Distribuzioni discrete

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Distribuzioni discrete"

Transcript

1 Distribuzioni discrete Esercitazione 4 novembre 003 Distribuzione binomiale Si fa un esperimento (o prova): può manifestarsi un certo evento A con probabilità p oppure no (con probabilità q = p). La distribuzione binomiale descrive la probabilità che su N prove indipendenti si ottenga x volte l evento A è perciò: N P N,p (x) = p x x ( p) N x. Il valor medio della distribuzione, cioé il numero medio di eventi di tipo A, è µ = E(x) = x xp N,p (x) = Np. La deviazione standard, che dà una misura dell errore statistico, è σ = E((x µ) ) = Np( p). Si dice che si stima il valor medio al x% se σ µ = x%. Poiché nel caso della distribuzione binomiale σ = Npq µ la stima si fa sempre più precisa. Np = Npq (Np) = q Np, se N Esempio (equivalenza tra metodo classico e prescrizione binomiale) Qual è la probabilità che in 3 lanci di una moneta esca due volte croce? Le possibili terne sono 3 : TTT TTC TCT TCC CTT CTC CCC CCT, avendo indicato con C croce e con T testa. Di queste 3 contengono la coppia CC: TCC CTC CCT. La probabilità richiesta è pertanto casi favorevoli casi possibili = 3 3. Analogamente si può procedere con la formula della distribuzione binomiale. In questo esempio l esperimento (o prova) è il lancio, l evento A è l uscita di croce (C), N = 3, x = e la probabilità p associata ad A è. L evento complementare, cioè testa, T, ha la stessa probabilità, q = p. Usando la formula della distribuzione binomiale, la probabilità richiesta è P 3, () = ( 3 ). Per segnalazioni di errori, critiche e suggerimenti, scrivere a Nota che la stima è l equivalente statistico dell errore relativo.

2 Esempio (fortuna e pregiudizio) Si gioca con un dado, che è stato truccato a nostra insaputa faccia probabiltà Qual è la probabilità di vincere almeno una volta su 3 scommesse, puntando sempre sul 6? Come posso rendermi conto di essere stato truffato (anche se a mio favore)? La probabiltà che esca 6 è p = 0.3, che non esca q = 0.7. Posso vincere una, due o tre volte su tre scommesse, la probabilità di tale evento (disgiunzione di eventi indipendenti) è 3 P 3,0.3 () + P 3,0.3 () + P 3,0.3 (3) = = Se il dado non fosse stato truccato tale probabilità sarebbe stata ( 3 P 3, ()+P 6 3, ()+P 6 3, (3) = ) = 0.4 Alla fine delle tre scommesse, forse, potrò dire di essere stato fortunato, ma non che il dado è truccato perchè su tre prove c è, chiaramente, un disaccordo tra frequenze sperimentali e probabilità teoriche (la situazione più equa sarebbe, comunque, che uscissero tre facce diverse, allora queste tre avrebbero frequenza /3 e le altre tre frequenza 0?!), cioé potrò avanzare sospetti solo dopo un numero consistente di scommesse (e non è detto che, in generale, mi convenga!). Osservazione Cosa significa numero consistente di prove? Sarà molto probabile che, per N sufficientemente grande, il numero medio di volte in cui è uscito 6 sia nell intervallo [µ σ, µ + σ ]. Se per il dado truccato p = 0.3 e quindi µ = Np e σ = Np ( p ), per il dado regolare p = 0.67 e µ = Np e σ = Np( p). I due intervalli in cui può cadere il numero medio di 6 sono, rispettivamente, [µ σ, µ + σ ] e [µ σ, µ+ σ ]. Se i due intervalli sono disgiunti (e lo diventeranno al crescere di N in quanto il valor medio è stimato con precisione via via maggiore) allora sarà ragionevole dire che il dado è truccato. Questo corrisponde alla condizione Nel caso in esame se N > 40. µ + σ < µ ( ) pq + p q σ = N >. p q

3 Distribuzione poissoniana Esistono fenomeni in cui non si possono numerare le prove e testare se in ognuna si è verificato un certo evento o meno. L unica informazione data è un qualche numero medio di eventi (in un certo intervallo di tempo) m. Pensate ad esempio al decadimento del carbonio 4 di cui si conosce solo la vita media e non ha senso parlare né di numero di prove N né di probabilità p. m è perciò l unico parametro da cui può dipendere la distribuzione di probabilità associata a questa categoria di fenomeni. La distribuzione poissoniana descrive la probabilità che, dato m numero medio di eventi di un certo tipo, se ne verifichino x di quel tipo è m mx P m (x) = e x!. In questo caso il valor medio è, per ipotesi, µ = E(x) = x xp m(x) = m, la deviazione standard è σ = E((x µ) ) = m. Può darsi sia dato il numero medio di eventi in un certo periodo T e vengano richieste informazioni relative ad un altro periodo di tempo T. Occorre allora passare per il flusso (numero di eventi nell unità di tempo) φ, che è legato a m dalla m T = µ T = σt = φt da cui φ = m T T, da cui m T = µ T = σt = φt T = m T. Se T > T allora T la stima al tempo T sarà migliore di quella al tempo T: σ T µ T = φt > φt = σ T. µ T Esempio 3 Il numero di telefonate che ricevo in mesi e il numero di quelle in cui hanno sbagliato a digitare il numero è: mesi GEN FEB MAR APR MAG GIU LUG AGO SET OTT NOV DIC n telefonate n t. sbagliate Quante telefonate sbagliate mi aspetto di ricevere in un mese di 3 giorni? Qual è la probabilità di ricevere non più di telefonate sbagliate in una settimana? Ricevo nei mesi 36 telefonate di cui sbagliate. Il numero medio di telefonate sbagliate in un mese di 3 giorni è perciò n 3 = 3653 =.0 Il numero medio di telefonate sbagliate in una settimana è m = 3657 = 0.3. La probabilità di ricevere non più di telefonate sbagliate in una settimana è dunque: ( ) Pr{0 t.sb} + Pr{ t.sb} + Pr{ t.sb} = e = 0.998

4 Esempio 4 Una sorgente emette un flusso φ di 40.5 particelle al minuto. per conoscere il numero di particelle all %? Quanti minuti devo aspettare Il numero medio di particelle emesse in t minuti è N t = tφ. Il rapporto tra deviazione standard e numero medio di particelle è N t N t = Nt. Quindi t = φ(%) = 47min. Esempio 5 Se conosco al % il numero medio di incidenti in un mese dopo mesi di osservazioni, per quanti mesi devo registrarne il numero per avere una stima all %? Il rapporto tra deviazione standard e numero medio di incidenti al mese m nei mesi è m mesi = %, da cui m = 0.0. Dopo x mesi si raggiunge una stima all % se m x mesi = %, da cui x = 0.0 m. Sostituendo in quest ultima m si ottiene x = 48 mesi = 4 anni.

5 Approssimazione di una binomiale con una poissoniana Si considerino N prove indipendenti in cui può verificarsi un certo evento A con probabilità p. Il numero totale( di eventi ) A, detto x, su N prove è distribuito secondo N la legge binomiale P N,p (x) = p x x ( p) N x. Si dimostra che, nel limite di N e p 0, con m = Np finito e non nullo, la distribuzione binomiale tende ad una distribuzione poissoniana di parametro m e argomento x: m mx P N,p (x) P m (x) = e x!. Esempio 6 In media provette su 00 prodotte da una fabbrica di vetri risultano fallate. Per i 0 studenti di una classe di laboratorio, l università ne acquista. Qual è la probabilità che tutti gli studenti ne abbiano una? Tutti gli studenti ne hanno una se al massimo sono rotte, quindi la probabilità è: ( P r(rotte)+p r(rotta)+p r(0rotte) = ) = Proviamo ad approssimare con la distribuzione poissoniana. Il numero medio di provette rotte su è m = Np = % = 0.4. In questo schema P r(rotte) + P r(rotta) + P r(0rotte) = 0.4 e 0.4 ovvero l approssimazione è molto buona.! e 0.4! e 0.4 0! = , Ciò che si vede in generale è che l approssimazione funziona se: p 0. e m = pn 5. Osservazione Data una distribuzione poissoniana, specificata da un parametro m, è vicersa impossibile individuare univocamente N e p tali che m = Np e fare una trattazione binomiale del problema. Per illustrare un possibile errore torniamo all esempio 3, che NON si può trattare con una distribuzione binomiale. Non ha senso pensare: la probabilità di ricevere una telefonata sbagliata in un giorno è p = 365 ; in 7 giorni posso ricevere 0, o, al massimo, telefonate sbagliate, quindi la probabilità richiesta è p 0 ( p) 7 + p ( p) 6 + p ( p) 5, perchè tale procedimento funzionerebbe solo 0 qualora sapessi di ricevere 7 telefonate nei 7 giorni, e questo non è specificato nel testo.

6 Esercizio Un passaggio a livello si abbassa ogni 30 minuti per 5 minuti. Qual è la probabilità di trovarlo abbassato sempre, transitandovi una volta a giorno per 5 giorni? E di trovarlo abbassato per 5 giorni consecutivi almeno una volta al giorno, passandovi due volte al giorno? Perché non è possibile risolvere l esercizio usando la distribuzione poissoniana?[r %. Perché p > 0..] Esercizio Una comitiva di 4 persone va ad una sala da booling dove ci sono 8 piste. Il n medio di piste occupate a quell ora è 6. Qual è la probabilità che debbano aspettare? E se le piste occupate fossero in media 8 e le comitive, quale sarebbe la probabilità che entrambe debbano aspettare?[r. 0.3%.9.5%.] Esercizio 3 In una popolazione, la percentuale di portatori sani di una certa caratteristica genetica è 0.8%. Su un campione di 0000 individui, qual è la probabilità che almeno siano portatori?[r. (P 80 (0) + P 80 ()).]

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Algoritmi (9 CFU) (A.A. 2009-10)

Algoritmi (9 CFU) (A.A. 2009-10) Algoritmi (9 CFU) (A.A. 2009-10) Probabilità e Algoritmi randomizzati Prof. V. Cutello Algoritmi 1 Overview Definiamo concetti di base di probabilità Variabili casuali e valore medio Algoritmi randomizzati

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Riepilogo: Postulati del calcolo della probabilità (Kolmogorov): Dato un evento A Ω, dove è lo spazio degli

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Tavola 1 - Prezzi al consumo relativi alla benzina verde con servizio alla pompa. Firenze, Grosseto, Pisa, Pistoia. Da Agosto 2008 ad Aprile 2012

Tavola 1 - Prezzi al consumo relativi alla benzina verde con servizio alla pompa. Firenze, Grosseto, Pisa, Pistoia. Da Agosto 2008 ad Aprile 2012 Tavola 1 - Prezzi al consumo relativi alla benzina verde con servizio alla pompa. Firenze, Grosseto, Pisa, Pistoia. Benzina verde con servizio alla pompa Ago-08 Set-08 Ott-08 Nov-08 Dic-08 Firenze 1,465

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

LA PIANIFICAZIONE FINANZIARIA flussi mensili

LA PIANIFICAZIONE FINANZIARIA flussi mensili LA PIANIFICAZIONE FINANZIARIA flussi mensili Non può mancare in una azienda, anche se di piccole dimensioni, una pianificazione finanziaria. La pianificazione finanziaria è indispensabile per tenere sotto

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME.

MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. MATT. POME. TURNI FARMACIE APRILE 2016 Sab. 2 apr. Dom. 3 apr. Sab. 9 apr. Dom. 10 apr. Sab. 16 apr. Dom. 17 apr. Sab. 23 apr. Dom. 24 apr. Lun. 25 apr. Sab. 30 apr. Dom. 1 mag. MATT. POME. MATT. POME. MATT. POME.

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Unipol Assicurazioni SpA Cumulative Auto Bologna 12/01/2015 11:18

Unipol Assicurazioni SpA Cumulative Auto Bologna 12/01/2015 11:18 ESER. POL AGEN. POL RAMO POL NUM. POL. ESER. SIN AGEN. SIN. NUM. SIN RAMO SIN. ISPETTORATO DATA AVVENIM. DATA CHIUSURATIPO DEN. TIPO CHIUSTP RESP ASSICURATO PREVENTIVO PAGATO DA RECUPERARE 2007 1467 130

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 8 luglio, 2010 CP110 Probabilità: Esame del 3 giugno 2010 Testo e soluzione 1. (6 pts 12 monete da 1 euro vengono distribuite tra

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Firenze, 30 maggio 2012

Firenze, 30 maggio 2012 Firenze, 30 maggio 2012 specchio Specchio, specchio delle mie brame, chi è il fondo più bello del reame? Come selezionate i fondi dei vostri clienti? Quali parametri usate per selezionare i fondi? I rendimenti

Dettagli

Lezione 3 Calcolo delle probabilità

Lezione 3 Calcolo delle probabilità Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il

Dettagli

La modalità di determinazione dei Margini Iniziali

La modalità di determinazione dei Margini Iniziali La modalità di determinazione dei Margini Iniziali Ufficio RM Versione 1.0 Sommario Premessa... 3 1. Tipologie di Margini Iniziali... 3 2. Il Calcolo dei Margini Iniziali Ordinari... 4 3. La Determinazione

Dettagli

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1)

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1) Strutture Strutture e Unioni DD cap.10 pp.379-391, 405-406 KP cap. 9 pp.361-379 Strutture Collezioni di variabili correlate (aggregati) sotto un unico nome Possono contenere variabili con diversi nomi

Dettagli

MATEMATICA PER AMORE. Lugano, 28-29 agosto 2006

MATEMATICA PER AMORE. Lugano, 28-29 agosto 2006 MATEMATICA PER AMORE Lugano, 28-29 agosto 2006 La paura della matematica è come un muro che impedisce la comprensione. Chi non capisce si sente stupido e pensa che anche gli altri lo giudichino così. Perciò

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva Calcolo delle probabilità. Gli eventi - definizioni propedeutiche 2. La probabiltà nella concezione classica. La probabiltà nella concezione frequentista 4. La probabiltà nella concezione soggettiva. La

Dettagli

I PRIMI ANNI DELLA MUTUA FIDE BANK. Breve analisi dell attività della MFB in Madagascar e spunti per il futuro

I PRIMI ANNI DELLA MUTUA FIDE BANK. Breve analisi dell attività della MFB in Madagascar e spunti per il futuro I PRIMI ANNI DELLA MUTUA FIDE BANK Breve analisi dell attività della MFB in Madagascar e spunti per il futuro dic-09 gen-10 feb-10 mar-10 apr-10 mag-10 giu-10 lug-10 ago-10 set-10 ott-10 nov-10 dic-10

Dettagli

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere?

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Abbiamo visto nella lezione precedente che lo spazio degli eventi più idoneo a rappresentare l esperimento

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Ente: COMUNE DI PORTICI

Ente: COMUNE DI PORTICI MUTUI IN AMMORTAMENTO ANNO 2010 CASSA DD.PP. Ente: COMUNE DI PORTICI Tipo opera: Edilizia pubblica e sociale-immobile 4502930/00 21-dic-06 200.000,00 01-gen-07 30-giu-10 179.465,06 3.676,97 3.748,13 7.425,10

Dettagli

1796-1809: Arezzo Giochi di carte nel Casino dei Nobili Franco Pratesi 27.09.2014 INTRODUZIONE

1796-1809: Arezzo Giochi di carte nel Casino dei Nobili Franco Pratesi 27.09.2014 INTRODUZIONE 1796-1809: Arezzo Giochi di carte nel Casino dei Nobili Franco Pratesi 27.09.2014 INTRODUZIONE Il fondo Casino dei Nobili dell Archivio di Stato di Arezzo, ASAR, (1) contiene tutti i documenti rimasti

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

MODULI DI LINEAMENTI DI MATEMATICA

MODULI DI LINEAMENTI DI MATEMATICA R. MANFREDI - E. FABBRI - C. GRASSI TRIENNIO licei scientifici MODULI DI LINEAMENTI DI MATEMATICA per il triennio della scuola secondaria di secondo grado L CALCOLO DELLE PROBABILITÀ E ELEMENTI DI STATISTICA

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è Cenni di probabilità di Carlo Elce Definizioni Lo spazio campionario per un esperimento è l'insieme di tutti i suoi possibili esiti. Per esempio, se l'esperimento è il lancio di due di dadi e si rappresentano

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Ufficio Servizi per l Utenza e Relazioni con il Pubblico

Ufficio Servizi per l Utenza e Relazioni con il Pubblico Ufficio Servizi per l Utenza e Relazioni con il Pubblico Periodo GENNAIO-MARZO 2011 12 APRILE 2011 Colombo CONTI pag. 1 INDICE INTRODUZIONE... 3 FREQUENZA MENSILE DELLE RICHIESTE... 4 TIPOLOGIA DEL CONTATTO...

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Probabilità. Esperimento, risultati e spazio campionario

Probabilità. Esperimento, risultati e spazio campionario Probabilità La probabilità è usata nel linguaggio comune per dare indicazioni quantitative sul verificarsi di certi eventi: i) probabilità di incorre in un data patologia causa l abuso di alcol, fumo,

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica 21.05.08 Prima prova parziale di Calcolo delle probabilità I Ogni esercizio vale 5 punti. 1. Si gioca a nascondino in una casa di quattro stanze: cucina, salotto, bagno e camera da letto. Otto bambini

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

15. Antico gioco russo

15. Antico gioco russo 15. Antico gioco russo In un antico gioco russo, attraverso i risultati casuali ottenuti dall allacciamento di cordicelle, i giovani cercavano una previsione sul tipo di legame che si sarebbe instaurata

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli