Metodi statistici per le ricerche di mercato

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi statistici per le ricerche di mercato"

Transcript

1 Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per la comunicazione d'impresa» Dalla media del campione a quella della popolazione Fino ad ora abbiamo calcolato il valore di z utilizzando µ e poi abbiamo individuato la probabilità di ottenere il valore della media del nostro campione espressa in forma standardizzata Ma se non conosciamo µ, come procediamo? Come si stabilisce se il valore medio di un campione è una buona stima di quello della popolazione? 1

2 Gli intervalli di confidenza Si fa riferimento agli intervalli di confidenza: intervalli di valori, definiti da un estremo inferiore e superiore e costruiti a partire dalla media del campione, entro i quali possiamo ritenere che con una certa probabilità, sia inclusa la media della popolazione. La probabilità che il valore vero del parametro della popolazione cada nell intervallo si definisce livello di confidenza e si indica con (1 - α) α (denominato livello di significatività) è la probabilità che il parametro si trovi al di fuori dell intervallo di confidenza. Se il livello di confidenza è (1- α)=95% α =5% Se il livello di confidenza è (1- α)=99% α =1% Intervallo di confidenza per la media con σ noto X Z σ / n µ X + Z σ / n α / 2 α / 2 A partire dalla media del campione costruiamo un intervallo di valori sottraendo e sommando Z α/2 moltiplicato per l errore standard. Z α/2 è il valore, detto critico, a cui corrisponde un area cumulata della distribuzione normale standardizzata pari a (1- α/2 ). Ciò vuol dire che se vogliamo avere un livello di confidenza del 95%, dobbiamo individuare sulle tavole della curva normale il valore z che ci consente di ottenere attorno al valore medio della distribuzione il 95% dei casi, lasciando a destra dell area il 2,5% e a sinistra il 2,5%: (1,00-0,025=0,975) Questo valore è z=±1,96 2

3 Se vogliamo avere un livello di confidenza del 99%, quale è il valore critico di z? 1. Calcolare α/2= (1-0,99)/2=0, Cercare sulla tavola della curva normale standardizzata (tav.a) l area pari a (1- α/2 )=(1-0,005)=0, Individuare il valore di z corrispondente. 4. Disegnare la curva normale Se vogliamo avere un livello di confidenza del 99,73%, quale è il valore critico di z? 1. Calcolare α/2= (1-0,9973)/2=0, Cercare sulla tavola della curva normale standardizzata (tav.a) l area pari a (1- α/2 )=(1-0,00135)=0, Individuare il valore di z corrispondente. 4. Disegnare la curva normale 3

4 : stima ad intervallo A un campione casuale semplice di 80 clienti è stato chiesto di attribuire un punteggio da 1 a 100 a un prodotto immesso sul mercato nell ultimo anno. Il valore medio del punteggio è stato 74. Sapendo che lo scarto quadratico medio del punteggio nella popolazione è di 2,5, stimare il punteggio medio del prodotto nella popolazione di riferimento, calcolando l intervallo di confidenza al 95%, al 99% e al 99,73%. (1-0,95)/2=0,025 (1-0,025)= 0,9750 standardizzata (tav.a) l area pari a (1- α/2 ) 1. Calcolare α/2= (1-p)/2 2. Cercare sulla tavola della curva normale 741,96 (2,5/ 80 ) μ 74+1,96 (2,5/ 80 73,45 μ 74,55 (1-0,99) /2=0, Individuare il valore di z corrispondente. 4. Utilizzare il valore z per costruire gli intervalli di confidenza X Z σ / n µ X + Z σ / n α / 2 α / 2 742,58 (2,5/ 80 ) μ 74+2,58 (2,5/ 80 73,28 μ 74,72 ( )/2 =0, (2,5/ 80 ) μ 74+3 (2,5/ 80 73,16 μ 74,84 : stima ad intervallo (segue) Possiamo dunque affermare che a partire dal punteggio medio rilevato nel campione di 74, il punteggio medio attribuito dalla popolazione dei clienti al prodotto è compreso tra : 73,45 e74,55, con un livello di confidenza del 95% e con una probabilità del 5% che sia esterno a questo intervallo. 73,28 e 74,72, con un livello di confidenza del 99% e con una probabilità del 1% che sia esterno a questo intervallo. 73,16 e 74,84 con un livello di confidenza del 99,73% e con una probabilità dello 0,27% che sia esterno a questo intervallo. 4

5 Per facilitarci il compito: Valori di Zα/2 in corrispondenza dei livelli di confidenza 1-α sign. α Zα/2 0,6827 0,3173 1,00 0,7000 0,3000 1,04 0,8000 0,2000 1,28 0,9000 0,1000 1,64 0,9500 0,0500 1,96 0,9545 0,0455 2,00 0,9900 0,0100 2,58 0,9973 0,0027 3,00 In statistica in genere si ritiene accettabile un rischio di non più del 5%. Pertanto i livelli di confidenza utilizzati sono quelli di almeno il 95% ossia di (1- α) 0,95, a cui corrisponde appunto un livello di significatività α 0,05. Si ritengono accettabili dunque valori di Sign= α 0,05, che risultano associati a valori di Zα/2 1,96 : stima ad intervallo Su un campione casuale semplice di 196 negozi è stato rilevato un volume di vendite settimanale di 25 mila euro. Sapendo che lo scarto quadratico medio del volume di vendite nella popolazione è di 1500 euro, stimare il volume di vendite settimanale medio nella popolazione di riferimento, con un livello di confidenza del 95%, e del 99%. 1.Individuare il valore di z corrispondente a ciascun livello di confidenza 2-Utilizzare il valore z per costruire gli intervalli di confidenza X Z σ / n µ X + Z σ / n α/2 α/2 (1-α)=0,95 z α/2 =1, ,96 (1500/14) µ ,96(1500/14) µ (1-α)=0,99 z α/2 =2, ,58 (1500/14) µ ,58(1500/14) 24723,57 µ 25276,43 5

6 Se σ non è noto In genere lo scarto quadratico medio della popolazione σ, al pari della media µ, non è noto. Pertanto, per ottenere un intervallo di confidenza per la media della popolazione, occorre utilizzare la deviazione standard del campione. Al posto dell errore medio standard stimato: = = utilizziamo l errore (per popolazioni normali ed n >50, popolazioni infinite, per popolazioni non normali senza valori eccezionali ed n>100) 1 (per popolazioni finite) Dove s è la deviazione standard del campione : stima ad intervallo con σ non noto Su un campione di 120 intervistati si è rilevata una spesa media mensile per telefonate su cellulare di 15 euro con scarto quadratico medio di 5,4. Assumendo che la popolazione è distribuita in modo normale, stimare la spesa media nella popolazione di riferimento, con un livello di confidenza del 95,45%. 1. Calcolare α/2= (1-0,9545)/2 2. Cercare sulla tavola della curva normale standardizzata (tav.a) l area pari a (1- α/2 ) 3. Individuare il valore di z corrispondente. 4. Utilizzare il valore z per costruire gli intervalli di confidenza (5.4/ 119 ) μ 152 (5.4/ 119 ) 14,01 μ 15,99 Possiamo dunque affermare che a partire dalla spesa media rilevata sul campione di 15 euro, la spesa media della popolazione, è compresa tra 14,01 e 15,99 euro, con un livello di confidenza del 95,45% e con una probabilità del 4,55% che sia esterna (maggiore o minore) a questo intervallo. 6

