STATISTICA E PROBABILITá

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STATISTICA E PROBABILITá"

Transcript

1 STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano essere di fondamentale importanza perché sono i mattoni su cui poggia qualsiasi indagine statistica. Ogni indagine statistica è contraddistinta da quattro fasi ben definite: 1. scelta del fenomeno Si individuano i fenomeni che si vogliono studiare: fenomeni a carattere qualitativo, in questo caso il carattere è espresso da parole; un esempio può essere l utilizzo del computer da parte dei ragazzi dai 14 anni ai 18 anni di un Liceo o la località di vacanza preferita o ancora la squadra del cuore. fenomeni a carattere quantitativo, in questo caso il carattere è espresso da numeri; ad esempio, la statura dei ragazzi di una scuola, le ore passate davanti alla televisione dai ragazzi di una classe o il tempo impiegato dai ragazzi di una città per recarsi a scuola. N.B. i caratteri di un determinato fenomeno sono anche chiamate variabili. Osservazione: i caratteri quantitativi che sono espressi da numeri possono essere di due tipi: discreti, se i dati raccolti assumono valori interi e sono poco numerosi, cioè si ripetono molte volte. continui, se i dati raccolti sono molto numerosi in quanto si ripetono poche volte e assumono valori anche decimali. 2. Individuazione di una popolazione Viene individuata una collettività, un insieme, una classe chiamata popolazione costituita da unità statistiche che hanno in comune i caratteri indicati nella scelta del fenomeno; ad esempio, nel fenomeno la statura dei ragazzi di una scuola la popolazione potrebbe essere la scuola media salesiana e le unità statistiche sono ciascun ragazzo/a che la compongono. 3. Raccolta dati Avviene mediante l utilizzo di opportuni questionari o interviste rivolte all intera popolazione scelta. 4. Rilevazione e tabulazione dei dati Una volta raccolti i dati dell indagine statistica essi debbono essere sistemati in opportune tabelle e debbono essere descritti e rappresentati previo l utilizzo di elementi base. Gli elementi base di un indagine statistica Frequenza assoluta: la frequenza assoluta (f) di un dato è il numero di volte con la quale esso si presenta. Frequenza relativa: la frequenza relativa di un dato è il rapporto fra la frequenza assoluta (f) e il numero totale di casi esaminati (n). Frequenza percentuale: essa è la frequenza relativa espressa in percentuale (per cui devi moltiplicare la frequenza relativa considerata per 100!!!). Molto importanti sono anche i cosiddetti valori medi dei dati che servono a descrivere in modo sintetico una serie di dati raccolti. 1

2 Media aritmetica: la media aritmetica di una serie di dati è il valore che si ottiene dividendo la somma di tutti dati per il numero di dati. Deviazione: permette di valutare, in indagini quantitative, la differenza esistente fra il dato e la media aritmetica dell indagine. A seconda che sia maggiore o minore della media possiamo dire che il dato rilevato è più o meno attendibile. Moda: la moda relativa ad una serie di dati è il dato (o dati) che si presentano con la massima frequenza assoluta (f). Mediana: per determinare la mediana occorre dapprima raccogliere i dati in ordine crescente, essa sarà data dal valore centrale se il numero di dati è dispari, altrimenti è la media aritmetica dei due valori centrali. Solo nel caso in cui la distribuzione dei dati sia molto numerosa e quindi è opportuno suddividerla in classi (indagine a dati continua) si considerano anche le frequenze cumulate: Frequenza cumulata: E data dalla somma della sua frequenza assoluta con le frequenze assolute che la precederono. Oppure è data dalla somma della sua frequenza relativa con le frequenze relative che la precederono. 5. Rappresentazione grafica dei dati Per rappresentare i dati e le loro frequenze si utilizzano i seguenti grafici: A. istogramma: utile per rappresentare la frequenza assoluta di ogni dato mediante rettangoli. Le basi dei rettangoli indicano i dati (hanno ovviamente una stessa lunghezza) mentre le altezze corrispondono alle rispettive frequenze assolute. Se i rettangoli sono disegnati separati da una certa distanza l istogramma si chiama ortogramma. B. Ideogramma è un grafico che è utile per rappresentare la frequenza assoluta di ogni dato mediante un simbolo o una figura. C. Aerogramma è un grafico utile a rappresentare la frequenza relativa percentuale. Ogni settore circolare rappresenta la frequenza percentuale di ciascun dato. L angolo di ciascun settore può essere determinato dalla proporzione che già conosciamo della forma, dove ed sono rispettivamente la frequenza percentuale del dato e l angolo del settore circolare corrispondente. Un discorso a parte merita la rappresentazione dei dati quando essi sono distribuiti in classi. Per indagini statistiche i cui dati sono divisi in classi si considera l istogramma delle frequenze. Poi con una spezzata si congiungono i punti medi delle basi superiori di ciascun rettangolo dell istogramma. Tale spezzata, chiamata poligonale delle frequenze, fa risaltare l andamento della distribuzione dei dati. Noteremo che se facessimo crescere la popolazione e quindi il numero dei dati rilevati e le relative frequenze tale poligonale assume sempre di più la caratteristica forma a campana, essa prende il nome di curva di Gauss. Si veda esempio sul vostro libro pagg (numero 3) la rappresentazione grafica dei dati). 2

