Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015"

Transcript

1 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che prevede un reddito di 3000e con una probabilitá p 1 = 0, 1 e di 8000e con probabilitá p 2 = 0, 6 e di 0e con probabilitá p 3 = 0, 3. Calcolare l utilitá attesa di questa remunerazione e l equivalente certo. Sia X la variabile aleatoria (discreta) che descrive il gioco. Si ha 3000, p 1 = 0, , p 2 = 0, 6 0, p 3 = 0, 3. Allora u(x) è la variabile aleatoria definita da: 9, 80, p 1 = 0, 1 u(x) = 10, 79, p 2 = 0, 6 0, p 3 = 0, 3. Ricordiamo la formula per il calcolo dell utilità attesa per una variabile aleatoria discreta: n E[u(X)] = u(x i )p i, (1) dove x i, i = 1,..., n sono i diversi possibili valori assunti da X e p i la loro relativa probabilità. Nel nostro caso si ha: i=1 E[u(X)] = 9, 80 0, , 79 0, 6 0, 3 = 7, 4. Ricordiamo ora l equivalente certo corrispondente al gioco considerato. dell importo CE definito da Si tratta u(ce) = E[u(X)]; equivalentemente, CE = u 1 (E[u(X)]), 1

2 dove u 1 è la funzione inversa di u. Determiniamo dunque u 1 : poichè y = ln(1 + 6x) e y = 1 + 6x x = ey 1, 6 vale u 1 (y) = ey 1 6. Dunque l equivalente certo vale CE = u 1 (7, 4) = 272, 50e Esercizio 2 Un agente presenta una funzione di utilitá Egli dispone di due progetti incerti: u(x) = ln(x + 200). - Progetto A che prevede un reddito di 3000e con una probabilitá 0, 3 e di 10000e con probabilitá 0, 7; - Progetto B che prevede un reddito di 5000e con una probabilitá p e di 8000 euro con probabilitá 1 p; Determinare p affinché i due progetti siano equivalenti secondo il criterio dell utilitá attesa. Le variabili aleatorie che descrivono i due progetti incerti sono definite da 3000, p A = 0, , p B X A = X A = 10000, 1 p A = 0, , 1 p B. I due progetti saranno indifferenti secondo il criterio dell utilità attesa se E[u(X A )] = E[u(X B )]. Utilizzando la formula (1), si trova E[u(X A )] = 8, 88 e E[u(X B )] = 8, 56p B +9, 01(1 P B ); vogliamo dunque 8, 88 = 8, 56p B + 9, 01(1 p B ), da cui p B = 0, 29. Esercizio 3 Si consideri il gioco seguente: si lanciano contemporaneamente due dadi. Se esce il numero 2 al primo dado ed un numero pari al secondo dado si vincono 300e, altrimenti si vincono 2e. Calcolare il valore atteso del gioco. Calcolare inoltre l equivalente certo per un agente che ha come funzione di utilitá ( ) x u(x) = 5 5 exp. 10 2

3 Sia X la variabile aleatoria che descrive il gioco. I possibili valori assunti da X sono 300e e 2e. La probabilità che esca 2 col primo dado è 1/6, mentre la probabilità che esca un numero pari col secondo dado è 1/2. Poichè i due eventi sono indipendenti, la probabilità di vincere 300e si ottiene moltiplicando le probabilità che si verifichino entrambi, ovvero P( 300) = p = 1/12. Conseguentemente, P( 2) = p = 11/12 e 300, p = , 1 p = Ripetendo i calcoli svolti nell esercizio 1., l utilità attesa e il certo equivalente risultano pari a E[u(X)] = 1, 25 e CE = 2, 88. N.B. In questo caso la funzione inversa u 1 è data da u 1 (y) = 10 ln 5 y 5. Esercizio 4 Si consideri il gioco seguente: si lancia una moneta, se esce testa si vincono 10e e il gioco termina, se esce croce si ripete il lancio. Al secondo lancio se esce testa si vincono 100e, se esce croce si vincono 5e. In entrambi i casi il gioco termina. Calcolare il valore atteso del gioco. Calcolare inoltre l equivalente certo per un agente che ha come funzione di utilitá u(x) = 5 6x. Sia X la variabile aleatoria che descrive il gioco: 10, p 1 = 0, 5 100, p 2 = 0, 25 5, p 3 = 0, 25. Dai calcoli si trova E[X] = 31, 25. La variabile u(x) è data da 38, 73, p 1 = 0, 5 u(x) = 122, 47, p 2 = 0, 25 27, 39, p 3 = 0, 25, da cui E[u(X)] = 56, 83. L equivalente certo risulta invece pari a CE = 21, 53. In questo caso, infatti, la funzione inversa dell utilità risulta u 1 (y) = y Esercizio 5 Francesco possiede un capitale certo di 10000e. Valuta se partecipare alla lotteria seguente: si estrae un numero tra 1 e 90. Se esce un numero pari si vincono 1000e, altrimenti non si vince nulla. Il prezzo del biglietto é 130e. 3

4 Sapendo che la funzione di utilitá di Francesco é u(x) = x( x), dire se Francesco giudica vantaggioso comprare 1 biglietto della lotteria; 2. dire quale é il numero massimo di biglietti che Francesco ritiene conveniente comprare. Osserviamo innanzitutto che se Francesco non compra alcun biglietto della lotteria la sua utilità è u(10000) = Se invece Francesco partecipa alla lotteria, la probabilità di vittoria è pari a 1/2. La sua scelta è descritta dalla variabile aleatoria , p 1 = 0, , p 2 = 0, 5, ovvero La sua utilità è 10870, 0, , 0, 5. u(x) = 9688, 0, , 0, 5, da cui E[u(X)] = Dunque Francesco preferisce comprare un biglietto della lotteria piuttosto che non comprarne alcuno. Se Francesco compra n biglietti della lotteria, la sua scelta è descritta dalla variabile aleatoria n 130n, p 1 = 0, n, p 2 = 0, 5, ovvero La sua utilità è n, 0, n, 0, 5. u( n), 0, 5 u( n), 0, 5. 4

5 La sua utilità attesa è E[u(X)] = u( n) + u( n). 2 Egli riterrà più conveniente comprare n biglietti della lotteria piuttosto che non comprarne alcuno se vale la disuguaglianza u( n) + u( n) 2 > 9000, ovvero, risolvendo, se n < 76, 5. Pertanto Francesco ritiene conveniente acquistare un massimo di 76 biglietti della lotteria. Esercizio 6 Giovanni dispone di 1000e, risparmiati nel corso dell anno. Puó impiegarli in titoli a reddito fisso che rendono il 3% in modo certo oppure in azioni che rendono il 2% se la situazione economica internazionale é sfavorevole oppure l 8% se la situazione economica internazionale evolve positivamente. Le azioni possono essere acquistate in tagli di 500e (o multipli di 500). Supponiamo che la situazione economica internazionale sia sfavorevole con probabilitá 2/3. Le preferenze di Giovanni sono rappresentate dalla funzione di utilitá u(x) = x, con x che indica il valore del risparmio. 1. Si definiscano le possibili alternative a disposizione di Giovanni in termini di valore del risparmio. 2. Si determini come Giovanni impiegherá il suo risparmio comportandosi in modo razionale. 3. Per quale livello del tasso di interesse dei titoli a reddito fisso le alternative a disposizione di Giovanni sono equivalenti? 1. Indichiamo con B il risparmio impiegato in titoli a reddito fisso e con E il risparmio impiegato in azioni. Giovanni deve rispettare il vincolo di bilancio: B +E = Poichè inoltre le azioni possono essere acquistate in tagli di 500 euro, le alternative a disposizione di Giovanni sono tre: 1. acquistare solamente titoli a reddito fisso: B 1 = 1000, E 1 = 0; 2. acquistare il taglio minimo di azioni e impiegare il risparmio rimanente in titoli a reddito fisso: B 2 = 500, E 2 = 500; 3. acquistare solamente azioni: B 3 = 0, E 3 = Indichiamo con W i, i = 1, 2, 3 il risparmio di Giovanni nei tre casi considerati. Se consideriamo la prima alternativa avremo: W 1 = , 03 = 1030 p (1) = 1. 5

6 Se consideriamo la seconda alternativa avremo invece 500 1, , 08 p (2) = 1/3 W 2 = 500 1, , 02 1 p (2) = 2/ p (2) = 1/3 = p (2) = 2/3. Se invece consideriamo la terza alternativa avremo , 08 p (3) = 1/3 W 3 = , 02 1 p (3) = 2/ p (3) = 1/3 = p (3) = 2/3. 2. Per determinare la scelta razionale di Giovanni dobbiamo calcolare l utilità attesa associata a ciascuna alternativa. Se consideriamo l alternativa 1 ricaviamo dalla seconda alternativa abbiamo infine, dalla terza alternativa abbiamo E[u(W 1 )] = 1030; E[u(W 2 )] = = 1035; 3 E[u(W 3 )] = = 1040; 3 Poichè E[u(W 1 )] < E[u(W 2 )] < E[u(W 3 )], Giovanni si comporta in modo razionale investendo tutti i risparmi nellacquisto di azioni. 3. É sufficiente considerare la condizione seguente: 1000(1 + r) = 1040, cioè la condizione di uguaglianza fra le utilità attese delle due alternative estreme (quella in cui Giovanni acquista solo titoli a reddito fisso e quella in cui acquista solo azioni); si ricava: r = 0, 4. 6

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

Le scelte del consumatore in condizione di incertezza (cap.5)

Le scelte del consumatore in condizione di incertezza (cap.5) Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia.

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Richiami essenziali: Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Tasso di sconto intertemporale soggettivo

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

Esercitazione Microeconomia (CLEC L-Z) 24.04.2013 Dr. Rezart Hoxhaj

Esercitazione Microeconomia (CLEC L-Z) 24.04.2013 Dr. Rezart Hoxhaj Esercitazione Microeconomia (CLEC L-Z) 24.04.2013 Dr. Rezart Hoxhaj Esercizi: Utilità attesa (Cap.6) Problema 11 (pagina 203, libro) Supponete di avere 10 000 euro da investire in Junk Bonds oppure titoli

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Scelta intertemporale: Consumo vs. risparmio

Scelta intertemporale: Consumo vs. risparmio Scelta intertemporale: Consumo vs. risparmio Fino a questo punto abbiamo considerato solo modelli statici, cioè modelli che non hanno una dimensione temporale. In realtà i consumatori devono scegliere

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Calcolo del Valore Attuale Netto (VAN)

Calcolo del Valore Attuale Netto (VAN) Calcolo del Valore Attuale Netto (VAN) Il calcolo del valore attuale netto (VAN) serve per determinare la redditività di un investimento. Si tratta di utilizzare un procedimento che può consentirci di

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Test n. 7 Problemi matematici

Test n. 7 Problemi matematici Test n. 7 Problemi matematici ) Determinare il numero il cui doppio, aumentato di 0, è uguale a 44. A) 6 C) 7 B) 5 D) 8 ) Determinare due numeri tenendo presente che la loro somma è uguale a 8 e la loro

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

Le operazioni di assicurazione

Le operazioni di assicurazione Le operazioni di assicurazione Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline 1 Lezione 1: Le operazioni di assicurazione Condizione di indifferenza Condizione di equità 2 Premio equo, premio

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Richiami di teoria della domanda di moneta

Richiami di teoria della domanda di moneta Richiami di teoria della domanda di moneta Parte seconda La teoria della preferenza della liquidità di Keynes Keynes distingue tre moventi principali per cui si detiene moneta. Transattivo Precauzionale

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

TEOREMI SULLA PROBABILITÀ

TEOREMI SULLA PROBABILITÀ TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

5 Risparmio e investimento nel lungo periodo

5 Risparmio e investimento nel lungo periodo 5 Risparmio e investimento nel lungo periodo 5.1 Il ruolo del mercato finanziario Il ruolo macroeconomico del sistema finanziario è quello di far affluire i fondi risparmiati ai soggetti che li spendono.

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Ulteriori problemi di fisica e matematica

Ulteriori problemi di fisica e matematica Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Agosto 2010 Ulteriori problemi di fisica e matematica Giovanni Romano Perché un raggio di luce proveniente dal Sole e fatto passare attraverso

Dettagli

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo. acroeconomia, Esercitazione 2. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 oneta/1 Sapendo che il PIL reale nel 2008 è pari a 50.000 euro e nel 2009 a 60.000 euro, che dal 2008 al

Dettagli

4. Si consideri un economia chiusa in cui: Y = C + I + G, C = 90 + 0,8YD, G = 1000, T= 0,5Y, I = 900 500r, P=1,

4. Si consideri un economia chiusa in cui: Y = C + I + G, C = 90 + 0,8YD, G = 1000, T= 0,5Y, I = 900 500r, P=1, Esercitazione 8 Domande 1. Si consideri un economia per cui il coefficiente di liquidità sia pari a Cl = 5%, mentre il coefficiente di riserva è Cr = 3%. a) Si calcoli il moltiplicatore monetario. b) Se

Dettagli

Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore.

Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore. Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore. Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Se nel mercato

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

Aspetti probabilistici del gioco d azzardo

Aspetti probabilistici del gioco d azzardo Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Elementi di economia Economia dell informazione

Elementi di economia Economia dell informazione Elementi di economia Economia dell informazione Dott.ssa Michela Martinoia michela.martinoia@unimib.it Corso di laurea in Scienze del Turismo e Comunità Locale A.A. 2014/15 Informazione completa Significa

Dettagli

Esercitazioni di economia poltica I

Esercitazioni di economia poltica I 1 Esercitazioni di economia poltica I Prof. Alessandro Sterlacchini - Gruppo (F - O) 23 aprile 2015 1. Carlo, neutrale al rischio, può partecipare ad una scommessa sull'esito di un incontro di calcio.

Dettagli

= 8.000 + 2.000 = 5.000.

= 8.000 + 2.000 = 5.000. Esercizio 1 Consideriamo il mercato delle barche usate e supponiamo che esse possano essere di due tipi, di buona qualità e di cattiva qualità. Il valore di una barca di buona qualità è q = 8000, mentre

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 A DEFINIZIONI - Si definiscano sinteticamente i termini anche con l ausilio, qualora necessario, di formule e grafici. 1. Beni

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

Le preferenze e la scelta

Le preferenze e la scelta Capitolo 3: Teoria del consumo Le preferenze e la scelta 1 Argomenti trattati in questo capitolo Usiamo le preferenze dei consumatori per costruire la funzione di domanda individuale e di mercato Studiamo

Dettagli

Macroeconomia, Esercitazione 2.

Macroeconomia, Esercitazione 2. Macroeconomia, Esercitazione 2. A cura di Giuseppe Gori e Gianluca Antonecchia (gianluca.antonecchia@studio.unibo.it) 1.1 Domanda e Offerta aggregate/1 In un sistema economico privo di settore pubblico,

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1. Un capitale C = 15 000 euro viene investito in RIC per anni al tasso di interesse trimestrale i 1 = 0.03. Il montante che si ottiene

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

Esercitazione 5 Soluzioni

Esercitazione 5 Soluzioni Esercitazione 5 Soluzioni. (Esercizio 5. del Ross) Sia X una variabile aleatoria la cui densità è c( 2 ) < < 0 altrimenti. (a) Qual è il valore di c? (b) Scrivere la funzione di ripartizione di X. 2. (Esercizio

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Microeconomia per la Finanza Esercitazione 1 utilità attesa, attitudine al rischio

Microeconomia per la Finanza Esercitazione 1 utilità attesa, attitudine al rischio Microeconomia per la Finanza Esercitazione 1 utilità attesa, attitudine al rischio pcrosetto@luiss.it 8 Aprile 2010 1. Che faremo? Dove torvare i materiali: queste slides: http://docenti.luiss.it/crosetto/;

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Macroeconomia. quindi: C

Macroeconomia. quindi: C Macroeconomia. Modello Keynesiano Politica economica è interna. Quindi le uniche componenti che ci interessano per la domanda aggregata sono il consumo, gli investimenti e la spesa pubblica. (.) D = C

Dettagli

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1 ISSIS DON MILANI LICEO Corso di DIRITTO ed ECONOMIA POLITICA 1 NEL MERCATO FINANZIARIO SI NEGOZIANO TITOLI CON SCADENZA SUPERIORE A 18 MESI AZIONI OBBLIGAZIONI TITOLI DI STATO 2 VALORE DEI TITOLI VALORE

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Investimenti lordi = 2.000 Investimenti netti = 800

Investimenti lordi = 2.000 Investimenti netti = 800 Macroeconomia, Esercitazione 1. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 PIL/1 Si consideri un sistema economico che produce solo pane. Questo è costituito da tre imprese: una agricola,

Dettagli

Giochi e decisioni strategiche

Giochi e decisioni strategiche Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni

Dettagli

A cura di Giuseppe Gori e Gianluca Antonecchia (gianluca.antonecchia@unibo.it)

A cura di Giuseppe Gori e Gianluca Antonecchia (gianluca.antonecchia@unibo.it) Macroeconomia, Esercitazione 8 A cura di Giuseppe Gori e Gianluca Antonecchia (gianluca.antonecchia@unibo.it) 1 Esercizi 1.1 Moltiplicatore bancario Se il circolante ammonta a 400, le riserve bancarie

Dettagli

Macroeconomia, Esercitazione 7. 1 Esercizi. 1.1 Moltiplicatore bancario. 1.2 Moltiplicatore bancario, politica monetaria/1

Macroeconomia, Esercitazione 7. 1 Esercizi. 1.1 Moltiplicatore bancario. 1.2 Moltiplicatore bancario, politica monetaria/1 Macroeconomia, Esercitazione 7 A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi 1.1 Moltiplicatore bancario Se il circolante ammonta a 400, le riserve bancarie a 100 e i depositi bancari a 800,

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

Scelta intertemporale. Lezione 9. Valori presenti e futuri. Valore futuro

Scelta intertemporale. Lezione 9. Valori presenti e futuri. Valore futuro Scelta Lezione 9 Scelta Di solito il reddito arriva ad intervalli, per esempio lo stipendio mensile. Quindi si pone il problema di decidere se (e quanto) risparmiare in un periodo per consumare più tardi.

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE

CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE Esercitazione Finanza Aziendale n 1 : CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE 1 Capitalizzazione: QUANTO VALE DOMANI IL CAPITALE CHE INVESTO OGGI? (determinazione del Montante) Attualizzazione: QUANTO

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Vincolo di bilancio del consumatore, paniere ottimo

Vincolo di bilancio del consumatore, paniere ottimo Microeconomia, Esercitazione 2 (26/02/204) Vincolo di bilancio del consumatore, paniere ottimo Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Antonio compra solo due beni, sigarette e banane.

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione propone esplora due problemi fondamentali: Se esiste un rischio in una transazione chi lo deve

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8 Facoltà di Scienze Politiche Corso di Economia Politica Esercitazione di Microeconomia sui capitoli 7 e 8 Domanda 1 Dite quale delle seguenti non è una caratteristica di un mercato perfettamente competitivo:

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Tasso di cambio di equilibrio in un contesto intertemporale

Tasso di cambio di equilibrio in un contesto intertemporale Tasso di cambio di equilibrio in un contesto intertemporale Marianna Belloc 1 Approccio NATREX L approccio NATREX, dovuto a Stein (1990, 1999) e basato, come il precedente, su agenti intertemporalmente

Dettagli