7 Su un campione di 110 punti vendita si è rilevato che il prezzo di vendita di un noto modello di cellulare è di 355 euro, con uno scarto quadratico medio di 16 euro. Assumendo che la popolazione sia distribuita in modo normale, stimare il prezzo di vendita di quel prodotto nella popolazione di riferimento, con un livello di confidenza del 99,73%. Se σ non è noto: approfondimenti Negli esercizi precedenti in cui n era grande (n>100), anche quando σ non era noto, abbiamo utilizzato l errore standard stimato e abbiamo fatto riferimento, per semplicità, alla distribuzione normale standard. In realtà, se la variabile casuale X ha una distribuzione normale allora la statistica : ha una distribuzione t di Student con (n 1) gradi di libertà. Una t di Student con molti gradi di libertà (n>100) si approssima ad una distribuzione normale standard. Tuttavia per un numero inferiore di gradi di libertà e dunque al diminuire di n la distribuzione t di Student differisce da quella normale e dunque invece della variabile z si utilizza t. 7

8 T di student La distribuzione t di Student ha una forma simile a quella della normale standardizzata. Il grafico è più appiattito e l area sottesa sulle code è maggiore di quella della normale perché il fatto che σ non è noto e viene stimato da s, è fonte di incertezza e dunque di maggiore variabilità di t. La distribuzione T è simmetrica rispetto alla media 0 e la forma dipende dal numero dei gradi di libertà Gdl o v=( n-1) Se n è grande la distribuzione T si approssima alla curva normale. Intervalli di confidenza con la T di Student gli intervalli di confidenza vengono costruiti facendo riferimento a valori di t in corrispondenza di un dato livello di confidenza e dei gradi di libertà (gdl o v=n-1). Gli intervalli:, includono il valore incognito µ con il 95% di probabilità, includono il valore incognito µ con il 99% di probabilità I valori dipendono dal numero di gradi di libertà e vengono individuati utilizzando apposite tavole. 8

9 La tavola della T di student La tavola fornisce i valori critici per la distribuzione t. La colonna a sinistra contiene il numero dei gradi di libertà, mentre le altre colonne danno i valori di t in corrispondenza dei vari livelli di significatività, cioè le porzioni di area nelle due code della distribuzione. Quindi α=0,050 corrisponde a due aree α/2=0,025, a destra e a sinistra della distribuzione. : stima ad intervallo con σ non noto e n piccolo Su un campione di 30 intervistati si è rilevata una spesa media mensile per sigarette elettroniche di 58 euro con scarto quadratico medio di 4 euro. Assumendo che la popolazione è distribuita in modo normale, stimare la spesa media nella popolazione di riferimento, con un livello di confidenza del 95%. 1. Calcolare α= (1-0,95)=0, Calcolare i gradi di libertà v= (n-1) 3. Cercare sulla tavola della t di Student il valore di t in corrispondenza del valore α e di v. 4. Individuare il valore di t corrispondente. 3. Utilizzare il valore t per costruire gli intervalli di confidenza ,045 (4/ 29 ) μ 582,045 (4/ 29 ) 56,48 μ 59,52 Possiamo dunque affermare che a partire dalla spesa media rilevata sul campione di 58 euro, la spesa media della popolazione, è compresa tra 56, ,53 euro, con un livello di confidenza del 95% e con una probabilità del 5% che sia esterna (maggiore o minore) a questo intervallo. 9

10 Su un campione di 25 donne si è rilevato un consumo medio di alcol settimanale di 9 unità con uno scarto quadratico medio di 2,5 unità. Assumendo che la popolazione è distribuita in modo normale, stimare il consumo medio della popolazione di riferimento, con un livello di confidenza del 99%. 1. Calcolare α= (1-0,99)=0,01 2. Calcolare i gradi di libertà v= (n-1) 3. Cercare sulla tavola della t di Student il valore di t in corrispondenza del valore α e di v. 4. Individuare il valore di t corrispondente. 3. Utilizzare il valore t per costruire gli intervalli di confidenza 92,797 (2,5/ 24 ) μ 92,797 (2,5/ 24 ) 7,57 μ 10, Quando il parametro da stimare è una proporzione Spesso nelle ricerche di mercato le statistiche che interessano non sono espressi in valori medi, ma in proporzioni. Si è interessati ad esempio a conoscere la proporzione di clienti soddisfatti o insoddisfatti, oppure di consumatori di un determinato prodotto. Una volta rilevate queste proporzioni su un campione come possiamo procedere a stimare la proporzione reale nella popolazione di riferimento? Anche in questo caso possiamo procedere analogamente alla stima dei valori medi, poiché la distribuzione delle proporzioni campionarie p, tende, se n è grande a distribuirsi secondo una distribuzione normale, con con media: E(p) =P dove P è la proporzione reale nella popolazione e varianza : Var (p) = PQ/n dove Q=(1-P) (popolazione, non finita con qualunque tipo di estrazione; popolazione finita con estrazione con ripetizione, n>30) ) Var (p) = PQ/n [(N-n)/(N-1)] (popolazione finita con estrazione senza ripetizione) 10

