itemset, è sufficiente cercare soltanto tra le combinazioni di large itemset di ordine inferiore, partendo dagli 1-itemset più frequenti.

57 L incremento (Lift) 1/2 Se un articolo è presente nel database con una frequenza alta, la confidenza delle regole in cui appare come conseguente risulta distorta. Per valutare la bontà di una regola si introduce l incremento: (confidenza della regola) (probabilità del conseguente) 57

58 L incremento (Lift) 2/2 Confronta la confidenza della regola con la probabilità del conseguente 58 Lift >> 1: effettiva correlazione Lift 1: la presenza del conseguente non è associabile alla presenza dell antecedente

59 Association Rules in SAP 59 Utilizza una variante dell'algoritmo Apriori

60 Il Transaction Weight È possibile specificare il peso assunto da ciascun articolo all interno della transazione In questo caso il supporto di un itemset è calcolato come: (peso totale delle transazioni contenenti l itemset) (peso totale delle transazioni) 60

61 Le Regole Generate 61

62 Applicazione Problema: predire la pagina web che sarà visitata durante l accesso a un sito, nota la pagina già visitata. Association Rules: Si ottengono regole con confidenza anche maggiore del 90% 62 Esempio: /WINDOWS95 /WINDOWS

63 Grazie. 63

Università di Pisa A.A. 2004-2005

Università di Pisa A.A. 2004-2005 Università di Pisa A.A. 2004-2005 Analisi dei dati ed estrazione di conoscenza Corso di Laurea Specialistica in Informatica per l Economia e per l Azienda Tecniche di Data Mining Corsi di Laurea Specialistica

Dettagli

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD Il processo di KDD Introduzione Crescita notevole degli strumenti e delle tecniche per generare e raccogliere dati (introduzione codici a barre, transazioni economiche tramite carta di credito, dati da

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

Algoritmi di clustering

Algoritmi di clustering Algoritmi di clustering Dato un insieme di dati sperimentali, vogliamo dividerli in clusters in modo che: I dati all interno di ciascun cluster siano simili tra loro Ciascun dato appartenga a uno e un

Dettagli

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida

Introduzione alle tecniche di Data Mining. Prof. Giovanni Giuffrida Introduzione alle tecniche di Data Mining Prof. Giovanni Giuffrida Programma Contenuti Introduzione al Data Mining Mining pattern frequenti, regole associative Alberi decisionali Clustering Esempio di

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it Data Mining Gabriella Trucco gabriella.trucco@unimi.it Perché fare data mining La quantità dei dati memorizzata su supporti informatici è in continuo aumento Pagine Web, sistemi di e-commerce Dati relativi

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Cenni al Data Mining 1 Data Mining nasce prima del Data Warehouse collezione di tecniche derivanti da Intelligenza Artificiale,

Dettagli

Data mining e rischi aziendali

Data mining e rischi aziendali Data mining e rischi aziendali Antonella Ferrari La piramide delle componenti di un ambiente di Bi Decision maker La decisione migliore Decisioni Ottimizzazione Scelta tra alternative Modelli di apprendimento

Dettagli

Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino

Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino DataBase and Data Mining Group of Database and data mining group, Database and data mining group, DataBase and Data Mining Group of DataBase and Data Mining Group of So dati insieme di classi oggetti etichettati

Dettagli

Tecniche di DM: Alberi di decisione ed algoritmi di classificazione

Tecniche di DM: Alberi di decisione ed algoritmi di classificazione Tecniche di DM: Alberi di decisione ed algoritmi di classificazione Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Concetti preliminari: struttura del dataset negli

Dettagli

Marketing relazionale

Marketing relazionale Marketing relazionale Introduzione Nel marketing intelligence assume particolare rilievo l applicazione di modelli predittivi rivolte a personalizzare e rafforzare il legame tra azienda e clienti. Un azienda

Dettagli

Pro e contro delle RNA

Pro e contro delle RNA Pro e contro delle RNA Pro: - flessibilità: le RNA sono approssimatori universali; - aggiornabilità sequenziale: la stima dei pesi della rete può essere aggiornata man mano che arriva nuova informazione;

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Mining. Introduzione La crescente popolarità

Dettagli

1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4. 3. Aspetti Prestazionali... 4

1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4. 3. Aspetti Prestazionali... 4 Pagina 2 1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4 Esempi... 4 3. Aspetti Prestazionali... 4 Obiettivi... 4 Esempi... 4 4. Gestione del Credito

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Regole di Associazione

Regole di Associazione Metodologie per Sistemi Intelligenti Regole di Associazione Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo regionale di Como Esempio Esempio Regole di Associazione Scopo

Dettagli

Feature Selection per la Classificazione

Feature Selection per la Classificazione 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma Outline Feature Selection per problemi di Classificazione

Dettagli

Statistical learning Strumenti quantitativi per la gestione

Statistical learning Strumenti quantitativi per la gestione Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

Modelli per variabili dipendenti qualitative

Modelli per variabili dipendenti qualitative SEMINARIO GRUPPO TEMATICO METODI e TECNICHE La valutazione degli incentivi industriali: aspetti metodologici Università di Brescia, 17 gennaio 2012 Modelli per variabili dipendenti qualitative Paola Zuccolotto

Dettagli

Distributed P2P Data Mining. Autore: Elia Gaglio (matricola n 809477) Corso di Sistemi Distribuiti Prof.ssa Simonetta Balsamo

Distributed P2P Data Mining. Autore: Elia Gaglio (matricola n 809477) Corso di Sistemi Distribuiti Prof.ssa Simonetta Balsamo Distributed P2P Data Mining Autore: (matricola n 809477) Corso di Sistemi Distribuiti Prof.ssa Simonetta Balsamo A.A. 2005/2006 Il settore del Data Mining Distribuito (DDM): Data Mining: cuore del processo

Dettagli

Cluster gerarchica. Capitolo

Cluster gerarchica. Capitolo Cluster gerarchica Capitolo 33 Questa procedura consente di identificare gruppi di casi relativamente omogenei in base alle caratteristiche selezionate, utilizzando un algoritmo che inizia con ciascun

Dettagli

Presentazione. Risorse Web. Metodi Statistici 1

Presentazione. Risorse Web. Metodi Statistici 1 I-XVI Romane_ 27-10-2004 14:25 Pagina VII Prefazione Risorse Web XI XIII XVII Metodi Statistici 1 Capitolo 1 Tecniche Statistiche 3 1.1 Probabilità, Variabili Casuali e Statistica 3 1.1.1 Introduzione

Dettagli

DATA MINING. Data mining. Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche

DATA MINING. Data mining. Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche DATA MINING datamining Data mining Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche Una materia interdisciplinare: - statistica, algoritmica, reti neurali

Dettagli

ROCK. A Robust Clustering Algorithm for Categorical Attributes. Sudipto Guha, Rajeev Rastogi, Kyuseok Shim

ROCK. A Robust Clustering Algorithm for Categorical Attributes. Sudipto Guha, Rajeev Rastogi, Kyuseok Shim ROCK A Robust Clustering Algorithm for Categorical Attributes Sudipto Guha, Rajeev Rastogi, Kyuseok Shim Presentazione di Sara Liparesi e Francesco Nonni Sistemi Informativi per le Decisioni a.a. 2005/2006

Dettagli

MASTER UNIVERSITARIO

MASTER UNIVERSITARIO MASTER UNIVERSITARIO Analisi Dati per la Business Intelligence In collaborazione con II edizione 2013/2014 Dipartimento di Culture, Politica e Società Dipartimento di Informatica gestito da aggiornato

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Basi di Dati Relazionali

Basi di Dati Relazionali Corso di Laurea in Informatica Basi di Dati Relazionali a.a. 2009-2010 PROGETTAZIONE DI UNA BASE DI DATI Raccolta e Analisi dei requisiti Progettazione concettuale Schema concettuale Progettazione logica

Dettagli

IL CAMPIONAMENTO NELLA REVISIONE CONTABILE

IL CAMPIONAMENTO NELLA REVISIONE CONTABILE Università RomaTre. Facoltà di Economia Federico Caffè Prof. Ugo Marinelli Anno Accademico 07-08 1 PREMESSA RACCOLTA SUFFICIENTI ED APPROPRIATI ELEMENTI PROBATIVI LA È SVOLTA IN BASE A VERIFICHE DI CAMPIONI

Dettagli

Clustering. Utilizziamo per la realizzazione dell'esempio due tipologie di software:

Clustering. Utilizziamo per la realizzazione dell'esempio due tipologie di software: Esercizio Clustering Utilizziamo per la realizzazione dell'esempio due tipologie di software: - XLSTAT.xls - Cluster.exe XLSTAT.xls XLSTAT.xls è una macro di Excel che offre la possibilità di effettuare

Dettagli

MASTER UNIVERSITARIO. Analisi Dati per la Business Intelligence e Data Science. IV edizione 2015/2016

MASTER UNIVERSITARIO. Analisi Dati per la Business Intelligence e Data Science. IV edizione 2015/2016 MASTER UNIVERSITARIO Analisi Dati per la Business Intelligence e Data Science In collaborazione con IV edizione 2015/2016 Dipartimento di Culture, Politica e Società Dipartimento di Informatica Dipartimento

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Indice-sommario INDICE SOMMARIO CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE

Indice-sommario INDICE SOMMARIO CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE VII INDICE SOMMARIO Prefazione... xv CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE 1. Analisi dei dati e data mining... 1 2. La matrice dei dati «unità pervariabili»... 6 3. Idatiricavatidaun

Dettagli

Il guadagno informativo negli alberi decisionali: un nuovo approccio

Il guadagno informativo negli alberi decisionali: un nuovo approccio Il guadagno informativo negli alberi decisionali: un nuovo approccio Sommario Descrizione del problema... 2 Il guadagno informativo di Nanni... 3 Il software Weka... 3 Cos è Weka... 3 Il guadagno Informativo

Dettagli

STUDIO DI SETTORE SG42U

STUDIO DI SETTORE SG42U ALLEGATO 2 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG42U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008

Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008 Analisi Statistica dei Dati Misurazione e gestione dei rischi a.a. 2007-2008 Dott. Chiara Cornalba Argomenti Market Basket Analysis: Odds Ratio e Regole associative 2 Posizionamento prodotti Tanto più

Dettagli

Tecniche di Clustering basate sul Machine Learning

Tecniche di Clustering basate sul Machine Learning UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Scuola Politecnica e delle Scienze di base Area didattica Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Tecniche di Clustering basate

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 4 Reti neurali per la classificazione Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Opportunità e rischi derivanti dall'impiego massivo dell'informatica in statistica. Francesco Maria Sanna Roma, 3 maggio 2012

Opportunità e rischi derivanti dall'impiego massivo dell'informatica in statistica. Francesco Maria Sanna Roma, 3 maggio 2012 Opportunità e rischi derivanti dall'impiego massivo dell'informatica in statistica Francesco Maria Sanna Roma, 3 maggio 2012 Procedere alla misura, al rilevamento e al trattamento dei dati è sempre stato

Dettagli

Laboratorio di Chimica Fisica 04/03/2015. Introduzione all uso di Microcal Origin 6.0 (TM)

Laboratorio di Chimica Fisica 04/03/2015. Introduzione all uso di Microcal Origin 6.0 (TM) Introduzione all uso di Microcal Origin 6.0 (TM) Origin lavora solo in ambiente Windows, ma ci sono degli omologhi per linux e apple. Sui computer del laboratorio è installato windows XP e troverete la

Dettagli

Introduzione al Data Mining Parte 1

Introduzione al Data Mining Parte 1 Introduzione al Data Mining Parte 1 Corso di Laurea Specialistica in Ingegneria Informatica II Facoltà di Ingegneria, sede di Cesena (a.a. 2009/2010) Prof. Gianluca Moro Dipartimento di Elettronica, Informatica

Dettagli

Backpropagation in MATLAB

Backpropagation in MATLAB Modello di neurone BACKPROPAGATION Backpropagation in MATLAB Prof. Beatrice Lazzerini Dipartimento di Ingegneria dell Informazione Via Diotisalvi 2, 56122 Pisa La funzione di trasferimento, che deve essere

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Tecniche di riconoscimento statistico

Tecniche di riconoscimento statistico On AIR s.r.l. Tecniche di riconoscimento statistico Applicazioni alla lettura automatica di testi (OCR) Parte 5 Tecniche OCR Ennio Ottaviani On AIR srl ennio.ottaviani@onairweb.com http://www.onairweb.com/corsopr

Dettagli

Computazione per l interazione naturale: macchine che apprendono

Computazione per l interazione naturale: macchine che apprendono Computazione per l interazione naturale: macchine che apprendono Corso di Interazione Naturale! Prof. Giuseppe Boccignone! Dipartimento di Informatica Università di Milano! boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Procedura tecnico-statistica per il calcolo dell Indice di Disagio Socioeconomico (IDS)

Procedura tecnico-statistica per il calcolo dell Indice di Disagio Socioeconomico (IDS) Procedura tecnico-statistica per il calcolo dell Indice di Disagio Socioeconomico (IDS) Unità di Valutazione-DPS Ministero dello Sviluppo Economico Luglio 2008 Per garantire uniformità e completezza dei

Dettagli

DATA MINING IN TIME SERIES

DATA MINING IN TIME SERIES Modellistica e controllo dei sistemi ambientali DATA MINING IN TIME SERIES 01 Dicembre 2009 Dott. Ing.. Roberto Di Salvo Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi Anno Accademico 2009-2010

Dettagli

MATEMATICA Classe I ATTIVITÀ:

MATEMATICA Classe I ATTIVITÀ: OBIETTIVO GENERALE: MATEMATICA Classe I Acquisire una crescente capacità di ordinare, quantificare, misurare i fenomeni della realtà, iniziare a problematizzare la propria esperienza e a rappresentarla

Dettagli

Regressione logistica

Regressione logistica Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer Metodi di classificazione Tecniche principali Alcuni esempi Data set Default I dati La regressione logistica Esempio Il modello

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

Ricerca di outlier. Ricerca di Anomalie/Outlier

Ricerca di outlier. Ricerca di Anomalie/Outlier Ricerca di outlier Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna Ricerca di Anomalie/Outlier Cosa sono gli outlier? L insieme di dati che sono considerevolmente differenti dalla

Dettagli

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it

MACHINE LEARNING e DATA MINING Introduzione. a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it MACHINE LEARNING e DATA MINING Introduzione a.a.2015/16 Jessica Rosati jessica.rosati@poliba.it Apprendimento Automatico(i) Branca dell AI che si occupa di realizzare dispositivi artificiali capaci di

Dettagli

Creazione di un modello di data mining di tipo OLAP con l'algoritmo Microsoft Clustering

Creazione di un modello di data mining di tipo OLAP con l'algoritmo Microsoft Clustering Pagina 1 di 9 Menu principale Sezione precedente Sezione successiva Creazione di un modello di data mining di tipo OLAP con l'algoritmo Microsoft Clustering Un modello di data mining è un modello che include

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

Data mining. Vincenzo D Elia. vincenzo.delia@polito.it. DBDMG - Politecnico di Torino

Data mining. Vincenzo D Elia. vincenzo.delia@polito.it. DBDMG - Politecnico di Torino Data mining Vincenzo D Elia vincenzo.delia@polito.it DBDMG - Politecnico di Torino vincenzo.delia@polito.it Archivi Multimediali e Data Mining - p. 1 Rapid Miner vincenzo.delia@polito.it Archivi Multimediali

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

Titolo: Sistemi di bigliettazione elettronica: analisi dati e data mining Relatore: Andrea Gaffi

Titolo: Sistemi di bigliettazione elettronica: analisi dati e data mining Relatore: Andrea Gaffi Titolo: Sistemi di bigliettazione elettronica: analisi dati e data mining Relatore: Andrea Gaffi M.A.I.O.R. Software house con svariate soluzioni sw per il TPL Prodotti che coprono l intero processo Stima

Dettagli

Alberi Decisionali di Vito Madaio

Alberi Decisionali di Vito Madaio Tecnica degli Alberi Decisionali Cosa è un albero decisionale Un albero decisionale è la dimostrazione grafica di una scelta effettuata o proposta. Non sempre ciò che istintivamente ci appare più interessante

Dettagli

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati Data mining Il consente l informazione processo di Data Mining estrarre automaticamente informazioneda un insieme di dati telefoniche, ènascostaa a causa di fra quantitàdi loro, complessità: non... ci

Dettagli

Parte I Processi, organizzazione e sistemi informativi di Demand Planning

Parte I Processi, organizzazione e sistemi informativi di Demand Planning Indice Introduzione... 1 Parte I Processi, organizzazione e sistemi informativi di Demand Planning 1 Demand Planning e Supply Chain Management... 13 1.1 IntroduzionealDemandPlanning... 13 1.1.1 DefinizionediDemandPlanning...

Dettagli

Il DataMining. Susi Dulli dulli@math.unipd.it

Il DataMining. Susi Dulli dulli@math.unipd.it Il DataMining Susi Dulli dulli@math.unipd.it Il Data Mining Il Data Mining è il processo di scoperta di relazioni, pattern, ed informazioni precedentemente sconosciute e potenzialmente utili, all interno

Dettagli

Analisi di Mercato. Facoltà di Economia. Analisi sui consumi. Metodo delle inchieste familiari. Metodo delle disponibilità globali

Analisi di Mercato. Facoltà di Economia. Analisi sui consumi. Metodo delle inchieste familiari. Metodo delle disponibilità globali Obiettivi delle aziende Analisi di Mercato Facoltà di Economia francesco mola Analisi sui consumi Conoscere i bisogni e i gusti dei consumatori Valutare la soddisfazione della clientela Lanciare nuovi

Dettagli

Classificazione e Predizione

Classificazione e Predizione Lezione di TDM DM del 16 Aprile 2007 Francesco Bonchi, KDD Lab Pisa, ISTI-C.N.R. 1 Lezione odierna Intuizioni sul concetto di classificazione Alberi di decisione Alberi di decisione con Weka Classificazione:

Dettagli

Reti neurali nel Data Mining, altre tecniche utilizzate nel DM e valutazione dei modelli.

Reti neurali nel Data Mining, altre tecniche utilizzate nel DM e valutazione dei modelli. Reti neurali nel Data Mining, altre tecniche utilizzate nel DM e valutazione dei modelli. Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Utilizzo di reti neurali nel

Dettagli

IBM SPSS Direct Marketing 21

IBM SPSS Direct Marketing 21 IBM SPSS Direct Marketing 21 Nota: Prima di utilizzare queste informazioni e il relativo prodotto, leggere le informazioni generali disponibili in Note a pag. 109. Questa versione si applica a IBM SPSS

Dettagli

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi.

Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. E. Calabrese: Fondamenti di Informatica Problemi-1 Il sapere tende oggi a caratterizzarsi non più come un insieme di contenuti ma come un insieme di metodi e di strategie per risolvere problemi. L'informatica

Dettagli

WWW.MECDATA.IT P22 P22 : SOFTWARE PER LA PREVENTIVAZIONE. Mecdata Srl www.mecdata.it info@mecdata.it Tel.051.790428

WWW.MECDATA.IT P22 P22 : SOFTWARE PER LA PREVENTIVAZIONE. Mecdata Srl www.mecdata.it info@mecdata.it Tel.051.790428 WWW.MECDATA.IT v.2.7 P22 P22 : SOFTWARE PER LA PREVENTIVAZIONE P22 P22 : SOFTWARE PER LA PREVENTIVAZIONE P22... 2 I valori del preventivo... 3 Header Testata... 3 Materiali M20... 3 Ciclo di Lavoro...

Dettagli

Protezione della riservatezza in basi di dati

Protezione della riservatezza in basi di dati WORKSHOP Connessione in rete: sicurezza informatica e riservatezza Protezione della riservatezza in basi di dati E. Bertino Protezione della Riservatezza in Basi di Dati Page 1 Rilascio di Informazioni

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Il data mining. di Alessandro Rezzani

Il data mining. di Alessandro Rezzani Il data mining di Alessandro Rezzani Cos è il data mining.... 2 Knowledge Discovery in Databases (KDD)... 3 Lo standard CRISP-DM... 4 La preparazione dei dati... 7 Costruzione del modello... 7 Attività

Dettagli

DATA MINING PER IL MARKETING

DATA MINING PER IL MARKETING DATA MINING PER IL MARKETING Andrea Cerioli andrea.cerioli@unipr.it Sito web del corso GLI ALBERI DI CLASSIFICAZIONE Algoritmi di classificazione Zani-Cerioli, Cap. XI CHAID: Chi-square Automatic Interaction

Dettagli

Conoscenza. Metodo scientifico

Conoscenza. Metodo scientifico Conoscenza La conoscenza è la consapevolezza e la comprensione di fatti, verità o informazioni ottenuti attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).

Dettagli

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14 SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

matematicamente.it Numero 9 Maggio 2009

matematicamente.it Numero 9 Maggio 2009 112. Data ining: esplorando le miniere alla ricerca della conoscenza nascosta Clustering con l algoritmo k-means di Gaetano Zazzaro 1 L uomo è confinato nei limiti angusti del corpo, come in una prigione,

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Data Mining e Analisi dei Dati

Data Mining e Analisi dei Dati e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca

Dettagli

Business Intelligence & Data Mining. In ambiente Retail

Business Intelligence & Data Mining. In ambiente Retail Business Intelligence & Data Mining In ambiente Retail Business Intelligence Platform DATA SOURCES STAGING AREA DATA WAREHOUSE DECISION SUPPORT Application Databases Packaged application/erp Data DATA

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

IBM SPSS Direct Marketing 20

IBM SPSS Direct Marketing 20 IBM SPSS Direct Marketing 20 Nota: Prima di utilizzare queste informazioni e il relativo prodotto, leggere le informazioni generali disponibili in Note legali a pag. 109. Questa versione si applica a IBM

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet Gabriele Bartolini Comune di Prato Sistema Informativo Servizi di E-government

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

EVOLUZIONE STUDIO DI SETTORE TG42U

EVOLUZIONE STUDIO DI SETTORE TG42U ALLEGATO 5 NOTA TECNICA E METODOLOGICA EVOLUZIONE STUDIO DI SETTORE TG42U NOTA TECNICA E METODOLOGICA CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L evoluzione dello Studio di Settore ha il fine di

Dettagli