CLASSIFICAZIONE DEI CARATTERI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CLASSIFICAZIONE DEI CARATTERI"

Transcript

1 CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è detto modalità. E importante che ad ogni unità si possa associare una sola modalità; inoltre le modalità elencate devono rappresentare tutti i possibili stati che il carattere assume nel collettivo statistico. Esistono varie tipologie di caratteri. I due grandi raggruppamenti sono: Caratteri qualitativi Caratteri quantitativi CARATTERI QUALITATIVI CARATTERI QUALITATIVI SCONNESSI: hanno per modalità denominazioni qualitative tra le quali non esiste (e non è possibile stabilire) un ordinamento (sesso, religione, regione di residenza, luogo di nascita, tipo di fondo di investimento, tipo di utilizzo di un terreno). Ad es. non si può dire che il sesso maschile ha una precedenza su quello femminile. Unico confronto tra le modalità è uguaglianza o diversità delle modalità. In altri termini si dice che un carattere costituisce una scala nominale se per le sue modalità è possibile affermare solo se sono uguali o diverse (cioè se è qualitativo sconnesso). CARATTERI QUALITATIVI ORDINATI: hanno per modalità denominazioni qualitative tra le quali esiste un ordinamento naturale (titolo di studio, anno di iscrizione all università, qualifica funzionale, ceto sociale, grado di soddisfazione, livello di rischio associato ad un titolo azionario). Questo tipo di caratteri costituisce una scala ordinale proprio perché è possibile dare un ordine alle modalità in modo da affermare che una modalità precede un altra. Tra i caratteri qualitativi ordinati va individuato un sottogruppo di caratteri (caratteri ordinati ciclici) per i quali una qualunque modalità potrebbe essere scelta come prima o come ultima, per i quali cioè la scelta della prima modalità è frutto di una convenzione. Ad es. i giorni della settimana, il mese di nascita. CARATTERI QUANTITATIVI Hanno per modalità dei numeri che esprimono una misura o una quantità. Quando si opera con caratteri quantitativi, date due modalità è possibile non solo dire quale delle due viene prima ma anche effettuare una sottrazione o costruire un rapporto tra di esse al fine di confrontare le quantità. Quando è possibile calcolare solo la differenza si parla di scala a intervalli; quando è possibile anche calcolare il rapporto tra modalità si parla di scala di rapporti.

2 I caratteri quantitativi si distinguono in: DISCRETI: le modalità sono i numeri interi 0, 1, 2,... (numero di addetti di un azienda, numero di componenti di una famiglia, numero di chiamate in arrivo ad un call center). In altre parole, le modalità dei caratteri quantitativi discreti sono dei conteggi perché contano quanti dipendenti ha un azienda, quanti componenti ha una famiglia, etc..... CONTINUI: le modalità sono (almeno in linea teorica) tutti i numeri reali compresi in un determinato intervallo (altezza, peso, tempo di attesa, durata di una conversazione telefonica, reddito). I caratteri quantitativi possono inoltre essere classificati in trasferibili e non trasferibili a seconda che abbia senso o meno pensare che un'unità ceda parte del carattere che essa possiede ad un'altra unità (es.: reddito, numero di addetti sono caratteri trasferibili; altezza e peso sono caratteri non trasferibili). Lo schema seguente rappresenta le operazioni che è possibile fare con i diversi tipi di carattere introdotti sopra. Gerarchia delle scale Operazioni Fra modalità Caratteri Qualitativi Quantitativi Sconnessi Ordinati Sì Sì Sì I Uguaglianza/ Disuguaglianza II Ordinamento No Sì Sì III Sottrazione No No Sì IV Rapporto No No Sì RAGGRUPPAMENTO IN CLASSI Ricordiamoci che la statistica ha tra gli scopi quello di fornire una lettura sintetica dell insieme di dati a disposizione. Quando si rilevano caratteri quantitativi discreti che possono assumere un numero molto elevato di modalità oppure quando si rilevano caratteri quantitativi continui è opportuno effettuare un raggruppamento in classi delle modalità. Supponiamo per esempio che il carattere rilevato sia il numero di addetti delle imprese operanti in Italia. Tale carattere può assumere un numero estremamente elevato di modalità (1, 2, 100, ) ma noi generalmente non siamo interessati ad un dettaglio così elevato pertanto possiamo raggruppare le modalità in classi (ad es. 1-4, 5-9, 10-19, 20-49, 50-99, , 500 e oltre). L importante è che queste classi siano tra loro disgiunte ovvero che una modalità appartenga ad una ed una sola classe, altrimenti si creano situazioni di assegnazione incerta di un unità ad una classe. Nell es. sopra non si deve avere che una classe è 1-5 e un altra è 5-9 perché se un impresa ha 5 addetti non si sa se classificare quest impresa nella prima o nella seconda classe. E inoltre importante che tutti i valori assunti dal carattere nel collettivo osservato siano inclusi in una (e una sola) delle classi. (Ad es. se una società ha 1500 addetti, dobbiamo avere una classe che contiene il valore 1500).

3 Quando il carattere è quantitativo continuo allora è proprio necessario effettuare il raggruppamento in classi. Se ad es. si sta rilevando l altezza di un collettivo di individui, tale carattere assume valori in un continuo ma gli strumenti di misura ci costringono ad una certa approssimazione. Per es. quando rileviamo che una persona è alta 173 cm., in realtà la sua altezza sarà compresa diciamo tra 172,6 e 173,5 e tutti gli individui con altezza in questa classe verranno codificati come alti 173 cm.. Quindi quando i caratteri sono quantitativi continui, raggruppare in classi è un procedimento naturale dovuto alla imprecisione propria degli strumenti di misura. Inoltre per non riportare una lista lunghissima (al limite infinita) di possibili valori del carattere (e quindi a scopo di sintesi e per desiderio di estrarre informazioni dai dati) si raggruppano i valori in classi. Quando si hanno caratteri continui bisogna stare attenti a far sì che la proprietà di disgiunzione delle classi sia verificata. Pertanto, considerando la variabile altezza ad esempio si può avere uno dei casi seguenti: ( che significa cioè che 165 è incluso nella classe e 170 no) si dice che la classe è chiusa a sinistra e aperta a destra ( che significa cioè che 165 non è incluso nella classe e 170 sì) si dice che la classe è chiusa a destra e aperta a sinistra. In questo modo si vede che le classi non si sovrappongono. In generale supponiamo che nel collettivo che esaminiamo l altezza assuma valori tra 155 e 185 cm allora un possibile raggruppamento in classi (usando la regola 1.) è Osservate che l ultima classe per ovvie ragioni è chiusa sia a destra sia a sinistra.

4 DISTRIBUZIONE DI UN CARATTERE Terminata la fase di acquisizione dei dati, iniziamo a vedere come rappresentarli e sintetizzarli. Il primo risultato della rilevazione dei dati è una lista delle modalità con cui ognuno dei caratteri si presenta in ciascuna unità del collettivo (dati grezzi). Possiamo quindi immaginare una lista con tante righe quante sono le unità. Questa altro non è che la distribuzione del collettivo secondo i caratteri considerati. Dal momento che per ogni unità indichiamo la modalità con la quale ciascun carattere si manifesta, si parla di distribuzione unitaria (o per unità). La distribuzione unitaria è semplice se si riferisce ad un solo carattere, è multipla se si riferisce a due o più caratteri. Esempio. Su n=20 aziende nel Lazio si rileva la modalità assunta dal carattere numero di addetti. Indichiamo con a 1 la modalità assunta nell azienda 1, con a 2 la modalità assunta nell azienda 2,, con a 20 la modalità assunta nell azienda 20. In generale indichiamo con a 1,...a n le modalità associate alle unità 1,..n. La distribuzione per unità è la seguente Azienda n. addetti Azienda n. addetti 1 = 4 11 = a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 = 2 = 8 = 6 = 3 = 2 = 5 = 5 = 10 = a 11 a 12 a 13 a 14 a 15 a 16 a 17 a 18 a 19 a 20 = 3 = 2 = 2 = 9 = 11 = 10 = 9 = 2 = 15 Tab. 1: distribuzione unitaria di 20 aziende del Lazio per numero di addetti Nota: Quando i dati vengono riportati in forma di distribuzione per unità, è disponibile l informazione riguardante l associazione unità-modalità, cioè data una modalità possiamo sapere esattamente quale/quali unità la presentano. Il problema della distribuzione unitaria è la sua mancanza di sintesi soprattutto nel caso in cui il collettivo sia molto numeroso e su di esso vengano rilevati caratteri che possono assumere un elevato numero di modalità. Ricordiamoci infatti che il nostro scopo è quello di estrarre informazioni dai nostri dati, informazioni che siano rilevanti per lo scopo della nostra indagine. Per ottenere una maggiore sintesi si costruisce la distribuzione di frequenze. Anche in questo caso si parla di distribuzioni di frequenza semplice se questa è riferita ad un

5 solo carattere; altrimenti si parla di distribuzione doppia se si riferisce a due caratteri, e in generale multipla se si riferisce a più caratteri. Consideriamo una distribuzione di frequenze semplice. Per ogni modalità distinta assunta dal carattere nel collettivo in esame si registra: - il numero di unità che presentano tale modalità. Questo numero viene detto frequenza assoluta della modalità, cioè il numero di volte che la modalità viene osservata nel collettivo (ovvero il numero di unità del collettivo con quella modalità). - la frazione, sul totale delle unità del collettivo, di unità che presentano tale modalità. Questo numero viene detto frequenza relativa della modalità. (In via teorica ciò significa che ci si riporta ad avere numerosità del collettivo pari a 1) - la percentuale di unità del collettivo che presentano tale modalità. Questo numero viene detto frequenza percentuale della modalità. (In via teorica ciò significa che ci si riporta ad avere numerosità del collettivo pari a 100) Vediamo come quanto esposto viene espresso in termini formali. Sia K il numero di modalità distinte che il carattere assume nel collettivo; indichiamo: - con x 1,, x K tali modalità - con n 1,, n K le frequenze assolute associate - con f 1,, f K le frequenze relative associate, dove f i = n i /n, i=1,,k - con p 1,, p K le frequenze percentuali associate, dove p i = f i 100 = (n i /n) 100, i=1,,k Torniamo all esempio delle 20 aziende del Lazio dove n = 20 e K=10. Abbiamo visto la distribuzione unitaria; qui sotto è riportata la distribuzione di frequenze. Modalità x i Freq. assolute n i freq. relative f i freq. percentuali p i 2 (= x 1 ) 5 (=n 1 ) 5/20 = 0.25 (=f 1 ) = 25 (=p 1 ) 3 (= x 2 ) 3 (=n 2 ) 3/20 = 0.15 (=f 2 ) = 15 (=p 2 ) 4 (= x 3 ) 1 (=n 3 ) 1/20 = 0.05 (=f 3 ) = 5 (=p 3 ) 5 (= x 4 ) 3 (=n 4 ) 3/20 = 0.15 (=f 4 ) = 15 (=p 4 ) 6 (= x 5 ) 1 (=n 5 ) 1/20 = 0.05 (=f 5 ) = 5 (=p 5 ) 8 (= x 6 ) 1 (=n 6 ) 1/20 = 0.05 (=f 6 ) = 5 (=p 6 ) 9 (= x 7 ) 2 (=n 7 ) 2/20 = 0.1 (=f 7 ) = 10 (=p 7 ) 10 (= x 8 ) 2 (=n 8 ) 2/20 = 0.1 (=f 8 ) = 10 (=p 8 ) 11 (= x 9 ) 1 (=n 9 ) 1/20 = 0.05 (=f 9 ) = 5 (=p 9 ) 15 (= x 10 ) 1 (=n 10 ) 1/20 = 0.05 (=f 10 ) = 5 (=p 10 ) totale 20 (=n) Tab. 2: distribuzione di frequenze di 20 aziende del Lazio per numero di addetti (carattere quantitativo discreto)

6 Leggendo la tabella vediamo che ad esempio il numero di aziende del Lazio con 2 addetti (cioè il numero di aziende con la modalità x 1 ) è pari a 5 (cioè n 1 =5) e che le aziende con 5 addetti costituiscono il 25% delle aziende osservate, cioè p 1 =25. Proprietà 1: la somma (per colonna) di tutte le frequenze relative è pari a 1, in simboli f f + + f 1 (ovvero anche f = 1) K = K i= 1 Proprietà 2: la somma (per colonna) di tutte le frequenze percentuali è pari a 100, in simboli p p + + p 100 (ovvero anche p = 100 ) K = i K i= 1 i Osservazione: se il carattere X è qualitativo ordinato o quantitativo le modalità vengono elencate in ordine crescente come nell esempio riportato sopra in cui il carattere è quantitativo (discreto) e si parte dalla modalità corrispondente al numero più basso di addetti per arrivare alla modalità corrispondente al numero più alto di addetti rilevato. Se il carattere è qualitativo sconnesso, invece, per definizione non esiste un ordine in base al quale presentare le modalità Consideriamo il seguente esempio relativo alla distribuzione per fede religiosa Religione (Africa) n i f i Cristiani Musulmani Animasti Altro Totale Nota: E importante osservare che quando si considera la distribuzione di frequenze, non è più disponibile l informazione riguardante l associazione unità-modalità. Ciò significa che ad esempio sappiamo che nel Lazio 2 aziende hanno 10 addetti (cioè presentano la modalità x 8 ) ma non sappiamo quali aziende specifiche. CONFRONTO FRA DISTRIBUZIONI Le frequenze relative (e quelle percentuali) consentono sia di capire l'importanza di una modalità nel collettivo perché indicano la frazione (percentuale) di unità che detengono quella modalità sia di confrontare frequenze corrispondenti ad una stessa modalità in distribuzioni secondo lo stesso carattere su collettivi di diversa numerosità. Infatti, grazie alla proprietà 1, la frequenza relativa equivale ad una trasformazione dell unità di misura delle frequenze in modo tale che il totale risulti pari ad 1 (e grazie alla proprietà 2 la frequenza percentuale equivale ad una trasformazione dell unità di misura delle frequenze in modo tale che il totale risulti pari a 100). Questo significa che lavorare con le frequenze relative (percentuali) equivale e fissare a 1 (100) la numerosità del collettivo e a riproporzionare corrispondentemente le frequenze assolute.

7 Consideriamo ancora l esempio dell indagine sul n. addetti. Abbiamo visto il caso del Lazio. Supponiamo di avere fatto una rilevazione anche su n M =10 aziende nel Molise e di avere ottenuto la seguente distribuzione di frequenze. Modalità x i Freq. assolute n i Freq. relative f i Freq. percentuali p i totale Mettiamo a confronto le due distribuzioni di frequenze. Innanzitutto notiamo che nella distribuzione del Molise molte modalità hanno frequenza nulla cioè non si presentano nella popolazione. Dalla tabella che segue risulta più facile effettuare un confronto. LAZIO MOLISE Modalità freq. Assolute freq. relative freq. assolute freq. relative Totale I due collettivi hanno numerosità diversa. Pertanto come prima cosa modifichiamo le frequenze in modo tale che i due collettivi abbiano la stessa numerosità, cioè calcoliamo le frequenze relative. Dall osservazione delle frequenze relative vediamo che nel Molise le aziende con 2 addetti sono più che nel Lazio (in particolare sono il doppio). Se ci fossimo, invece, limitati ad osservare le frequenze assolute saremmo giunti alla conclusione ERRATA (!) che nel Lazio e nel Molise c è lo stesso numero di aziende con 2 addetti. Pertanto quando si vogliono fare confronti tra due o più distribuzioni relative allo stesso carattere rilevato su due o più popolazioni, occorre confrontare o le distribuzioni di frequenze relative o le distribuzioni di frequenze percentuali.

8 Raggruppamento in classi Come abbiamo visto, il raggruppamento in classi si applica a caratteri sia quantitativi discreti che continui. Classi di diversa ampiezza Consideriamo Tab. 1. Effettuiamo il raggruppamento in classi, come si vede nella prima colonna della tabella che segue. Osserviamo che le classi non sono di uguale ampiezza. Allora aggiungiamo una colonna in cui riportiamo l ampiezza della classe che indichiamo con α i. Come si vede la seconda e la terza classe hanno ampiezza diversa (α 2 = 3 e α 3 = 5) quindi non ha senso confrontare le frequenze assolute (o relative o percentuali) di queste due classi. E necessario eliminare l effetto della dimensione della classe; lo si fa calcolando la densità assoluta di ciascuna classe (H i ) che è data dal rapporto tra la frequenza assoluta della classe i e l ampiezza della classe i, cioè n i /α i. In questo modo troviamo H 2 = 2.3 e H 3 = 1.2 e quindi osserviamo che mentre le frequenze assolute e relative delle due classi sono molto vicine, le densità sono molto diverse cioè le unità sono molto più addensate nella seconda che nella terza classe. Ciò è del tutto ovvio visto che nella classe di minore ampiezza (3 6) ci sono più imprese di quante sono nella classe di ampiezza maggiore (6 11). E infine immediato calcolare anche le densità relative (o percentuali) che consentono di eliminare oltre all effetto dell ampiezza della classe anche quello della numerosità del collettivo qualora si voglia confrontare questa distribuzione con quella del Molise (una volta effettuato un eguale raggruppamento in classi). Classi di addetti n i f i Ampiezza della classe (α i ) Densità assoluta (H i ) Densità relativa (h i ) totale 20 1 Tab. 3 Distribuzione in classi Indichiamo con c i-1 l estremo inferiore e con c i l estremo superiore della generica classe i; abbiamo introdotto le seguenti quantità: α i = (c i -c i-1 ): ampiezza classe i H i = n i /α i : densità assoluta della classe i h i = f i /α i = H i /n: densità relativa della classe i h i % = p i /α i = h i *100: densità percentuale della classe i Nelle distribuzioni in classi le frequenze sono quantità eterogenee in quanto dipendenti dall ampiezza delle classi. I rapporti tra ciascuna frequenza (assoluta o relativa) e l ampiezza della classe si chiamano densità ed esprimono correttamente l addensamento delle frequenze nelle varie classi.

9 Importante: La densità rappresenta la frequenza che si avrebbe in un intervallino di ampiezza unitaria se all interno di una data classe le frequenze fossero uniformemente distribuite ovvero se ad ogni classe unitaria interna a ciascuna classe competesse lo stesso numero di unità. Le densità assolute consentono il confronto tra classi di una stessa distribuzione (solo Lazio); le densità relative (e percentuali) tra classi di distribuzioni diverse (Lazio e Molise). Classi di stessa ampiezza. L analisi è molto più semplice quando le modalità vengono raggruppate in classi di uguale ampiezza. In tal caso non è necessario calcolare le densità per confrontare le numerosità che competono a classi diverse. Qui di seguito è riportato un esempio di distribuzione in classi con classi di uguale ampiezza. statura n i f i totale 1 1.0

10 DISTRIBUZIONI DI QUANTITÀ Le distribuzioni di quantità sono il risultato dell operazione di classificazione (che suddivide il collettivo in classi) e dell operazione di misurazione in ciascuna classe di un carattere quantitativo trasferibile. Con questa distribuzione si vede come l ammontare globale del carattere si distribuisce fra le varie classi. Consideriamo la Tab. 2 e diamo la distribuzione di quantità del carattere numero di addetti usando la divisioni in classi di Tab. 3 dove è riportata la distribuzione di frequenze. Classi di addetti Numero di addetti = = = =26 totale 116 Tab. 4 Distribuzione di quantità Nota: Il carattere rispetto al quale si fa la classificazione può essere diverse da quello che viene misurato e poi sommato in ogni classe. SERIE STORICHE Un particolare tipo di distribuzione si ha quando il fenomeno rilevato varia nel tempo e noi siamo interessate a conoscere e studiare la sua evoluzione temporale (PIL, consumi, produzione, inflazione, vendite, nascite, incidenti stradali,...). In questo caso per ogni prefissato momento temporale si rileva l entità (intensità) del fenomeno oggetto di studio. Nell es. che segue le unità statistiche sono gli incidenti stradali verificatisi in Italia tra il 1987 e il Anno Incidenti

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati.

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati. Indice 1 Descriviamo i Dati 1 1.1 L Informazione in Statistica................... 1 1.2 Variabili Qualitative....................... 5 1.2.1 Distribuzioni di Frequenza................ 5 1.2.2 Rappresentazioni

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre Archivio Statistico delle Imprese Attive (ASIA) L archivio è costituito dalle unità economiche che

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali Sonetto di Trilussa Sai ched è la statistica? E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

LA RILEVAZIONE DEI DATI STATISTICI

LA RILEVAZIONE DEI DATI STATISTICI LA RILEVAZIONE DEI DATI STATISTICI 0. Introduzione La statistica è la disciplina che studia i fenomeni collettivi allo scopo di metterne in evidenza le regolarità. Il vocabolo Statistica deriva dal latino

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali 1 Sonetto di Trilussa Sai ched è la statistica? E E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica descrittiva Cernusco S.N., giovedì 21 gennaio 2016 (9.00/13.00)

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

PRIMA PARTE STATISTICA DESCRITTIVA

PRIMA PARTE STATISTICA DESCRITTIVA PRIMA PARTE STATISTICA DESCRITTIVA 1 PRIMA UNITA Primi concetti elementari 1. Che cos è la statistica La statistica si occupa della raccolta, presentazione ed elaborazione delle informazioni, in genere

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Analisi dei Dati e Statistica a.a. 2011/2012. Prof. Giuseppe Espa. giuseppe.espa@economia.unitn.it 0461/282157. Statistica descrittiva (prima parte)

Analisi dei Dati e Statistica a.a. 2011/2012. Prof. Giuseppe Espa. giuseppe.espa@economia.unitn.it 0461/282157. Statistica descrittiva (prima parte) a.a. 2011/2012 giuseppe.espa@economia.unitn.it 0461/282157 Statistica descrittiva (prima parte) D.J. Sweeney, T.A. Williams, D.R. Anderson (2009) Fundamentals of Business Statistics (5th edition International

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Insegnamento di Statistica Medica

Insegnamento di Statistica Medica Università degli Studi di Palermo Insegnamento di Statistica Medica per la Facoltà di Medicina e Chirurgia a.a. 2011/2012 (3 cfu) Docente Dott.ssa Domenica Matranga Etimologia della parola Statistica Deriva

Dettagli

CURRICOLO di MATEMATICA Scuola Primaria

CURRICOLO di MATEMATICA Scuola Primaria CURRICOLO di MATEMATICA Scuola Primaria MATEMATICA CLASSE I Indicatori Competenze Contenuti e processi NUMERI Contare oggetti o eventi con la voce in senso progressivo e regressivo Riconoscere e utilizzare

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

NUMERI E SUCCESSIONI

NUMERI E SUCCESSIONI NUMERI E SUCCESSIONI Giovanni Maria Troianiello 1 Notazioni insiemistiche. Numeri naturali, interi, razionali Notazioni insiemistiche Si sa cosa s intende quando si parla di insieme (o famiglia, o classe)

Dettagli

Controllo Statistico della Qualità (alcune note)

Controllo Statistico della Qualità (alcune note) Controllo Statistico della Qualità (alcune note) Prof.ssa Paola Vicard 1 Tecniche Statistiche per l Analisi della Qualità e della Soddisfazione 2 Le tecniche statistiche costituiscono (insieme ad altri

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard DISTRIBUZIONE DI FREQUENZE PER CARATTERI QUALITATIVI Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000,

Dettagli

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3

Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 LEZIONE ELEMENTI DI STATISTICA DESCRITTIVA PROF. CRISTIAN SIMONI Indice 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3 1.1. Popolazione --------------------------------------------------------------------------------------------

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Igiene nelle Scienze motorie

Igiene nelle Scienze motorie Igiene nelle Scienze motorie Epidemiologia generale Epidemiologia Da un punto di vista etimologico, epidemiologia è una parola di origine greca, che letteralmente significa «discorso riguardo alla popolazione»

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI

METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI 1.1 La Statistica La Statistica è la scienza che raccoglie, elabora ed interpreta i dati (informazioni) relativi ad un dato fenomeno oggetto di osservazione.

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Lezione 18 1. Introduzione

Lezione 18 1. Introduzione Lezione 18 1 Introduzione In questa lezione vediamo come si misura il PIL, l indicatore principale del livello di attività economica. La definizione ed i metodi di misura servono a comprendere a quali

Dettagli

[ Analisi della. concentrazione] di Luca Vanzulli. Pag. 1 di 1

[ Analisi della. concentrazione] di Luca Vanzulli. Pag. 1 di 1 [ Analisi della concentrazione] di Luca Vanzulli Pag. 1 di 1 LA CONCENTRAZIONE NELL ANALISI DELLE VENDITE L analisi periodica delle vendite rappresenta un preziosissimo indicatore per il monitoraggio del

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Statistica Sociale Laboratorio 2

Statistica Sociale Laboratorio 2 CORSO DI STATISTICA SOCIALE Statistica Sociale Laboratorio 2 Dott.ssa Agnieszka Stawinoga agnieszka.stawinoga@unina.it Le variabili qualitative ( mutabili ) Le variabili qualitative (mutabili) assumono

Dettagli

LE INDAGINI STATISTICHE

LE INDAGINI STATISTICHE LE INDAGINI STATISTICHE Una indagine statistica può essere assimilata ad un processo di produzione che sinteticamente può essere individuato nelle seguenti fasi: 1. Definizione degli obiettivi e ipotesi

Dettagli

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto.

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto. «Possiamo conoscere qualcosa dell'oggetto di cui stiamo parlando solo se possiamo eseguirvi misurazioni, per descriverlo mediante numeri; altrimenti la nostra conoscenza è scarsa e insoddisfacente.» (Lord

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

APPUNTI SUI METODI PERT-C.P.M.

APPUNTI SUI METODI PERT-C.P.M. APPUNTI SUI METODI PERT-C.P.M. (corso di ricerca operativa) A cura di: Antonio Scalera 1 PERT/C.P.M. I metodi Pert e C.P.M. studiano lo sviluppo di un progetto attraverso la programmazione delle attività

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Successioni ESEMPI: Matematica con Elementi di Statistica, Anna Torre a.a. 2013-2014

Successioni ESEMPI: Matematica con Elementi di Statistica, Anna Torre a.a. 2013-2014 Successioni Vi sono fenomeni naturali e situazioni concrete che presentano sviluppi significativi in tempi discreti. Vale a dire è naturale che i controlli per quei dati fenomeni o per quelle date situazioni

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

9. La distribuzione 2 e i test per dati su scala nominale

9. La distribuzione 2 e i test per dati su scala nominale 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione 9. 1. 1. La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA a.a. 2009-2010 Facoltà di Economia, Università Roma Tre L Indagine sui bilanci delle famiglie italiane è un indagine campionaria condotta (ogni due anni)

Dettagli