11 Possiamo dunque procedere analogamente a quanto abbiamo fatto per stimare i valori medi, anche nel caso di proporzioni. Sappiamo infatti che: Per n grande, o per popolazioni non finite, o nell estrazione con ripetizione: il 68.26% delle proporzioni dei campioni è compreso tra il 95.44% tra2 il 99.73% tra 3 Per popolazioni il 95.44% tra finite, 2 nell estrazione senza ripetizione: il 68.26% delle proporzioni dei campioni è compreso tra il 99.73% tra3 il 95.44% tra 2 il % tra P3 Su un campione di n=100 negozi, risulta che 40 hanno adottato un nuovo orario di apertura. Perciò la proporzione campionaria è di 0,40. Da altre indagini di fonte ufficiale risulta invece che la porzione di negozi in tutta la zona che hanno adottato il nuovo orario è del 36%, quindi la proporzione della popolazione è di 0,36. Quale è la probabilità di ottenere un campione che ha una proporzione superiore di 0,40 se quella della popolazione è di 0,36? Facendo riferimento alla distribuzione delle proporzioni campionarie la proporzione media di tutti i possibili campioni di 100 unità estraibili dalla popolazione si distribuisce normalmente con media: E(p) =P =0,36 e errore medio delle proporzioni: Var (p) = PQ/n = 0,048 Z=,,, = 0,83 1. Trovare il valore medio e l errore standard delle proporzioni campionarie 2. Calcolare il valore standardizzato 3. Disegnare la distribuzione normale 4. Calcolare la probabilità sulla tavola della distribuzione normale 5. Trarre le conclusioni La probabilità di ottenere un campione con una proporzione -superiore a 0,40 è di (1-0,7967)=0,2033 = 20% Quindi il 20% 11

12 Intervallo di confidenza per proporzioni A partire dalla proporzione del campione p possiamo costruire un intervallo di valori sottraendo e sommando Z α/2 e moltiplicando per l errore. Come sappiamo Z α/2 è il valore a cui corrisponde un area cumulata della distribuzione normale standardizzata pari a (1- α/2 ). Se n è grande possiamo usare la proporzione p del campione come buona approssimazione della proporzione della popolazione nel calcolo dell errore standard: : stima ad intervallo di una proporzione Su un campione casuale semplice di 150 intervistati si è rilevata che la percentuale di soggetti che legge un quotidiano è del 40%. Stimare la vera percentuale di lettori di quotidiani nella popolazione, con un livello di confidenza del 95,45% e del 99%. : 1. Individuare il valore di z corrispondente a livello di confidenza richiesto. 2.Utilizzare il valore z per costruire gli intervalli di confidenza Attenzione p non è la percentuale, ma la proporzione!! 0,402 0,402,58,,,, (1-α)=95% 0,402 0,32 0,48 (1-α)=99% 0,402,58 0,30 0,50,,,, Possiamo dunque affermare che a partire dalla percentuale rilevata sul campione, la percentuale di lettori di quotidiani nella popolazione di riferimento è compresa tra il 32% e il 48% con un livello di confidenza del 95,45% e tra il 30% e il 50% con un livello di confidenza del 99%. 12