3 1. Indagine a variabili qualitative: In questo caso l elaborazione dei dati prevede: il calcolo del frequenze assolute, relative e percentuali; il calcolo della moda la rappresentazione grafica. Esempio 1. In una classe di 20 studenti viene svolta una indagine sul loro colore degli occhi. Si è ottenuta la seguente serie statistica indicante il colore degli occhi dei 20 componenti della classe e le relative frequenze assolute relative e percentuali colore occhi Frequenze assolute (f) Frequenze relative (F) Frequenze percentuali Azzurri 4 4/20 = 1/5 20% Castani 8 8/20 = 2/5 40% Neri 6 6/20 = 3/10 30% Verdi 2 2/20 = 1/10 10% Moda : il dato più frequente è occhi castani. 2. Indagine a variabili quantitative discrete: In questo caso l elaborazione dei dati prevede: il calcolo del frequenze assolute, relative e percentuali; il calcolo della moda, mediana, media aritmetica e deviazione la rappresentazione grafica. Esempio 2. In una classe di 18 studenti viene svolta una indagine sul numero di ore giornaliere passate da ciascuno davanti alla televisione. Si è ottenuta la seguente serie statistica indicante le ore di televisione per ciascuno dei 18 componenti della classe: Dapprima ordiniamo la serie di dati: Successivamente calcoliamo le frequenze assolute, relative e percentuali. Numero ore (h) Frequenze assolute (f) Frequenze relative (F) Frequenze percentuali 0 1 1/18 5,55% 1 4 4/18 22,22% 2 7 7/18 38,38% 3 3 3/18 16,66% 4 2 2/18 11,11% 5 1 1/18 5,55% Calcoliamo i valori medi: 3

4 Media aritmetica: ( )/18 =2,22 h = 2 h 13 min 12 s Moda : il valore più frequente è 2 ore. Mediana: il valore che occupa il posto centrale è =2 h Oss: in questo caso il numero di dati raccolti è 18, quindi pari per cui vi sono due posti centrali che sono 2 e 2 ma la semisomma tra 2 e 2 è sempre 2. Deviazione dalla media: Numero di ore (h) Deviazione dalla media = Dato - Media 0-2,22= -2,22 1-2,22= -1,22 2-2,22= -0,22 3-2,22= 0,78 4-2,22= 1,78 5-2,22= 2,78 3. Indagine a variabili quantitative con dati continui: In questo caso l elaborazione dei dati prevede: il raggruppamento in classi dei dati; il calcolo del frequenze assolute, relative e percentuali; il calcolo della moda, in questo caso della classe di dati più frequente; il calcolo della mediana, della media aritmetica e della deviazione; il calcolo, se richiesto delle frequenze cumulate; la rappresentazione grafica. In riferimento a tale indagine si veda l esempio riportato sul vostro libro da pag Il fenomeno su cui si indaga è risultati lancio del peso in una gara tra ragazzi di scuola secondaria. Osservazione: Abbiamo già parlato delle frequenze cumulate, esse, per questo tipo di indagini, riscoprono un valore assai significativo Sempre considerando l esempio citato sopra. Le frequenze cumulate ci permettono di rispondere ad esempio, a questo tipo di domande: quanti sono stati i lanci con lunghezza superiore agli 8m? Basta sommare le frequenze assolute delle classi interessate alla domanda e in corrispondenza del numero trovato determinare la frequenza cumulata. Per la frequenza cumulata percentuale, la risposta sarà che i numero di lanci con una lunghezza superiore agli 8m è pari al 64% dei lanci totali. 4

5 Probabilità Se la statistica studia l andamento di un fenomeno, la probabilità studia i fenomeni di tipo casuale come l estrazione di due palline rosse da un urna contenente tre palline rosse e cinque nero oppure l eventualità che un macchinario produca saltuariamente pezzi difettosi. La branca della matematica che studia eventi o fenomeni retti dal caso si chiama proprio probabilità. 1. Probabilità classica: Un evento è un avvenimento che può accadere o non accadere e si indica solitamente con una lettera maiuscola del nostro alfabeto. Esempio nel lancio di un dado un evento A può essere esce il numero tre. Un tale evento dipende dal caso e non è detto che si verifichi sempre proprio per questo motivo è detto aleatorio o casuale. Invece se indichiamo, sempre nel lancio di un dado, l evento B = esce un numero compreso tra 1 e 6 allora siamo sicuri che tale evento si verifichi, per questo motivo è detto evento certo. Infine se indichiamo con C l evento esce il numero 9 nel lancio di un dado, anche qui siamo sicuri dell impossibilità di verificarsi di un tale evento, proprio per questo si dice evento impossibile. Nella probabilità classica, il verificarsi di un dato evento è determinato dal rapporto tra il numero di casi favorevoli e il numero di casi possibili. Supponiamo di lanciare un dado e di voler misurare la probabilità dell evento E = esce un numero pari. Possiamo affermare che: i casi possibili sono 6, pari al numero di facce del dado. i casi favorevoli sono 3, pari al numero di facce contrassegnate da un numero pari vale a dire (2,4,6). Attenzione: il dado in nostro possesso non è truccato per cui ogni faccia ha la stessa probabilità di presentarsi dopo un lancio. Si dice quindi, che tutti i casi sono ugualmente probabili. In formule per determinare la probabilità di E che indico con p(e), dovrò calcolare: dove f indica il numero di casi favorevoli e p il numero di casi possibili. Nel caso dell esempio si ha: Osserva come la probabilità può essere espressa da un numero razionale, da un decimale o da una percentuale. Da quanto affermato possiamo sintetizzare dicendo che: la probabilità di un evento aleatorio è un numero compreso tra 0 e 1; la probabilità dell evento impossibile è 0; la probabilità dell evento certo è 1. 5

6 2. Probabilità statistica o frequentista: Se non possiamo stabilire il numero di casi favorevoli o il numero di casi possibili allora dobbiamo avvalerci di quest altra definizione di probabilità, che si basa su studi che osservano il ripetersi di un certo evento nel tempo. Con questa definizione di probabilità si può calcolare ad esempio la probabilità che accadano furti o incidenti automobilistici. Per calcolare la probabilità di un evento secondo la definizione statistica dobbiamo definire la frequenza relativa di un evento. Quest ultima è definita come rapporto fra il numero delle volte in cui l evento considerato si verifica (frequenza assoluta f) e il numero delle prove eseguite ( numero prove n). In formule la probabilità statistica di un evento è relativa dell evento considerato. 3. Legame tra la probabilità classica e quella statistica Supponiamo di considerare il lancio di una moneta e l evento T = esce testa la probabilità classica dell evento è coincide proprio con la frequenza se invece calcoliamo la probabilità secondo la definizione statistica, vale a dire la frequenza relativa ci accorgiamo che al crescere del numero dei lanci eseguiti, la frequenza Numero lanci Testa F(E) relativa tende, si avvicina alla p(e), ,54 probabilità classica , ,503 Questa osservazione prende il nome di legge dei grandi numeri e afferma che: la frequenza relativa di un evento tende ad avvicinarsi alla probabilità classica, quando si effettua un elevato numero di prove, tutte eseguite nelle stesse condizioni. Eventi incompatibili e compatibili Due eventi A e B si dicono incompatibili se non possono verificarsi contemporaneamente oppure può capitare che nessuno dei due eventi si verifichi. Supponiamo di lanciare un dado e consideriamo A = esce un numero pari e B = esce un numero dispari maggiore di 3. Essi sono eventi incompatibili e cerchiamo di calcolare la loro probabilità: il numero di casi possibili è pari a 6; il numero di casi favorevoli all evento A è pari a 3 allora il numero di casi favorevoli all evento B è pari a 1 allora Tuttavia non siamo ancora soddisfatti perché cerchiamo di dare una risposta alla seguente domanda: qual è la probabilità che si verifichi l evento A o l evento B? Ebbene per dare la risposta dobbiamo definire l evento totale E = esce un numero pari o un numero dispari maggiore di 3. In generale la probabilità dell evento totale di due eventi incompatibili è pari alla somma delle probabilità degli eventi parziali, nel nostro caso gli eventi parziali sono A e B. In formule, nel nostro esempio. 6

7 Invece quando due eventi sono tali che il verificarsi dell uno non esclude il verificarsi dell altro allora si dicono compatibili. Siano dati, sempre nel lancio di un dado gli eventi C = esce un numero pari e D = esce un numero maggiore di 2. Gli eventi C e D sono compatibili perché possono verificarsi contemporaneamente, questo avviene quando esce il numero 4 o il numero 6. Essi sono eventi compatibili e cerchiamo di calcolare la loro probabilità: il numero di casi possibili è pari a 6; il numero di casi favorevoli all evento C è pari a 3 allora il numero di casi favorevoli all evento D è pari a 4 allora. In questo caso l evento totale E costituito dagli eventi parziali C e D è E = esce un numero pari o un numero maggiore di 2. Attenzione: se per calcolare la probabilità totale si esegue la somma degli eventi parziali C e D, allora i casi favorevoli ad entrambi gli eventi, nel caso dell esempio l uscita del 4 o del 6, sarebbero contati due volte. Per questo motivo bisogna considerare un nuovo evento, in cui gli eventi parziali si verificano entrambi. Allora = esce un numero pari e un numero maggiore di 2, in cui i casi favorevoli a quest evento sono dati come abbiamo affermato dall uscita di 4 o 6, quindi. In definitiva per calcolare la probabilità dell evento totale E di due eventi parziali, dobbiamo sommare la probabilità dei due eventi parziali e poi sottrarre la probabilità che si verifichino contemporaneamente. In formule. Nel caso dell esempio si ha che Osservazione importante: la probabilità totale di eventi compatibili o incompatibili si riferisce ad una sola prova come il lancio di un dado, il lancio di una moneta, una sola estrazione di una pallina da un urna, una sola estrazione di una carta da un mazzo, ecc. Eventi indipendenti e dipendenti Due eventi si dicono indipendenti se l esito di uno di essi non modifica la probabilità che l altro si verifichi. Supponiamo di prendere un urna e di avere quattro palline numerate da 1 a 4 e di fare due estrazioni successive rimettendo nell urna la prima pallina estratta. Consideriamo gli eventi: A = alla prima estrazione esce un numero pari B = alla seconda estrazione esce un numero dispari I due eventi sono indipendenti perché rimettendo la pallina nell urna l evento A non influisce sulla probabilità che B accada. Calcoliamo la probabilità di A e B: il numero di casi possibili è pari a 4; il numero di casi favorevoli all evento A è pari a 2 allora il numero di casi favorevoli all evento B è pari a 2 allora. Adesso domandiamoci quale sarà la probabilità che si verifichino entrambi gli eventi. A questo scopo consideriamo l evento E composto dai due eventi semplici A e B sia E = alla prima estrazione esce un numero pari e rimettendo la pallina nell urna, alla seconda estrazione esce un numero dispari. 7

8 Per determinare la risposta possiamo considerare due metodi grafici che ci permettono di rappresentare la probabilità. Tabella a doppia entrata Intestiamo le righe e le colonne con i casi possibili di ciascuna prova. Siano le righe le palline estratte nel prima estrazione e le colonne le palline estratte nella seconda estrazione (1,1) (1,2) (1,3) (1,4) 2 (2,1) (2,2) (2,3) (2,4) 3 (3,1) (3,2) (3,3) (3,4) 4 (4,1) (4,2) (4,3) (4,4) Ad esempio con la coppia (2,3) abbiamo indicato che la pallina estratta nella prima estrazione è la 2 mentre quella estratta nella seconda è la 3. I casi possibili sono dati dall insieme delle coppie che abbiamo formato vale a dire 16 mentre i casi favorevoli all evento E che sono in tutto 4 (sono indicate in neretto). Diagramma ad albero (Si veda la figura a pag. 9) Ogni ramificazione rappresenta i casi possibili di ciascuna prova: Dalla figura si evince che come per la tabella a doppia entrata anche per il diagramma ad albero il numero di casi possibili è pari a 16 mentre il numero di casi favorevoli è pari 4. Da entrambe le rappresentazioni grafiche si può calcolare la probabilità dell evento composto E come il rapporto fra i casi favorevoli e quelli possibili, allora. Oss: potevamo pervenire allo stesso risultato moltiplicando tra loro le probabilità degli eventi semplici che costituiscono E, infatti In generale la probabilità di un evento composto da due eventi indipendenti è uguale al prodotto delle probabilità di ciascuno degli eventi semplici. Mentre se due eventi sono tali che l esito di uno di essi modifica la probabilità dell altro allora essi si dicono dipendenti. Consideriamo lo stesso esempio precedente solo che in questo caso non reinseriamo nell urna la pallina estratta nella prima estrazione. Il fatto che la pallina estratta durante la prima estrazione non venga reinserita nell urna modifica il numero di casi possibili, infatti dai 4 della prima estrazione si passa ai 3 della seconda per cui in questo esempio l evento A (1 evento) influisce sull evento B (2 evento). Calcoliamo le probabilità di A e B: il numero di casi possibili nella prima estrazione è pari a 4; il numero di casi favorevoli all evento A è pari a 2 allora il numero di casi possibili nella seconda estrazione è pari a 3; il numero di casi favorevoli all evento B è pari a 2 allora Sia adesso dato l evento composto E = alla prima estrazione esce un numero pari e senza rimettere la pallina estratta nell urna, alla seconda estrazione esce un numero dispari. In questo caso la probabilità di E sarà. 8

9 In generale la probabilità di un evento composto di due eventi semplici dipendenti è uguale al prodotto della probabilità del primo evento per la probabilità del secondo evento, calcolata supponendo che il primo degli eventi si sia verificato. In formule supponendo però che l evento A o primo evento si sia verificato. Osservazione importante: la probabilità composta di eventi dipendenti o indipendenti si riferisce a più prove come più lanci ripetuti di uno stesso dado o lanci simultanei di più dadi, più estrazioni ripetute di palline da un urna o anche estrazioni simultanee di una pallina da più urne. Figura riferita al diagramma ad albero della probabilità composta di eventi indipendenti. (Prof. C. Pili) 9

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

RAPPRESENTAZIONI GRAFICHE

RAPPRESENTAZIONI GRAFICHE RAPPRESENTAZIONI GRAFICHE Prendiamo in considerazione altre rappresentazioni di dati che sono strumenti utili anche in altre discipline di studio o altri settori della vita quotidiana. Questi strumenti

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

E LE M E N T I D I P R O B A B I L I T A

E LE M E N T I D I P R O B A B I L I T A L M T I D I P R O B A B I L I T A CI STORICI Il calcolo delle probabilità si è andato sviluppando piuttosto di recente, intorno al 500 e per lungo tempo solo come una branca della matematica Solo dal secolo

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità

CAPITOLO 12. Calcolo delle Probabilità. 12.1 Introduzione al Calcolo delle Probabilità CAPITOLO 12 Calcolo delle Probabilità 12.1 Introduzione al Calcolo delle Probabilità Una storia d amore Luca abita a Lecco, Bianca a Brindisi. Lui è innamorato perso. Anche lei ama lui, ma, ultimamente,

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13

FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 Finalità: Enunciare le definizioni maturate attraverso l esercitazione pratica. Sistematizzare concetti e definizioni Metodo: Sperimentazione pratica

Dettagli

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo.

Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. Capitolo 1 9 Ottobre 00 Calcolo delle Probabilita, INGEGNERIA INFORMATICA, semestre II, laurea (ord. Leonardo. 000, Milano Esercizio 1.0.1 (svolto in classe [II recupero Ing. Matematica aa.00-0-rivisitato]nel

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Appunti di complementi di matematica

Appunti di complementi di matematica Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA

Dettagli

La distribuzione binomiale

La distribuzione binomiale La distribuzione binomiale 1. Che cos'è un numero casuale Stiamo per lanciare un dado. Fermiamo la situazione un attimo prima che il dado cada e mostri la faccia superiore. Finché è in aria esso costituisce

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

TEOREMI SULLA PROBABILITÀ

TEOREMI SULLA PROBABILITÀ TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Introduzione alla statistica descrittiva

Introduzione alla statistica descrittiva Dipartimento di Statistica Regione Toscana Comune di Firenze Progetto di diffusione della cultura Statistica Introduzione alla statistica descrittiva Carla Rampichini Dipartimento di Statistica G. Parenti

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

I.T.E.S. Don Luigi Sturzo Bagheria. INDAGINE STATISTICA sulle ABITUDINI DI LETTURA

I.T.E.S. Don Luigi Sturzo Bagheria. INDAGINE STATISTICA sulle ABITUDINI DI LETTURA I.T.E.S. Don Luigi Sturzo Bagheria Anno Scolastico 2012-2013 Classe 5 a C INDAGINE STATISTICA sulle ABITUDINI DI LETTURA DEGLI STUDENTI ( 14-19 ANNI) 1 ITES Don Luigi Sturzo - Bagheria RELAZIONE DELL INDAGINE

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli