Calcolo delle probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle probabilità"

Transcript

1 Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità Dalle caratteristiche note della popolazione si prevede il risultato di un altro esperimento 1

2 La probabilità nel linguaggio corrente è probabile che fra poco piova; con questo titolo di studio vi sono buone probabilità di trovare lavoro; è probabile che l incendio sia d origine dolosa; ho poche probabilità di superare l esame. Utilizziamo frequentemente il termine probabilità quando ci riferiamo a situazioni incerte, a fenomeni che possono o non verificarsi. Evento certo Estrazione di una pallina rossa da un urna urna contenente 10 palline rosse Evento impossibile Estrazione di una pallina gialla da un urna urna contenente 10 palline rosse Evento aleatorio o causale = evento incerto e possibile Estrazione di una pallina gialla da un urna urna contenente 6 palline rosse e 4 gialle 2

3 Esempi dal gioco d azzardo Ottenere testa lanciando in alto una moneta molto probabile Totalizzare 3 con il lancio di un dado meno probabile Puntare sul 18 alla roulette e vincere poco probabile Il calcolo delle probabilità Il calcolo delle probabilità cerca di formulare delle valutazioni numeriche della possibilità di verificarsi di eventi aleatori o casuali. 3

4 Definizione della probabilità di un evento Attenzione: Non esiste un solo modo per definire la probabilità Definizione classica Definizione frequentista Definizione soggettiva La probabilità classica E la definizione più spontanea di probabilità Se lanciamo una moneta regolare quale probabilità assegniamo all uscita di testa? Il 50% cioè 1/2 Se estraiamo una carta da un regolare mazzo di 40 carte, quale probabilità assegniamo al fatto di pescare una carta di fiori? 10 su 40 cioè 1/4 4

5 La probabilità classica La probabilità di un evento è il rapporto tra il numero dei casi favorevoli e il numero dei casi possibili (purché questi ultimi siano ugualmente possibili). p = # eventi favorevoli # eventi possibili p Lancio della moneta evento= A = uscita di testa esiti possibili = {testa, croce} # esiti possibili = 2 # esiti favorevoli = 1 # esiti possibili # esiti favorevoli 1 2 ( A) = = = 50% 5

6 Estrazione di una carta A = estrazione di una carta con seme fiori esiti possibili = le quaranta carte della briscola # esiti possibili = 40 # esiti favorevoli = # carte con seme fiori = 10 p # esiti favorevoli # esiti possibili ( A) = = = = 25% 1 4 p Lancio di un dado A = ottenere un numero pari # esiti possibili = 6 esiti favorevoli = {2, 4, 6} # esiti favorevoli = 3 # esiti favorevoli # esiti possibili ( A) = = = = 50%

7 Proprietà p = # eventi favorevoli # eventi possibili p è un numero razionale, compreso fra 0 e 1 se l evento è impossibile non esistono casi favorevoli la sua probabilità è nulla se l evento è certo tutti i casi sono favorevoli la sua probabilità è 1 Osservazioni Caratteristica essenziale per poter applicare la definizione classica: tutti i casi sono egualmente possibili (Ad esempio, nel lancio della moneta le due facce devono avere eguale possibilità di presentarsi) La definizione si può applicare solo quando l insieme dei casi è un insieme finito 7

8 Quando si applica In tutti i casi nei quali per ragioni di simmetria si possano pensare egualmente possibili tutti i casi. (Esempi: lancio di monete o dadi non truccati, estrazione del lotto, tombola etc.) Esempi ai quali non si può applicare Calcolare la probabilità per una persona di 40 anni di raggiungere l età di 60 anni, la probabilità di subire un furto, la probabilità che un nuovo medicinale dia esiti positivi nella cura di una malattia. La probabilità nella concezione frequentista (o statistica) Concezione frequentista: per conoscere la probabilità di un evento si deve ricorrere all esperimento Si applicare quando: si possono eseguire quante prove si vogliono sull evento, sono disponibili tavole con i risultati di rilevazioni statistiche relative a un certo fenomeno (ad esempio, le tavole di mortalità e di sopravvivenza). 8

9 La definizione frequentista Si definisce frequenza relativa di un evento in n prove effettuate nelle stesse condizioni, il rapporto fra il numero k delle prove nelle quali l evento si è verificato e il numero n delle prove effettuate: f = Esempio: si lancia n = 1000 volte una moneta in aria e si conta quante volte k esce testa. k n La definizione frequentista La probabilità di un evento è il limite della frequenza relativa dell'evento, quando il numero delle prove tende all'infinito. p = lim n k n 9

10 Applicazioni della concezione frequentista Il campo di applicazione della concezione frequentista è molto vasto, in quanto la definizione può essere applicata a fenomeni dei quali si posseggano dati statistici riguardanti fenomeni passati che si sono verificati in condizioni analoghe. Ad esempio, si potranno calcolare, per una data popolazione, la probabilità di morte o di sopravvivenza degli individui o la probabilità di nascita di maschi o di femmine. Si hanno pure importanti applicazioni nella medicina, nella psicologia, nell economia, nella meccanica quantistica e, in generale, in tutte le scienze per le quali si possono utilizzare metodi statistici Legge empirica del caso In una serie di prove, ripetute un gran numero di volte, eseguite tutte nelle stesse condizioni, la frequenza tende ad assumere valori prossimi alla probabilità dell evento e, generalmente, l approssimazione è tanto maggiore quanto più numerose sono le prove eseguite. 10

11 La concezione soggettiva della probabilità Qual è la probabilità per uno studente di trovare impiego subito dopo il conseguimento del diploma? Qual è la probabilità che un certo pilota vinca il prossimo Gran Premio di Formula 1? Qual è la probabilità che un nuovo modello di automobile ha d'incontrare il favore del pubblico? Per eventi del tipo indicato non è possibile valutare la probabilità né secondo la concezione classica, perché non si possono determinare i casi possibili e i casi favorevoli, né secondo la concezione frequentista, perché gli eventi non sono ripetibili. 11

12 La definizione soggettiva In questi casi si stima la probabilità in base allo stato d'informazione. La probabilità P(E) di un evento E è la misura del grado di fiducia che un individuo attribuisce, in base alle sue informazioni e alle sue opinioni, al verificarsi dell evento E. La definizione soggettiva più operativa La probabilità di un evento è il prezzo che un individuo razionale ritiene equo pagare per ricevere 1 se l'evento si verifica (e 0 altrimenti). L attribuzione della probabilità deve essere coerente, nel senso che si deve anche essere disposti ad accettare la scommessa inversa, ossia a ricevere p e pagare 1 al verificarsi di E 12

13 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento evento elementare = un qualsiasi elemento di S evento = un qualunque sottoinsieme E dello spazio campionario S si dice che l evento E si è realizzato se il risultato dell esperimento è un elemento di E Lancio di un dado S = spazio campionario = {1, 2, 3, 4, 5, 6} eventi elementari = {1}, {2}, {3}, {4}, {5}, {6} evento = {esce un numero pari} = {2, 4, 6} 13

14 Lancio di una moneta S = spazio campionario = {testa,croce} eventi elementari = {testa}, {croce} eventi = Ø, {testa}, {croce}, S Operazioni con gli eventi La somma logica (o unione) di due eventi A e B è l evento che si verifica quando si verifica almeno uno degli eventi A o B, cioè A B Il prodotto logico (o intersezione) di due eventi A e B è l evento che si verifica se si verificano entrambi gli eventi A e B, cioè A B L evento contrario dell evento A è l evento che si verifica se e solo se non si verifica A, cioè A è il sottoinsieme complementare di A rispetto a S. 14

15 Operazioni con gli eventi Due eventi A e B si dicono incompatibili (o mutuamente esclusivi) se non hanno eventi elementari in comune, cioè se il realizzarsi di uno dei due esclude la realizzazione dell altro. In altre parole se A B = Definizione formale (assiomatica) della probabilità Sia S uno spazio campionario Sia P una funzione a valori reali definita sui sottoinsiemi di S (eventi) a valori reali tale che: 0 P(E) 1 P(S)=1 Per ogni coppia di eventi E 1 ed E 2 incompatibili si ha P(E 1 U E 2 ) = P(E 1 )+P(E 2 ) P(E) si dice probabilità dell evento evento E 15

16 Commenti Se interpretiamo la probabilità come grado di fiducia: 0 P(E) 1 Misuriamo la fiducia con valori che vanno da 0 (nessuna fiducia) a 1 (completa fiducia). (1=100%) P(S)=1 L evento S è certo (contiene tutti i possibili risultati dell esperimento) E 1 E 2 =Ø implica P(E 1 U E 2 )= P(E 1 )+P(E 2 ) Se due eventi sono incompatibili la probabilità che si verifichi uno dei due è la somma delle probabilità Se S contiene infiniti elementi La terza condizione diventa Per successioni di eventi E 1, E 2, a due a due incompatibili, cioè t. c. E i E j = Ø se i j si ha P U E i = i= 1 i= 1 P ( E ) i 16

17 La definizione classica Se S è uno spazio campionario formato da n elementi che riteniamo equiprobabili, per ogni un evento elementare {e}, P({e}) = 1/n Dato un qualunque evento E, la sua probabilità è la somma delle probabilità degli eventi elementari che contiene P(E) = # elementi di E / n = # casi favorevoli / # casi possibili Relazioni elementari Probabilità del complementare E ed E sono eventi incompatibili 1 = P ( S) = P( E E) = P( E) + P( E) P ( E) = 1 P( E) E Monotonia Se E, 2 E 1 P( E1) = P( E2) + P( E1 E2) P( E1) P( E2) E S E 1 E 1 \E 2 E 2 17

18 Relazioni elementari E 1 E1 E 2 E 2 P(E 1 )= P(E 1 - E 2 ) + P(E 1 E 2 ) P(E 2 ) = P (E 2 - E 1 ) + P (E 1 E 2 ) + - P(E 1 UE 2 )=P (E 1 - E 2 )+P(E 1 E 2 )+P (E 2 -E 1 ) = P(E 1 ) + P (E 2 ) - P(E 1 UE 2 ) = P(E 1 E 2 ) Quindi P(E 1 ) + P (E 2 ) - P(E 1 UE 2 ) = P(E 1 E 2 ) ovvero P(E 1 UE 2 ) = P(E 1 ) + P (E 2 ) - P(E 1 E 2 ) 18

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi ommario Corso di tatistica Facoltà di Economia a.a. 2006-2007 2007 francesco mola L algebra degli eventi Diagrammi di Venn Teoremi fondamentali Probabilità Condizionata ed Indipendenza tocastica Lezione

Dettagli

Probabilità e statistica. Veronica Gavagna

Probabilità e statistica. Veronica Gavagna Probabilità e statistica Veronica Gavagna Testa o croce? Immaginiamo di lanciare una moneta facendola cadere su un piano liscio chiunque dirà che la probabilità dell evento testa sarà del 50%, al pari

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it La Bella Addormentata e altre illusioni probabilistiche Aljoša Volčič volcic@unical.it Firenze, 25 novembre 2009 1 Che cosa è la probabilità? La probabilità di un evento A è la misura del grado di fiducia

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile)

D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D. Altre attività formative Stage, attività esterne, tesine (con file già formattato), idoneità, etc. ELENCO DELLE DOMANDE (versione stampabile) D1. COSA SONO LE ALTRE ATTIVITÀ FORMATIVE? D2. COME SI OTTENGONO

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

La dissomiglianza tra due distribuzioni normali

La dissomiglianza tra due distribuzioni normali Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

COMUNE DI CAMPIONE D ITALIA

COMUNE DI CAMPIONE D ITALIA COMUNE DI CAMPIONE D ITALIA REGOLAMENTO DI GIOCO DELLA ROULETTE (al Casino Municipale di Campione d Italia) adottato con delib. C.C. n. 83 del 2.12.1993 approvata dal CRC con atto n. 13 in data 4.1.1994

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

Progettazione Robusta

Progettazione Robusta Progettazione Robusta Perdita Consumatore qualità = f 1 (perdita Perdite di reputazione e quote di mercato Costi di garanzia per il produttore La qualità di un prodotto è la (minima perdita impartita alla

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

STUDI CLINICI 1. Che cosa è uno studio clinico e a cosa serve? 2. Come nasce la sperimentazione clinica e che tipi di studi esistono?

STUDI CLINICI 1. Che cosa è uno studio clinico e a cosa serve? 2. Come nasce la sperimentazione clinica e che tipi di studi esistono? STUDI CLINICI 1. Che cosa è uno studio clinico e a cosa serve? Si definisce sperimentazione clinica, o studio clinico controllato, (in inglese: clinical trial), un esperimento scientifico che genera dati

Dettagli

Notizie generali sul Resilience Process Questionnaire

Notizie generali sul Resilience Process Questionnaire 12 Notizie generali sul Resilience Process Questionnaire Il modello teorico di riferimento Oltre ai modelli descritti da Fergus e Zimmerman (2005) esiste un quarto approccio che, partendo dall approccio

Dettagli

conquista il mondo in pochi minuti!

conquista il mondo in pochi minuti! conquista il mondo in pochi minuti! Il gioco di conquista e sviluppo più veloce che c è! Il gioco si spiega in meno di 1 minuto e dura, per le prime partite, non più di quindici minuti. Mai nessuno ha

Dettagli

GLI INFORTUNI NELLE SCUOLE. Maria GULLO e Marilù TOMACIELLO INAIL Piemonte

GLI INFORTUNI NELLE SCUOLE. Maria GULLO e Marilù TOMACIELLO INAIL Piemonte Maria GULLO e Marilù TOMACIELLO INAIL Piemonte Perché questa particolare attenzione sugli infortuni? L'analisi degli incidenti/infortuni costituisce un momento di Art. 29 comma 3 Dlgs 81/08 fondamentale

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

1 Configurazioni SOL per export SIBIB

1 Configurazioni SOL per export SIBIB Pag.1 di 7 1 Configurazioni SOL per export SIBIB Le configurazioni per l export dei dati verso SIBIB si trovano in: Amministrazione Sistema > Import-Export dati > Configurazioni. Tutte le configurazioni

Dettagli

Abitudini e stili di vita della paziente donna giovane

Abitudini e stili di vita della paziente donna giovane POpolazione Sieropositiva ITaliana Abitudini e stili di vita della paziente donna giovane Survey realizzata da In collaborazione con Con il supporto non condizionato di 3 METODOLOGIA Progetto POSIT POpolazione

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

IL BIENNIO DELLA SCUOLA SECONDARIA SUPERIORE AI TEMPI DELLA GELMINI

IL BIENNIO DELLA SCUOLA SECONDARIA SUPERIORE AI TEMPI DELLA GELMINI Commento Nel biennio tra le materie di base non compaiono Musica, Geografia, Storia dell Arte, Fisica, Chimica e Diritto, mentre materie come Italiano al Liceo classico, Matematica e Scienze al Liceo scientifico

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

Ministero della Salute Agenzia Italiana del Farmaco

Ministero della Salute Agenzia Italiana del Farmaco Ministero della Salute Agenzia Italiana del Farmaco Linee guida per la classificazione e conduzione degli studi osservazionali sui farmaci IL DIRETTORE GENERALE VISTO il Decreto del Ministero della Salute

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

La scheda SUA e il rapporto di riesame: l esperienza di Medicina Veterinaria di Bologna

La scheda SUA e il rapporto di riesame: l esperienza di Medicina Veterinaria di Bologna La scheda SUA e il rapporto di riesame: l esperienza di Medicina Veterinaria di Bologna Gualtiero Gandini Dipartimento di Scienze Mediche Veterinarie Università di Bologna membro del tavolo tecnico ANVUR

Dettagli

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance Note e istruzioni per i test di ingresso ai Corsi di Studio del Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS) a.a. 2013/2014 Gli insegnamenti relativi ai Corsi di Laurea

Dettagli

QUICK GUIDE ESAMI DI STATO

QUICK GUIDE ESAMI DI STATO QUICK GUIDE ESAMI DI STATO Le operazioni da eseguire sono semplici e lineari, ma è opportuno ricordarne la corretta sequenza nella quale vanno eseguite. Flusso delle operazioni da eseguire: 1. Inserimento

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Regolamento per la formazione continua professionale

Regolamento per la formazione continua professionale Regolamento per la formazione continua professionale Approvato dal comitato dell Associazione Cranio Suisse il 18 agosto 2011 Regolamento per la formazione continua professionale 1. Norme Generali I terapeuti

Dettagli

Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9

Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9 Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9 19 Carte di colore Blu che vanno dallo 0 al 9 19 Carte di colore Giallo che

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Abitudini e stili di vita del paziente a rischio di scarsa aderenza

Abitudini e stili di vita del paziente a rischio di scarsa aderenza POpolazione Sieropositiva ITaliana Abitudini e stili di vita del paziente a rischio di scarsa aderenza Survey realizzata da In collaborazione con Con il supporto non condizionato di 2 METODOLOGIA Progetto

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Quante sono le matricole?

Quante sono le matricole? Matricole fuori corso laureati i numeri dell Universita Quante sono le matricole? Sono poco più di 307 mila i giovani che nell'anno accademico 2007/08 si sono iscritti per la prima volta all università,

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

INDAGINE LAST CMR (COMMUNITY MEDIA RESEARCH) PER LA STAMPA

INDAGINE LAST CMR (COMMUNITY MEDIA RESEARCH) PER LA STAMPA INDAGINE LAST CMR (COMMUNITY MEDIA RESEARCH) PER LA STAMPA L epoca in cui viviamo, caratterizzata dalla velocità e dall informazione, vede limitate le nostre capacità previsionali. Non siamo più in grado

Dettagli

NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08

NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08 NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08 Importante: sono cambiati i moduli di rilevazione! Anche quest anno verrà distribuita dalla segreteria di Facoltà, dalla terzultima settimana

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

Capitolo 3. Sé e identità

Capitolo 3. Sé e identità Capitolo 3 Sé e identità Concetto di sé come Soggetto e oggetto di conoscenza Io / me, autoconsapevolezza Processo di conoscenza Struttura cognitiva Insieme di spinte motivazionali: autovalutazione, autoverifica

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Istituto Comprensivo di Via Nazario Sauro Brugherio Via Nazario Sauro 135 Tel. 039. 2873466 e mail istituto : icsauro@yahoo.it

Istituto Comprensivo di Via Nazario Sauro Brugherio Via Nazario Sauro 135 Tel. 039. 2873466 e mail istituto : icsauro@yahoo.it Istituto Comprensivo di Via Nazario Sauro Brugherio Via Nazario Sauro 135 Tel. 039. 2873466 e mail istituto : icsauro@yahoo.it Anno Scolastico 2010-2011 Email: icsauro@yahoo.it Fratelli Grimm La Scuola

Dettagli