13 In un campione di 80 intervistati, 36 clienti hanno detto di preferire l hotel Royal agli altri hotel della zona. A- Si vuole applicare il risultato all intera popolazione di riferimento, con un livello di confidenza del 95%. Quale intervallo di gradimento si ottiene per l hotel Royal? B- Se si decide di estendere la rilevazione a 250 clienti ottenendo una percentuale di preferenze per l hotel Royal del 48%, quali sono i nuovi intervalli di confidenza? : 1. Calcolare la proporzione p di clienti che preferiscono l hotel Royal 2. Calcolare l errore standard delle proporzioni 3. Individuare il valore di z corrispondente a livello di confidenza richiesto. 4. Utilizzare il valore z per costruire gli intervalli di confidenza Risposta A p=36/80=0,45 0,45 10,45 0, ,451,96 0,056 0,451,96 0,056 0,34 0,56 Da una ricerca di mercato effettuata su un campione di 200 intervistati risulta che solo 80 individui sono a favore della costruzione di un centro commerciale. A- Si stimi la proporzione della popolazione a favore della costruzione calcolando l intervallo di confidenza al 95,54% B- Se l impresa che costruisce il centro commerciale sostiene che nella popolazione il 70% è a favore della costruzione, qual è la probabilità di avere un campione di 200 persone con la proporzione che abbiamo osservato se la vera proporzione della popolazione è dello 0,7? L impresa ha ragione o torto? 13

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE 19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE Nell inferenza è spesso richiesto il calcolo di alcuni valori critici o di alcune probabilità per le variabili casuali che sono state introdotte

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011 Esercizi di stima puntuale, intervalli di confidenza e test 1. Si consideri il campione (X 1, X 2, X 3, X 4 ) composto da variabili i.i.d.

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Esercitazione n.1 (v.c. Binomiale, Poisson, Normale)

Esercitazione n.1 (v.c. Binomiale, Poisson, Normale) Esercizio 1. Un azienda produce palline da tennis che hanno probabilità 0,02 di essere difettose, indipendentemente l una dall altra. La confezione di vendita contiene 8 palline prese a caso dalla produzione

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Esercitazione n.4 Inferenza su varianza

Esercitazione n.4 Inferenza su varianza Esercizio 1 Un industria che produce lamiere metalliche ha ricevuto un ordine di acquisto di un grosso quantitativo di lamiere di un dato spessore. Per assicurare la qualità della propria fornitura, l

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre R - Esercitazione 5 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre Lunedì 2 Dicembre 2013 Intervalli di confidenza (1) Sia X 1,..., X n un campione casuale estratto da un densità f (x,

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE Psicometria (8 CFU) Corso di Laurea triennale Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico 2010-2011 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecnico di Milano - Anno Accademico 200-20 Statistica 086449 Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Esercitazione 9 2 Giugno 20 Esercizio. In un laboratorio per il test dei materiali,

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

LA STATISTICA NEI TEST INVALSI

LA STATISTICA NEI TEST INVALSI LA STATISTICA NEI TEST INVALSI 1 Prova Nazionale 2011 Osserva il grafico seguente che rappresenta la distribuzione percentuale di famiglie per numero di componenti, in base al censimento 2001. Qual è la

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. I Prova in Itinere di Statistica per Ingegneria Energetica 9 maggio 2013

Politecnico di Milano - Scuola di Ingegneria Industriale. I Prova in Itinere di Statistica per Ingegneria Energetica 9 maggio 2013 Politecnico di Milano - Scuola di Ineneria Industriale I Prova in Itinere di Statistica per Ineneria Eneretica 9 maio 013 c I diritti d autore sono riservati. Oni sfruttamento commerciale non autorizzato

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Introduzione alla statistica descrittiva

Introduzione alla statistica descrittiva Dipartimento di Statistica Regione Toscana Comune di Firenze Progetto di diffusione della cultura Statistica Introduzione alla statistica descrittiva Carla Rampichini Dipartimento di Statistica G. Parenti

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

Appunti: Teoria Dei Test

Appunti: Teoria Dei Test Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli