Esercizi sul calcolo delle probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sul calcolo delle probabilità"

Transcript

1 Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità P(A)? P(A)=1-p(A c )=1-0,3=0,7 P(A B)? P(A U B)? 1

2 P(A B c )=0,5 P(A)=0,7 noti Obiettivo P(A B)? Che cos è P(A B c )? Ω A B P(A B c )=P(A)-P(A B) P(A B)=P(A)-P(A B c )=0,7-0,5=0,2 Esempio: superenalotto Gioco i miei numeri preferiti {1, 13, 17, 25, 40, 90} Prob di fare 6? 2

3 Esempio: superenalotto Gioco i miei numeri preferiti {1, 13, 17, 25, 40, 90} Prob di fare 6? Casi favorevoli =1 Casi possibili = Combinazioni di 90 elementi di classe 6 = C 90,6 C 90,6 =90*89*88*87*86*85/(6*5*4*3*2*1)= C 90,6 =90!/(6! 84!)= Un docente di statistica ha distribuito un elenco di 20 domande da cui sceglierà a caso quattro domande per l esame finale. Avendo poco tempo lo studente x prepara solo 4 domande. Qual è la probabilità che proprio queste costituiscano la prova di esame 3

4 Soluzione Casi favorevoli = 1 Casi possibili C 20,4 =4845 Pr = 1/4845=0,00021 Supponiamo di disporre di un mazzo di 52 carte. Si estrae una sola carta. Qual è la probabilità di estrarre una carta di quadri oppure una carta rossa? 4

5 Soluzione Pr (carta di quadri U carta rossa) = Pr (carta di quadri) +Pr(carta rossa) -P(carta di quadri carta rossa)= 13/52+26/52-13/52=26/52=1/2 Da un mazzo di 52 carte da poker se ne estraggono a sorte 5. Si determini la probabilità che delle 5 carte 3 siano assi 5

6 Soluzione Casi favorevoli tre assi C 4,3 Casi favorevoli due altre carte qualsiasi C 48,2 Casi possibili =C 52,5 Pr richiesta = C 4,3 C 48,2 / C 52,5 =0,0017 Un dado viene lanciato 2 volte. Si calcoli La probabilità che l esito del primo lancio sia 5, se la somma dei punteggi è 7 La probabilità che l esito del secondo lancio sia un numero doppio dell esito del primo lancio 6

7 Soluzione (senza usare la regola della prob. condizionata) Probabilità che l esito del primo lancio sia 5, se la somma dei punteggi è 7 Spazio degli eventi Ω:{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} Casi possibili = 6 Casi favorevoli =1 Prob richiesta =1/6 Soluzione (usando la regola della prob. condizionata) Probabilità che l esito del primo lancio sia 5, se la somma dei punteggi è 7 A= esito del primo lancio sia 5 B = somma dei punteggi è 7 Ob. P(A B)? P(A B)=P(B A)P(A)/P(B) B:{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} P(B)= 1/6 P(A)= 1/6 P(B A)=1/6 P(A B) = 1/6 1/6 / 1/6 = 1/6 7

8 5.45 Un urna contiene 15 palline bianche e 8 nere. Calcolare Probabilità di estrarre una pallina bianca alla prima estrazione (evento A)? Probabilità in due estrazioni senza ripetizione di estrarre una pallina bianca nella seconda estrazione (evento B) dato che nella prima estrazione è stata estratta una pallina bianca (evento A)? Probabilità di estrarre in entrambe le estrazioni una pallina bianca Soluzione Formalizzazione A=estrazione pallina bianca prima estraz P(B A)= estrazione pallina bianca seconda estr. data prima estraz bianca? P(A)=15/23 P(B A)= 14/22 15Bianche 8Nere P(A B) =P(B A) P(A)=(14/22)*(15/23) 8

9 Soluzione Probabilità che l esito del secondo lancio sia un numero doppio dell esito del primo lancio (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) Ω Casi favorevoli=3 Casi possibili =36 Prob richiesta = 1/12 Esempio Nella cassa di un bar ci sono 30 boeri, due dei quali contengono un buono per un nuovo boero. Probabilità di mangiare 3 boeri comprandone uno solo? A= Il primo boero contiene il buono B= Il secondo boero contiene il buono P(A B)= entrambi i boeri contengono il buono 9

10 Esempio Nella cassa di un bar ci sono 30 boeri, due dei quali contengono un buono per un nuovo boero. Probabilità di mangiare 3 boeri comprandone uno solo? A= Il primo boero contiene il buono B A= Il secondo boero contiene il buono dato che il primo buono è già stato estratto P(A B) = P(A) P(B A)= (2/30) (1/29)=0,0023 Esercizi da svolgere 10

11 Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Dati due eventi incompatibili A e B tali che P(A) =0,35 e P(B)=0,40 si trovino le seguenti probabilità P(A c ) P(A B ) P(A U B) P(A c U B c ) P(A c B c ) 11

12 Per i due eventi A e B sono note le probabilità P(A)=0,48 P(B)=0,39 P(A B )=0,18 si determinino le probabilità nella tabella che segue B B c A A c E si calcolino P(A B c ) e P(A c B c ) Si calcoli la probabilità di ottenere un 2 almeno una volta in tre lanci consecutivi di un dado. 12

13 Delle 80 confezioni di yogurt esposte nel bancone di un supermercato, 10 scadono fra una settimana, 50 fra due settimane e le restanti 20 fra tre settimane. Si calcoli la probabilità che su 5 confezioni scelte a caso due scadano tra una settimana, due scadano fra due settimane e una fra tre settimane Si calcoli la probabilità che estraendo a sorte due carte da un mazzo di 40 appaiano 2 assi. Nel caso che la prima sia reinserita nel mazzo prima dell estrazione della seconda Nel caso che la prima non sia reinserita nel mazzo prima dell estrazione della seconda 13

14 Si dimostri che se due eventi A e B sono indipendenti, allora A e l evento complementare di B (B c ) sono indipendenti Un dado viene lanciato 2 volte. Si indichi con A l evento al primo lancio esce un numero minore o uguale a 2 e con B l evento al secondo lancio esce un numero uguale o superiore a 5. Calcolare la probabilità dell evento unione di A e B. 14

15 Si hanno tre scatole che contengono: la prima, 2 banconote da 100; la seconda, 1 banconota da 100 e 1 da 50; la terza, 2 banconote da 50. Si scelga a caso una delle tre scatole (tra loro equiprobabili) e si estragga una banconota. Risulta estratta una banconota da 100; qual è la probabilità che la scatola dalla quale è stata estratta sia la prima? Si considerino 3 urne, numerate da 1 a 3; ogni urna contiene 5 palline. La generica urna i contiene i palline bianche e (5-i) palline nere, con i=1,2,3 (cioè, ad esempio, l urna numero 2 contiene 2 palline bianche e 5-2=3 palline nere). Si estrae a caso un urna, e da questa una pallina. Calcolare la probabilità che la pallina estratta sia bianca. 15

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Probabilità e statistica. Veronica Gavagna

Probabilità e statistica. Veronica Gavagna Probabilità e statistica Veronica Gavagna Testa o croce? Immaginiamo di lanciare una moneta facendola cadere su un piano liscio chiunque dirà che la probabilità dell evento testa sarà del 50%, al pari

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

CALCOLO COMBINATORIO E PROBABILITA

CALCOLO COMBINATORIO E PROBABILITA CALCOLO COMBINATORIO E PROBABILITA Con calcolo combinatorio si indica quel settore della matematica che studia i possibili modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l obiettivo

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance Note e istruzioni per i test di ingresso ai Corsi di Studio del Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS) a.a. 2013/2014 Gli insegnamenti relativi ai Corsi di Laurea

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9

Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9 Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9 19 Carte di colore Blu che vanno dallo 0 al 9 19 Carte di colore Giallo che

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi ommario Corso di tatistica Facoltà di Economia a.a. 2006-2007 2007 francesco mola L algebra degli eventi Diagrammi di Venn Teoremi fondamentali Probabilità Condizionata ed Indipendenza tocastica Lezione

Dettagli

Scuola dell Infanzia H. C. Andersen Anno Scolastico 2012-2013 Sezione 2 mista Insegnanti: Martinelli, Tenace

Scuola dell Infanzia H. C. Andersen Anno Scolastico 2012-2013 Sezione 2 mista Insegnanti: Martinelli, Tenace Scuola dell Infanzia H. C. Andersen Anno Scolastico 2012-2013 Sezione 2 mista Insegnanti: Martinelli, Tenace Ogni giorno abbiamo modo di osservare come i bambini possiedono intuizioni geometriche, logiche

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Rapporto dai Questionari Studenti Insegnanti - Genitori. per la Primaria ISTITUTO COMPRENSIVO IST.COMPR. BATTIPAGLIA "GATTO" SAIC83800T

Rapporto dai Questionari Studenti Insegnanti - Genitori. per la Primaria ISTITUTO COMPRENSIVO IST.COMPR. BATTIPAGLIA GATTO SAIC83800T Rapporto dai Questionari Studenti Insegnanti - Genitori per la ISTITUTO COMPRENSIVO IST.COMPR. BATTIPAGLIA "GATTO" SAIC83800T Progetto VALES a.s. 2012/13 Rapporto Questionari Studenti Insegnanti Genitori

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Micro.Stat Workshop laboratori

Micro.Stat Workshop laboratori Promozione e diffusione della cultura statistica Micro.Stat Workshop laboratori I numeri raccontano storie a chi li sa leggere. Le statistiche parlano di ciò che siamo e della società in cui viviamo. Chi

Dettagli

Comunicazioni obbligatorie e altri archivi amministrativi: dati e indicatori sul buon lavoro Luigi Fabbris

Comunicazioni obbligatorie e altri archivi amministrativi: dati e indicatori sul buon lavoro Luigi Fabbris Comunicazioni obbligatorie e altri archivi amministrativi: dati e indicatori sul buon lavoro Luigi Fabbris Università di Padova Comstat Schema della presentazione 1. Il progetto PLUG_IN 2. Il buon lavoro

Dettagli

Ufficio Scolastico Regionale per l Abruzzo. Rapporto dal Questionari Studenti

Ufficio Scolastico Regionale per l Abruzzo. Rapporto dal Questionari Studenti Rapporto dal Questionari Studenti SCUOLA xxxxxxxxx Anno Scolastico 2014/15 Le Aree Indagate Il questionario studenti ha lo scopo di indagare alcuni aspetti considerati rilevanti per assicurare il benessere

Dettagli

Il Ministro dell Istruzione, dell Università e della Ricerca

Il Ministro dell Istruzione, dell Università e della Ricerca Allegato n.1 (Prova di ammissione per i corsi di laurea e laurea magistrale cui agli articoli 2, 4, 5 e 6 ) 1. Il Ministero dell'istruzione, dell'università e della Ricerca si avvale del CINECA Consorzio

Dettagli

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it

La Bella Addormentata e altre illusioni probabilistiche. volcic@unical.it La Bella Addormentata e altre illusioni probabilistiche Aljoša Volčič volcic@unical.it Firenze, 25 novembre 2009 1 Che cosa è la probabilità? La probabilità di un evento A è la misura del grado di fiducia

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

STATISTICHE DOCUMENTI PMV IN SOL

STATISTICHE DOCUMENTI PMV IN SOL STATISTICHE DOCUMENTI PMV IN SOL INTRODUZIONE A cura del Coordinamento del Polo regionale del Veneto Vicenza, 12 ottobre 2011 PREMESSA Le istruzioni fornite nel 2010 per la compilazione del PMV riferito

Dettagli

Matematica Discreta PARTE II

Matematica Discreta PARTE II Matematica Discreta PARTE II Giuseppe Lancia Dipartimento di Matematica e Informatica Università di Udine Indice 1 Piccioni e buche 1 1.1 Il principio della piccionaia, forma semplice............................

Dettagli

Monitoraggio dei processi formativi. Genova, 2 dicembre 2011

Monitoraggio dei processi formativi. Genova, 2 dicembre 2011 Monitoraggio dei processi formativi Genova, 2 dicembre 2011 Premessa: un patto!!! Nel Protocollo d Intesa le organizzazioni formative garantiscono un progressivo miglioramento e innalzamento della qualità

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Sintesi analitica dei Bandi di concorso 2013 per l ammissione ai corsi di laurea delle Professioni sanitarie

Sintesi analitica dei Bandi di concorso 2013 per l ammissione ai corsi di laurea delle Professioni sanitarie Sintesi analitica dei Bandi di concorso 2013 per l ammissione ai corsi di laurea delle Professioni sanitarie Introduzione... 3 Università Politecnica delle Marche (Ancona)... 4 Università degli Studi di

Dettagli

DigitPA egovernment e Cloud computing

DigitPA egovernment e Cloud computing DigitPA egovernment e Cloud computing Esigenze ed esperienze dal punto di vista della domanda RELATORE: Francesco GERBINO 5 ottobre 2010 Agenda Presentazione della Società Le infrastrutture elaborative

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

SE MI LASCI NON CRESCI

SE MI LASCI NON CRESCI F.S.E. Fai Scuola con l'europa Evento di lancio del nuovo POR FSE 2014-2020 REGOLAMENTO CONCORSO VIDEO SE MI LASCI NON CRESCI RIVOLTO AGLI ISTITUTI DI ISTRUZIONE SECONDARIA DI II GRADO Regolamento del

Dettagli

Dov eri e cosa facevi?

Dov eri e cosa facevi? Funzioni comunicative Produzione libera 15 marzo 2012 Livello B1 Dov eri e cosa facevi? Funzioni comunicative Descrivere, attraverso l uso dell imperfetto, azioni passate in corso di svolgimento. Materiale

Dettagli

Come verifico l acquisizione dei contenuti essenziali della mia disciplina

Come verifico l acquisizione dei contenuti essenziali della mia disciplina Riflessione didattica e valutazione Il questionario è stato somministrato a 187 docenti di italiano e matematica delle classi prime e seconde e docenti di alcuni Consigli di Classe delle 37 scuole che

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN)

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) System Overview di Mattia Bargellini 1 CAPITOLO 1 1.1 Introduzione Il seguente progetto intende estendere

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

L ARTE DI VINCERE AL FANTACALCIO

L ARTE DI VINCERE AL FANTACALCIO Matteo Freddi L ARTE DI VINCERE AL FANTACALCIO Youcanprint Self-Publishing Titolo L arte di vincere al fantacalcio Autore Matteo Freddi Immagine di copertina a cura dell Autore ISBN 978-88-91122-07-0 Tutti

Dettagli

Linee guida metodologiche per rilevazioni statistiche

Linee guida metodologiche per rilevazioni statistiche Linee guida metodologiche per rilevazioni statistiche Nozioni metodologiche di base e pratiche consigliate per rilevazioni statistiche dirette o basate su fonti amministrative Marco Fortini Istituto Nazionale

Dettagli

Destinatari: adulti/giovani adulti di diversa provenienza linguistica e culturale che imparano l italiano in contesto L2 o LS

Destinatari: adulti/giovani adulti di diversa provenienza linguistica e culturale che imparano l italiano in contesto L2 o LS MA IL CIELO È SEMPRE PIÙ BLU di Rino Gaetano Didattizzazione di Greta Mazzocato Univerisità Ca Foscari di Venezia Destinatari: adulti/giovani adulti di diversa provenienza linguistica e culturale che imparano

Dettagli

FACOLTA DI ECONOMIA CALCOLO MEDIA DI LAUREA

FACOLTA DI ECONOMIA CALCOLO MEDIA DI LAUREA LAUREE QUADRIENNALI: FACOLTA DI ECONOMIA CALCOLO MEDIA DI LAUREA o ECONOMIA E COMMERCIO media aritmetica dei voti degli esami di profitto con esclusione dei voti delle Teologie e di quelli riguardanti

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

Cap.12 Le relazioni pubbliche. Corso di Comunicazione d Impresa - A.A. 2011-2012 Prof. Fabio Forlani - fabio.forlani@uniurb.it

Cap.12 Le relazioni pubbliche. Corso di Comunicazione d Impresa - A.A. 2011-2012 Prof. Fabio Forlani - fabio.forlani@uniurb.it Cap.12 Le relazioni pubbliche Corso di Comunicazione d Impresa - A.A. 2011-2012 Prof. Fabio Forlani - fabio.forlani@uniurb.it Capitolo 12 Le relazioni pubbliche Le relazioni pubbliche (PR) Insieme di attività

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

REGOLAMENTO PER GLI AFFIDAMENTI E I CONTRATTI PER ESIGENZE DIDATTICHE, ANCHE INTEGRATIVE, AI SENSI DELLA LEGGE 240/2010. Art. 1 Ambito di applicazione

REGOLAMENTO PER GLI AFFIDAMENTI E I CONTRATTI PER ESIGENZE DIDATTICHE, ANCHE INTEGRATIVE, AI SENSI DELLA LEGGE 240/2010. Art. 1 Ambito di applicazione REGOLAMENTO PER GLI AFFIDAMENTI E I CONTRATTI PER ESIGENZE DIDATTICHE, ANCHE INTEGRATIVE, AI SENSI DELLA LEGGE 240/2010 Art. 1 Ambito di applicazione L Università, in applicazione del D.M. 242/98 ed ai

Dettagli

Regolamento del Concorso misto a Premi denominato NEL MULINO CHE VORREI 2015

Regolamento del Concorso misto a Premi denominato NEL MULINO CHE VORREI 2015 Regolamento del Concorso misto a Premi denominato NEL MULINO CHE VORREI 2015 1. SOCIETÀ PROMOTRICE 2. PERIODO 3. PRODOTTO IN PROMOZIONE BARILLA G. e R. Fratelli Società per Azioni, con Socio Unico Via

Dettagli

COMUNE DI CAMPIONE D ITALIA

COMUNE DI CAMPIONE D ITALIA COMUNE DI CAMPIONE D ITALIA REGOLAMENTO DI GIOCO DELLA ROULETTE (al Casino Municipale di Campione d Italia) adottato con delib. C.C. n. 83 del 2.12.1993 approvata dal CRC con atto n. 13 in data 4.1.1994

Dettagli

Esercizi sull Association Analysis

Esercizi sull Association Analysis Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf.

Dettagli

QUALE SIGNIFICATO HA LA FIRMA DEL PDP DA PARTE DELLO STUDENTE / GENITORE E DEI DOCENTI?

QUALE SIGNIFICATO HA LA FIRMA DEL PDP DA PARTE DELLO STUDENTE / GENITORE E DEI DOCENTI? FAQ: AREA DELLA PROGRAMMAZIONE (PDP) QUAL È LA NORMATIVA DI RIFERIMENTO SUI DSA NELLA SCUOLA? Al momento è in vigore la Legge 170 che regola in modo generale i diritti delle persone con DSA non soltanto

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

i=1 Se tale somma ha un valore finito allora diremo che la variabile aleatoria X ammette valor medio. In tal caso, la quantità xp {X = x} = x E

i=1 Se tale somma ha un valore finito allora diremo che la variabile aleatoria X ammette valor medio. In tal caso, la quantità xp {X = x} = x E 2.7 Il valor medio La nozione di media aritmetica di un insieme finito di numeri reali {x 1,x 2,...,x n } è nota e molto naturale. Una delle sue possibili interpretazioni è quella che si ottiene associando

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Lezione 15 File System

Lezione 15 File System Lezione 15 File System Sistemi Operativi (9 CFU), CdL Informatica, A. A. 2014/2015 Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università di Modena e Reggio Emilia http://weblab.ing.unimo.it/people/andreolini/didattica/sistemi-operativi

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08

NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08 NUOVA GUIDA ALLA COMPILAZIONE DEI QUESTIONARI A.A. 2007/08 Importante: sono cambiati i moduli di rilevazione! Anche quest anno verrà distribuita dalla segreteria di Facoltà, dalla terzultima settimana

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli